

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f722a-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0											
00h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	memory (no	t a physical r	egister)	xxxx xxxx	22,30
01h	TMR0	Timer0 Mod	lule Register							XXXX XXXX	91,30
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	cant Byte					0000 0000	21,30
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
04h ⁽²⁾	FSR	Indirect Dat	a Memory A	ddress Point	er					XXXX XXXX	22,30
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	43,30
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	52,30
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	62,30
09h	PORTE	_	_	_	_	RE3	_	_	_	xxxx	69,30
0Ah ^(1, 2)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the	Program Cou	unter	0 0000	21,30
0Bh ⁽²⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	39,30
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	40,30
0Eh	TMR1L	Holding Reg	gister for the	Least Signif	icant Byte of	the 16-bit TM	IR1 Register			XXXX XXXX	99,30
0Fh	TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1 Register			XXXX XXXX	99,30
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	103,30
11h	TMR2	Timer2 Mod	lule Register							0000 0000	106,30
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	107,30
13h	SSPBUF	Synchronou	is Serial Por	t Receive Bu	uffer/Transmit	Register				XXXX XXXX	147,30
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	164,30
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	.SB)					XXXX XXXX	116,30
16h	CCPR1H	Capture/Co	mpare/PWM	Register (N	ISB)					xxxx xxxx	116,30
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	115,30
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	134,30
19h	TXREG	USART Tra	nsmit Data F	Register						0000 0000	133,30
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	131,30
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register 2	(LSB)					XXXX XXXX	116,30
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register 2	(MSB)					xxxx xxxx	116,30
1Dh	CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	115,30
1Eh	ADRES	A/D Result	Register							xxxx xxxx	86,30
1Fh	ADCON0	_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	85,30

	DIC16/LIE722A/723A SPECIAL EUNCTION PEO	
IADLE Z-I:	PICIO(L)F/22A//23A SPECIAL FUNCTION REC	JOIER JUNINART

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0> = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 2											
100h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (not	a physical r	egister)	xxxx xxxx	22,30
101h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	91,30
102h ⁽²⁾	PCL	Program Co	unter's (PC)	Least Signi	ficant Byte					0000 0000	21,30
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
104h ⁽²⁾	FSR	Indirect Data	a Memory A	ddress Point	er					xxxx xxxx	22,30
105h	—	Unimplemen	nted							_	—
106h	—	Unimplemen	nted							_	—
107h	—	Unimplemen	nted							_	—
108h	CPSCON0	CPSON	-	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	112,31
109h	CPSCON1	—	-	—	—	—	CPSCH2	CPSCH1	CPSCH0	0000	113,31
10Ah ^(1, 2)	PCLATH	—	-	—	Write Buffer	for the upper	r 5 bits of the	Program Cou	unter	0 0000	21,30
10Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIF	0000 000x	36,30			
10Ch	PMDATL	Program Me	Program Memory Read Data Register Low Byte								167,31
10Dh	PMADRL	Program Me	Program Memory Read Address Register Low Byte							xxxx xxxx	167,31
10Eh	PMDATH	—	Program Memory Read Data Register High Byte							xx xxxx	167,31
10Fh	PMADRH	_	_	—	Program Me	mory Read A	Address Regis	ster High Byte	9	x xxxx	167,31
Bank 3											
180h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (not	a physical r	egister)	xxxx xxxx	22,30
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19,30
182h ⁽²⁾	PCL	Program Co	unter (PC) L	east Signific	cant Byte					0000 0000	21,30
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
184h ⁽²⁾	FSR	Indirect Data	a Memory A	ddress Point	er					xxxx xxxx	22,30
185h	ANSELA	_		ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	44,31
186h	ANSELB	_		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	53,31
187h	—	Unimpleme	nted							_	—
18Ah ^(1, 2)	PCLATH	_		_	Write Buffer	for the upper	r 5 bits of the	Program Cou	unter	0 0000	21,30
18Bh ⁽²⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30
18Ch	PMCON1	Reserved	_	_	_	_	_	_	RD	10	168,31
18Dh	—	Unimplemen	nted							—	—
18Eh	—	Unimplemen	nted							—	—
18Fh	_	Unimplemen	nted							_	—

TABLE 2-1: PIC16(L)F722A/723A SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM < 3:0 > = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

3.0 RESETS

The PIC16(L)F722A/723A differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset (POR)
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 3-3. These bits are used in software to determine the nature of the Reset.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 23.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

4.5.2 PIE1 REGISTER

The PIE1 register contains the interrupt enable bits, as shown in Register 4-2.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	TMR1GIE: Til	mer1 Gate Inte	rrupt Enable	bit	at .		
	0 = Disable th	ne Timer1 gate	acquisition co	omplete interru	pt		
bit 6	ADIE: A/D Co	onverter (ADC)	Interrupt Ena	able bit			
	1 = Enables t 0 = Disables t	he ADC interru	pt 				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	bit			
	1 = Enables t 0 = Disables t	he USART rec the USART rec	eive interrupt eive interrupt	t			
bit 4	TXIE: USART	Transmit Inter	rupt Enable b	oit			
	1 = Enables t 0 = Disables t	he USART tran the USART tran	nsmit interrupt nsmit interrup	t ot			
bit 3	SSPIE: Synch	hronous Serial	Port (SSP) In	nterrupt Enable	bit		
	1 = Enables t 0 = Disables t	he SSP interru the SSP interru	pt ipt				
bit 2	CCP1IE: CCF	P1 Interrupt En	able bit				
	1 = Enables t 0 = Disables t	he CCP1 interr the CCP1 inter	rupt rupt				
bit 1	TMR2IE: TM	R2 to PR2 Mate	ch Interrupt E	nable bit			
	1 = Enables t 0 = Disables t	he Timer2 to P the Timer2 to F	R2 match inte R2 match int	errupt errupt			
bit 0	TMR1IE: Time	er1 Overflow Ir	nterrupt Enabl	le bit			
	1 = Enables t 0 = Disables t	he Timer1 ovei the Timer1 ove	flow interrupt rflow interrup	t t			

REGISTER 4-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

6.0 I/O PORTS

There are as many as thirty-five general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

6.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 6-1. For this device family, the following functions can be moved between different pins:

- SS (Slave Select)
- CCP2

REGISTER 6-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SSSEL	CCP2SEL
bit 7							bit 0

Legend:									
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7-2	Unimplemented: Read as '0'.
bit 1	SSSEL: SS Input Pin Selection bit
	0 = <u>SS</u> function is on RA5/AN4/CPS7/SS/VCAP 1 = <u>SS</u> function is on RA0/AN0/SS/VCAP
bit 0	CCP2SEL: CCP2 Input/Output Pin Selection bit
	0 = CCP2 function is on RC1/T1OSI/CCP2 1 = CCP2 function is on RB3/CCP2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_	—	CHS3	CHS2	CHS1	CHS0	GO/ DONE	ADON	85
ADCON1		ADCS2	ADCS1	ADCS0	—	—	ADREF1	ADREF0	86
ANSELA		—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	44
APFCON		—	-	—	—	—	SSSEL	CCP2SEL	42
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	112
CPSCON1		—	-	—	—	CPSCH2	CPSCH1	CPSCH0	113
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	19
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	43
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	152
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	43

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2 ⁽¹⁾	13:8	—	—	—	—	—	—	—	—	70
	7:0	_	_	VCAPEN1	VCAPEN0	WDTE	_	-	_	78

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F722A/723A only.

6.4.1 RC0/T1OSO/T1CKI

Figure 6-13 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Timer1 oscillator output
- Timer1 clock input

6.4.2 RC1/T1OSI/CCP2

Figure 6-14 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Timer1 oscillator input
- Capture 2 input, Compare 2 output, and PWM2 output

Note: CCP2 pin location may be selected as RB3 or RC1.

6.4.3 RC2/CCP1

Figure 6-15 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Capture 1 input, Compare 1 output, and PWM1 output

6.4.4 RC3/SCK/SCL

Figure 6-16 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI clock
- I²C clock

6.4.5 RC4/SDI/SDA

Figure 6-17 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI data input
- I²C data I/O

6.4.6 RC5/SDO

Figure 6-18 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI data output

6.4.7 RC6/TX/CK

Figure 6-19 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Asynchronous serial output
- Synchronous clock I/O

6.4.8 RC7/RX/DT

Figure 6-20 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- · Asynchronous serial input
- Synchronous serial data I/O

11.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- Programmable internal or external clock source
- · Programmable external clock edge selection
- Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 11-1 is a block diagram of the Timer0 module.

11.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

11.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by clearing the T0CS bit of the OPTION register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

11.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSOSC) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the T0CS bit in the OPTION register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter Mode using the Capacitive Sensing Oscillator (CPSOSC) signal is selected by setting the TOCS bit in the OPTION register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the T0SE bit in the OPTION register.

FIGURE 11-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	115
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	36
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52
TMR1H	Holding Reg	ister for the	Most Signifi	cant Byte of	the 16-bit T	MR1 Regis	ter		99
TMR1L	Holding Reg	ister for the	Least Signif	icant Byte o	f the 16-bit 1	MR1 Regis	ster		99
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	103
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	104

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53
APFCON	—	—	—		_	—	SSSEL	CCP2SEL	42
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	115
CCP2CON	—		DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115
CCPRxL	Capture/C	ompare/PW	M Register	X Low Byte					116
CCPRxH	Capture/C	ompare/PW	M Register	X High Byte					116
PR2	Timer2 Pe	riod Registe	er						106
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107
TMR2	Timer2 Mo	odule Regist	er						106
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62

TABLE 15-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

16.3 AUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The AUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

16.3.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the AUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the AUSART.

16.3.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/ CK line. The TX/CK pin output driver is automatically enabled when the AUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

16.3.1.2 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the AUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

16.3.1.3 Synchronous Master Transmission Setup:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

17.2.7 CLOCK STRETCHING

During any SCL low phase, any device on the I^2C bus may hold the SCL line low and delay, or pause, the transmission of data. This "stretching" of a transmission allows devices to slow down communication on the bus. The SCL line must be constantly sampled by the master to ensure that all devices on the bus have released SCL for more data.

Stretching usually occurs after an ACK bit of a transmission, delaying the first bit of the next byte. The SSP module hardware automatically stretches for two conditions:

- After a 10-bit address byte is received (update SSPADD register)
- Anytime the CKP bit of the SSPCON register is cleared by hardware

The module will hold SCL low until the CKP bit is set. This allows the user slave software to update SSPBUF with data that may not be readily available. In 10-bit addressing modes, the SSPADD register must be updated after receiving the first and second address bytes. The SSP module will hold the SCL line low until the SSPADD has a byte written to it. The UA bit of the SSPSTAT register will be set, along with SSPIF, indicating an address update is needed.

17.2.8 FIRMWARE MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits of the SSPSTAT register are cleared from a Reset or when the SSP module is disabled (SSPEN cleared). The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is Idle and both the S and P bits are clear.

In Firmware Master mode, the SCL and SDA lines are manipulated by setting/clearing the corresponding TRIS bit(s). The output level is always low, irrespective of the value(s) in the corresponding PORT register bit(s). When transmitting a '1', the TRIS bit must be set (input) and a '0', the TRIS bit must be clear (output).

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Firmware Master mode of operation can be done with either the Slave mode Idle (SSPM<3:0 > = 1011), or with either of the Slave modes in which interrupts are enabled. When both master and slave functionality is enabled, the software needs to differentiate the source(s) of the interrupt. Refer to Application Note AN554, Software Implementation of $l^2 C^{TM}$ Bus Master (DS00554) for more information.

17.2.9 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allow the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set or when the bus is Idle, and both the S and P bits are clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRIS bits). There are two stages where this arbitration of the bus can be lost. They are the address transfer and data transfer stages.

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an \overrightarrow{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Refer to Application Note AN578, Use of the SSP Module in the $l^2 C^{TM}$ Multi-Master Environment (DS00578) for more information.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	
bit 7							bit 0	
								
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7	WCOL: Write 1 = The SSP software) 0 = No collisi	 WCOL: Write Collision Detect bit 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision 						
bit 6	SSPOV: Rece 1 = A byte is care" in 7 0 = No overfl	 SSPOV: Receive Overflow Indicator bit 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. SSPOV must be cleared in software in either mode. 0 = No overflow 						
bit 5	SSPEN : Sync 1 = Enables t 0 = Disables :	SSPEN : Synchronous Serial Port Enable bit 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins ⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins						
bit 4	CKP: Clock P 1 = Release c 0 = Holds clo	CKP : Clock Polarity Select bit 1 = Release control of SCL 0 = Holds clock low (clock stretch), (Used to ensure data setup time.)						
bit 3-0	SSPM<3:0>: Synchronous Serial Port Mode Select bits $0110 = I^2C$ Slave mode, 7-bit address $0111 = I^2C$ Slave mode, 10-bit address 1000 = Reserved 1001 = Load SSPMSK register at SSPADD SFR Address(1) 1010 = Reserved $1011 = I^2C$ Firmware Controlled Master mode (Slave Idle) 1100 = Reserved 1101 = Reserved 1101 = Reserved $1101 = I^2C$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled $1111 = I^2C$ Slave mode, 10-bit address with Start and Stop bit interrupts enabled							
Note 1:	When this mode is	selected, any re	eads or writes	to the SSPADD	SFR address ad	ccesses the SS	PMSK register.	

REGISTER 17-3: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (I²C MODE)

2: When enabled, these pins must be properly configured as input or output using the associated TRIS bit.

RLF	Rotate I	Rotate Left f through Carry				
Syntax:	[label]	RLF	f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	See description below					
Status Affected:	С					
Description:	The con rotated of the Carr result is If 'd' is ': back in	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1					
Cycles:	1					
Example: RLF REG1,0						
Before Instruction						
		REG1	=	1110	0110	
		С	=	0		
After Instruction						
	REG1 =			1110	0110	
		W	=	1100	1100	
		С	=	1		

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
	C Register f				

SUBLW	Subtract W from literal			
Syntax:	[label] SL	JBLW k		
Operands:	$0 \le k \le 255$			
Operation:	$k - (W) \to (W)$			
Status Affected: C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.			
	C = 0	W > k		
	C = 1	$W \le k$		

DC = 0

DC = 1

W<3:0> > k<3:0>

 $W < 3:0 > \le k < 3:0 >$

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit[™] 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

22.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

FIGURE 24-4: PIC16LF722A/723A TYPICAL IDD vs. Fosc OVER VDD, EC MODE

FIGURE 24-28: PIC16LF722A/723A MAXIMUM BASE IPD vs. VDD

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Number of Pins		28			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad		0.20	_	_	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B