

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f722at-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

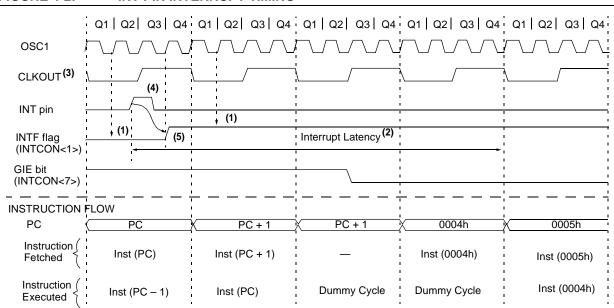
The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- · PC is loaded with the interrupt vector 0004h

The ISR determines the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated

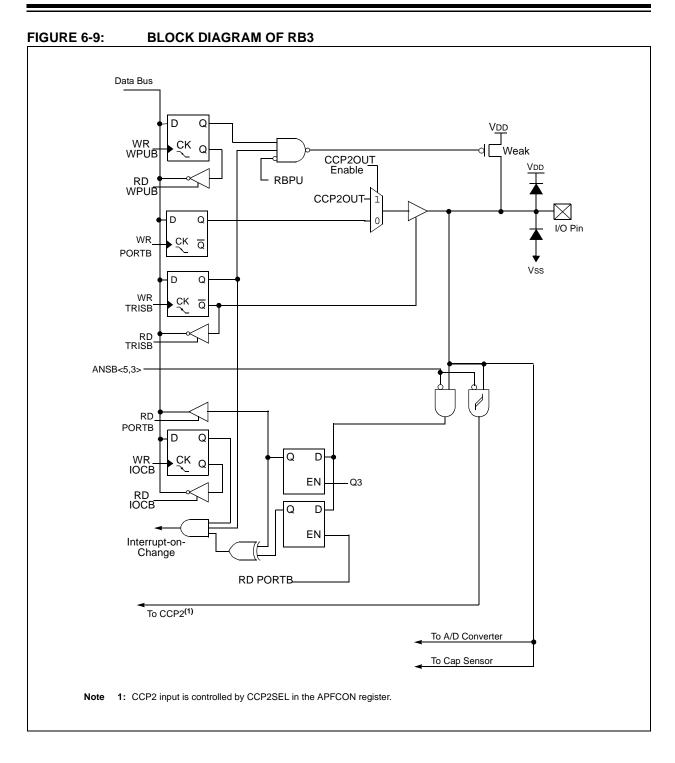
interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.


The RETFIE instruction exits the ISR by popping the previous address from the stack and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

4.2 Interrupt Latency


Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three instruction cycles. For asynchronous interrupts, the latency is three to four instruction cycles, depending on when the interrupt occurs. See Figure 4-2 for timing details.

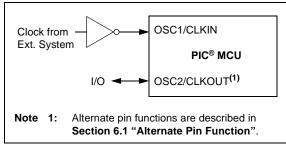
Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

PIC16(L)F722A/723A

7.6 External Clock Modes

7.6.1 OSCILLATOR START-UP TIMER (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations on the OSC1 pin before the device is released from Reset. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

7.6.2 EC MODE

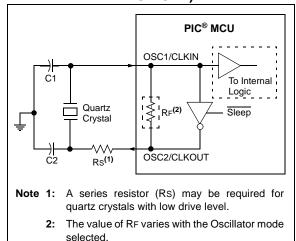
The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 7-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.6.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

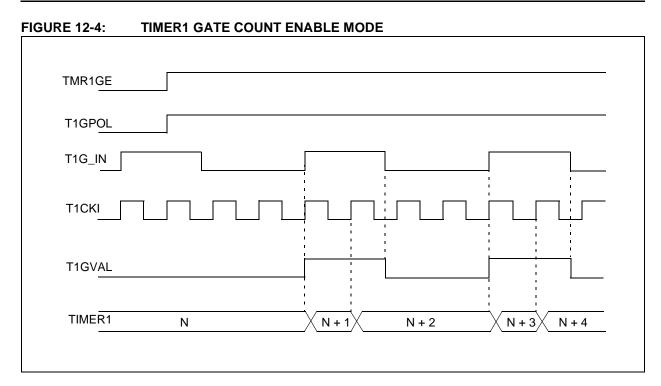
FIGURE 7-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

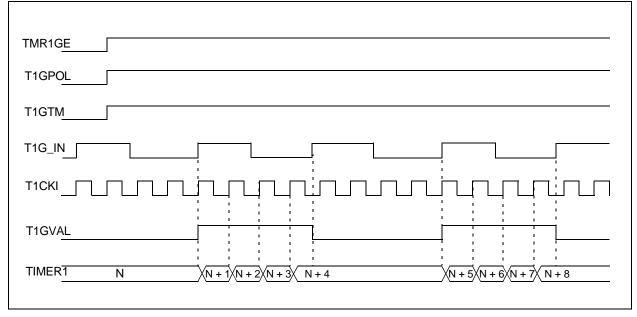
- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PIC[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949)

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.


REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
Legend:							


Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = AN0
	0001 = AN1
	0010 = AN2
	0011 = AN3
	0100 = AN4
	0101 = Reserved
	0110 = Reserved
	0111 = Reserved
	1000 = AN8
	1001 = AN9
	1010 = AN10
	1011 = AN11
	1100 = AN12
	1101 = AN13
	1110 = Reserved
	1111 = Fixed Voltage Reference (FVREF)
bit 1	GO/DONE: A/D Conversion Status bit
	 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.
	0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current

PIC16(L)F722A/723A

FIGURE 12-5: TIMER1 GATE TOGGLE MODE

REGISTER 14-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1											
U-0	J-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0										
—	—	—	—	_	CPSCH2	CPSCH1	CPSCH0				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown				

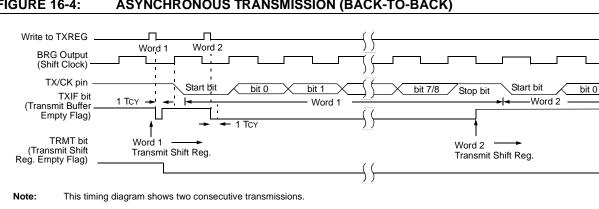

bit 7-3	Unimplemented: Read as '0'
bit 2-0	CPSCH<2:0>: Capacitive Sensing Channel Select bits
	If CPSON = 0:
	These bits are ignored. No channel is selected.
	<u>If CPSON = 1</u> :
	000 = channel 0, (CPS0)
	001 = channel 1, (CPS1)
	010 = channel 2, (CPS2)
	011 = channel 3, (CPS3)
	100 = channel 4, (CPS4)
	101 = channel 5, (CPS5)
	110 = channel 6, (CPS6)
	111 = channel 7, (CPS7)

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA		—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	44
ANSELB	-	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	19
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	103
T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	43
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the capacitive sensing module.

PIC16(L)F722A/723A

FIGURE 16-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	x000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	AUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
I a manual					<u>.</u>					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous transmission.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0				
CSRC	TX9	TXEN ⁽¹⁾	SYNC	—	BRGH	TRMT	TX9D				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 7	CSRC: Cloc <u>Asynchronc</u>	ck Source Select	bit								
	Don't care	<u></u> .									
	<u>Synchronou</u>										
		r mode (clock ge			i)						
oit 6		mode (clock from ransmit Enable t		irce)							
		s 9-bit transmiss									
		0 = Selects 8-bit transmission									
bit 5	TXEN: Tran	ismit Enable bit ⁽¹)								
	1 = Transm										
	0 = Transm										
oit 4		SART Mode Sele	ct bit								
		onous mode Ironous mode									
bit 3	•	ented: Read as '	0'								
bit 2	-	h Baud Rate Sel									
	Asynchrono										
	1 = High sp										
	0 = Low sp										
	<u>Synchronou</u> Unused in t										
oit 1		ismit Shift Regist	er Status bit								
	1 = TSR er										
	0 = TSR fu										
bit 0	TX9D: Ninth	n bit of Transmit	Data								
	Can be add										

REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

17.1.2.4 Slave Select Operation

The \overline{SS} pin allows Synchronous Slave mode operation. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPM<3:0> = 0100). The associated TRIS bit for the \overline{SS} pin must be set, making \overline{SS} an input.

In Slave Select mode, when:

- SS = 0, The device operates as specified in Section 17.1.2 "Slave Mode".
- $\overline{SS} = 1$, The SPI module is held in Reset and the SDO pin will be tri-stated.
 - Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPM<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is driven high.
 - 2: If the SPI is used in Slave mode with CKE set, the SS pin control must be enabled.

When the SPI module resets, the bit counter is cleared to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit. Figure 17-6 shows the timing waveform for such a synchronization event.

Note:	SSPSR must be reinitialized by writing to
	the SSPBUF register before the data can
	be clocked out of the slave again.

17.1.2.5 Sleep in Slave Mode

While in Sleep mode, the slave can transmit/receive data. The SPI Transmit/Receive Shift register operates asynchronously to the device on the externally supplied clock source. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the SSP Interrupt Flag bit will be set and if enabled, will wake the device from Sleep.

<u>83</u>								, ; ;	
SCK (CKP = 0 (CKE = 0) SCK				2					
SCK (CKP = 1									
9999999 8999899		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 		SSPSR m the SSPB be blocked	ust be reini JF register Fodt of the s	isized by before the ligve again.	writing to data can	
800		K <u>387</u> X				÷X		× 537.0	X
SDI (SSSE? = 0)		-///////				\rightarrow	\rightarrow		~~~
Input Sample	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1		<u> </u>		<u> </u>		
SSPEE Interrupt Fasg SSPSR to SSPER II	: :	3 	:	< · ·		:	; 		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	44
APFCON	—	_	_	_	—	_	SSSEL	CCP2SEL	42
INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	36
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PR2	Timer2 Per	riod Register							106
SSPBUF	Synchrono	us Serial Po	rt Receive B	uffer/Transm	nit Register				147
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	152
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	153
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	43
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

REGISTER 17-5:	SSPMSK: SSP MASK REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	MSK<7:1>: Mask bits
	1 - The received add

1 = The received address bit n is compared to SSPADD <n> to detect I</n>	
0 = The received address bit n is not used to detect I ² C address match	۱

bit 0 MSK<0>: Mask bit for I²C Slave Mode, 10-bit Address

I²C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):

1 = The received address bit '0' is compared to SSPADD<0> to detect I^2C address match

0 = The received address bit '0' is not used to detect I²C address match

All other SSP modes: this bit has no effect.

REGISTER 17-6: SSPADD: SSP I²C ADDRESS REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7 | ADD6 | ADD5 | ADD4 | ADD3 | ADD2 | ADD1 | ADD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADD<7:0>: Address bits Received address

TABLE 17-7: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	36
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								147
SSPADD	DD Synchronous Serial Port (I ² C mode) Address Register							155	
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	164
SSPMSK ⁽²⁾	PMSK ⁽²⁾ Synchronous Serial Port (I ² C mode) Address Mask Register								166
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF	165
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

2: Accessible only when SSPM < 3:0 > = 1001.

18.0 PROGRAM MEMORY READ

The Flash program memory is readable during normal operation over the full VDD range of the device. To read data from program memory, five Special Function Registers (SFRs) are used:

- PMCON1
- PMDATL
- PMDATH
- PMADRL
- PMADRH

The value written to the PMADRH:PMADRL register pair determines which program memory location is read. The read operation will be initiated by setting the RD bit of the PMCON1 register. The program memory Flash controller takes two instructions to complete the read. As a consequence, after the RD bit has been set, the next two instructions will be ignored. To avoid conflict with program execution, it is recommended that the two instructions following the setting of the RD bit are NOP. When the read completes, the result is placed in the PMDATLH:PMDATL register pair. Refer to Example 18-1 for sample code.

Note: Code-protect does not effect the CPU from performing a read operation on the program memory. For more information, refer to **Section 8.2 "Code Protection"**

EXAMPLE 18-1: PROGRAM MEMORY READ

BANKSEL PMADRL ; MOVE MS PROG ADDR, W; MOVWF PMADRH ;MS Byte of Program Address to read MOVF LS_PROG_ADDR, W; MOVWF PMADRL ;LS Byte of Program Address to read BANKSEL PMCON1 ; BSF PMCON1, RD; Initiate Read Required NOP NOP ;Any instructions here are ignored as program ;memory is read in second cycle after BSF BANKSEL PMDATL ; MOVF PMDATL, W;W = LS Byte of Program Memory Read MOVWF LOWPMBYTE; MOVF PMDATH, W;W = MS Byte of Program Memory Read MOVWF HIGHPMBYTE;

REGISTER 18-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
Reserved	—	—I	—	—	—	—	RD
bit 7							bit 0

Legend:		S = Setable bit, cleared in ha	ardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Reserved: Read as '1'. Maintain this bit set.
bit 7 Reserved: Read as '1'. Maintain this bit set.

bit 6-1 Unimplemented: Read as '0'

bit 0 RD: Read Control bit

 1 = Initiates an program memory read (The RD is cleared in hardware; the RD bit can only be set (not cleared) in software).

0 = Does not initiate a program memory read

REGISTER 18-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
bit 7							bit 0
l egend.							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMD<13:8>:** The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

REGISTER 18-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7 | PMD6 | PMD5 | PMD4 | PMD3 | PMD2 | PMD1 | PMD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMD<7:0>:** The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

23.2 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended)

22A/723A		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $					
PIC16F722A/723A		Operating temperature -			itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
Device	Min.	Тур†	Max.	Units	Conditions		
Characteristics					Vdd	Note	
Supply Current (IDD) ^{(1,}	2)						
LDO Regulator	-	350	_	μA	-	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled	
	_	50	—	μΑ	—	All VCAP pins disabled	
	—	30	—	μΑ		VCAP enabled on RA0, RA5 or RA6	
	—	5	_	μΑ	_	LP Clock mode and Sleep (requires FVR and BOR to be disabled)	
	_	7.0	12	μΑ	1.8	Fosc = 32 kHz	
	—	9.0	14	μΑ	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C	
0 –	11	20	μΑ	1.8	Fosc = 32 kHz		
	_	14	22	μΑ	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C	
	_	15	24	μΑ	5.0	$-40^{\circ}C \leq 1A \leq +85^{\circ}C$	
	—	7.0	12	μΑ	1.8	Fosc = 32 kHz	
	—	9.0	18	μA	3.0	LP Oscillator mode -40°C \leq TA \leq +125°C	
		11	21	μΑ	1.8	Fosc = 32 kHz	
		14	25	μΑ	3.0	LP Oscillator mode (Note 4) -40°C \leq TA \leq +125°C	
		15	27	μΑ	5.0	-40 C \sec 1A \sec +125 C	
		110	150	μΑ	1.8	Fosc = 1 MHz	
		150	215	μΑ	3.0	XT Oscillator mode	
		120	175	μΑ	1.8	Fosc = 1 MHz	
			1	μΑ	1	XT Oscillator mode (Note 5)	
	-	240	300	μA	5.0		
	-					Fosc = 4 MHz XT Oscillator mode	
				•	-	Fosc = 4 MHz XT Oscillator mode (Note 5)	
				•	-	-	
	_				-		
	<u> </u>				-	Fosc = 1 MHz EC Oscillator mode	
	-						
			1	•	-	Fosc = 1 MHz EC Oscillator mode (Note 5)	
		1			-	-	
	Supply Current (IDD) ^{(1,} LDO Regulator	Supply Current (IDD) ^(1, 2) LDO Regulator Image: Comparison of the second of	Supply Current (IDD) ^(1, 2) LDO Regulator	Supply Current (IDD) ^(1, 2) LDO Regulator	Image: style	Suppl Current (IDD) ^(1, 2) LDO Regulator 350 µA 50 µA 30 µA 30 µA 5 µA 5 µA 9.0 12 µA 1.8 9.0 14 µA 3.0 11 20 µA 1.8 9.0 14 µA 3.0 114 22 µA 3.0 15 24 µA 5.0 15 24 µA 3.0 15 24 µA 3.0 110 150 µA 3.0 110 150 µA 3.0 </td	

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP (RA0).

23.5 Thermal Considerations

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	60.0	°C/W	28-pin SPDIP package		
			69.7	°C/W	28-pin SOIC package		
			71.0	°C/W	28-pin SSOP package		
			52.5	°C/W	28-pin UQFN 4x4mm package		
			30.0	°C/W	28-pin QFN 6x6mm package		
TH02	θJC	Thermal Resistance Junction to Case	29.0	°C/W	28-pin SPDIP package		
			18.9	°C/W	28-pin SOIC package		
			24.0	°C/W	28-pin SSOP package		
			16.7	°C/W	28-pin UQFN 4x4mm package		
			5.0	°C/W	28-pin QFN 6x6mm package		
TH03	Тјмах	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	—	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

Standard Operating	g tempera	ature $-40^{\circ}C \le TA \le +125^{\circ}C$	1	1			1
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode
			DC	_	4	MHz	XT Oscillator mode
			DC	_	20	MHz	HS Oscillator mode
			DC	_	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768		kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	_	20	MHz	HS Oscillator mode, $VDD \ge 2.7V$
		DC	_	4	MHz	RC Oscillator mode	
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μs	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	—	μS	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode, $VDD \ge 2.7V$
			250	—	—	ns	RC Oscillator mode
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	_	—	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	∞	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator
			0		×	ns	HS oscillator

TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

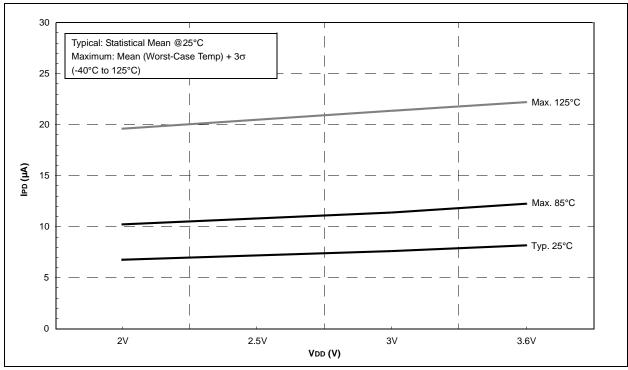
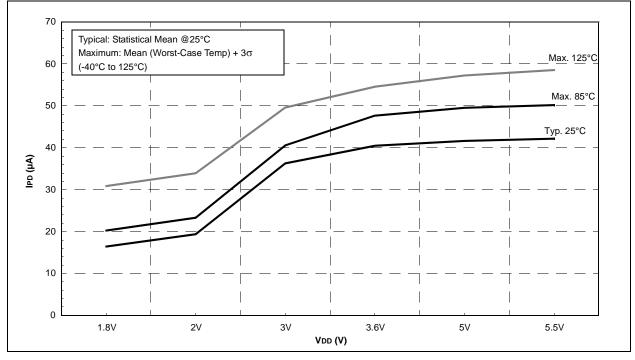
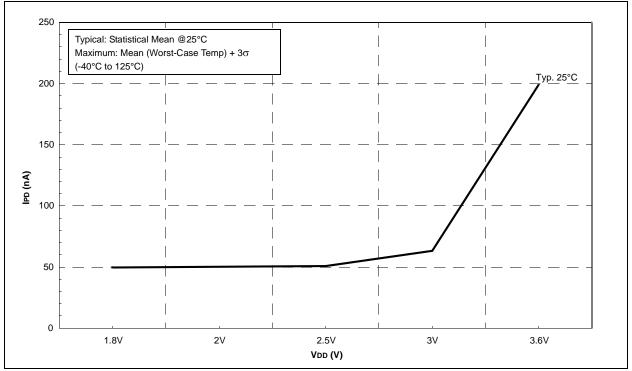
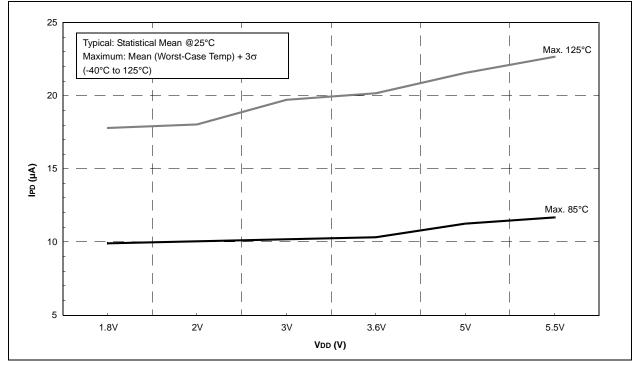
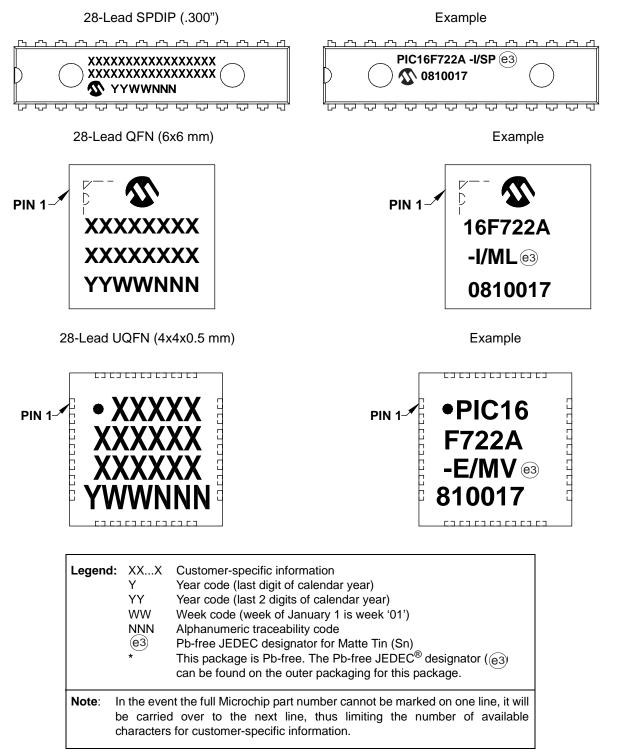




FIGURE 24-34: PIC16LF722A/723A BOR IPD vs. VDD





25.0 PACKAGING INFORMATION

25.1 Package Marking Information

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device Tap	[X] ⁽¹⁾ X XXX I I I De and Reel Temperature Package Pattern Option Range	Examples: a) PIC16F722A-E/SP 301 = Extended Temp., SPDIP package, QTP pattern #301
Device:	PIC16F722A, PIC16LF722A PIC16F723A, PIC16LF723A	 b) PIC16F722A-I/SO = Industrial Temp., SOIC package
Tape and Reel Option:	Blank= Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	I = -40° C to+85°C (Industrial) E = -40° C to+125°C (Extended)	
Package:	MV = UQFN ML = QFN SO = SOIC SP = SPDIP SS = SSOP	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	and Reel option.