

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f722at-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Memory Organization	. 11
3.0	Resets	. 23
4.0	Interrupts	. 33
5.0	Low Dropout (LDO) Voltage Regulator	. 41
6.0	I/O Ports	. 42
7.0	Oscillator Module	. 71
8.0	Device Configuration	77
9.0	Analog-to-Digital Converter (ADC) Module	. 80
10.0	Fixed Voltage Reference	. 90
11.0	Timer0 Module	. 91
12.0	Timer1 Module with Gate Control	103
13.0	Timer2 Module	115
14.0	Capacitive Sensing Module	108
15.0	Capture/Compare/PWM (CCP) Module	114
16.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART)	124
17.0		
18.0	Program Memory Read	167
19.0	Power-Down Mode (Sleep)	170
20.0	In-Circuit Serial Programming™ (ICSP™)	172
21.0	Instruction Set Summary	173
22.0	Development Support	182
23.0	Electrical Specifications	186
24.0		
25.0	Packaging Information	249
Appe	ndix A: Data Sheet Revision History	261
Appe	ndix B: Migrating From Other PIC [®] Devices	261
The I	Nicrochip Website	262
Cust	omer Change Notification Service	262
Cust	omer Support	262
Prod	uct Identification System	263

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 2											
100h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (not	a physical r	egister)	xxxx xxxx	22,30
101h	TMR0	Timer0 Mod	lule Register							xxxx xxxx	91,30
102h ⁽²⁾	PCL	Program Co	ounter's (PC)	Least Signi	ificant Byte					0000 0000	21,30
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
104h ⁽²⁾	FSR	Indirect Dat	a Memory A	ddress Point	ter	•	•			xxxx xxxx	22,30
105h	—	Unimpleme	nted							_	_
106h	—	Unimpleme	nted							_	_
107h	—	Unimpleme	nted							_	_
108h	CPSCON0	CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	0 0000	112,31
109h	CPSCON1	_	_	_	_	_	CPSCH2	CPSCH1	CPSCH0	0000	113,31
10Ah ^(1, 2)	PCLATH	—	—	—	Write Buffer	for the upper	r 5 bits of the	Program Cou	unter	0 0000	21,30
10Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30
10Ch	PMDATL	Program Me	emory Read	Data Regist	er Low Byte					xxxx xxxx	167,31
10Dh	PMADRL	Program Me	emory Read	Address Re	gister Low By	/te				xxxx xxxx	167,31
10Eh	PMDATH	_	_	Program M	emory Read	Data Registe	r High Byte			xx xxxx	167,31
10Fh	PMADRH	_	_	_	Program Me	mory Read A	Address Regis	ter High Byte	e	x xxxx	167,31
Bank 3		•		•	•					•	
180h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (not	a physical r	egister)	xxxx xxxx	22,30
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19,30
182h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	cant Byte	•	•			0000 0000	21,30
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
184h ⁽²⁾	FSR	Indirect Dat	a Memory A	ddress Point	ter					xxxx xxxx	22,30
185h	ANSELA	—	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	44,31
186h	ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	53,31
187h	—	Unimpleme	nted							—	_
18Ah ^(1, 2)	PCLATH	_	_	_	Write Buffer	for the upper	r 5 bits of the	Program Cou	unter	0 0000	21,30
18Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30
18Ch	PMCON1	Reserved	—	—	—	_	—	—	RD	10	168,31
18Dh	—	Unimpleme	nted							—	_
18Eh	_	Unimpleme	nted							—	—
18Fh	—	Unimpleme	nted							_	—

TABLE 2-1: PIC16(L)F722A/723A SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

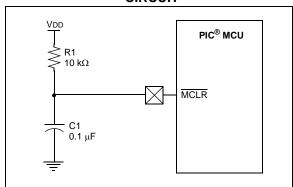
2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0 > = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

3.1 MCLR


The PIC16(L)F722A/723A has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a Reset does not drive the MCLR pin low.

Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 3-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the RE3/MCLR pin becomes an external Reset input. In this mode, the RE3/MCLR pin has a weak pull up to VDD. In-Circuit Serial Programming is not affected by selecting the internal $\overline{\text{MCLR}}$ option.

FIGURE 3-2: RECOMMENDED MCLR CIRCUIT

3.2 Power-on Reset (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. A maximum rise time for VDD is required. See **Section 23.0 "Electrical Specifications"** for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 3.5** "**Brown-Out Reset (BOR)**").

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note *AN607, Power-up Trouble Shooting* (DS00607).

3.3 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the WDT oscillator. For more information, see **Section 7.3** "Internal Clock Modes". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip and vary due to:

- VDD variation
- Temperature variation
- · Process variation

See DC parameters for details (Section 23.0 "Electrical Specifications").

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word.

3.4 Watchdog Timer (WDT)

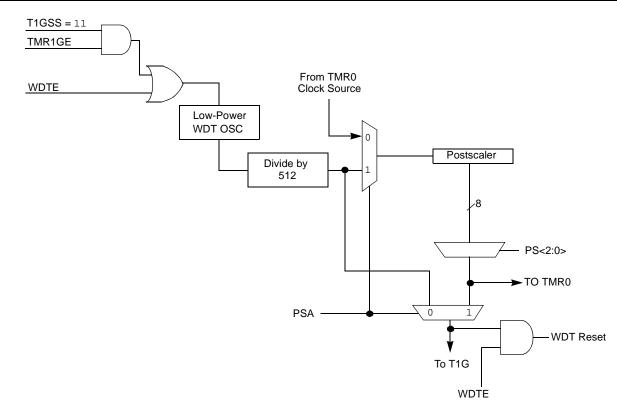
The WDT has the following features:

- Shares an 8-bit prescaler with Timer0
- Time-out period is from 17 ms to 2.2 seconds, nominal
- Enabled by a Configuration bit

WDT is cleared under certain conditions described in Table 3-1.

3.4.1 WDT OSCILLATOR

The WDT derives its time base from 31 kHz internal oscillator.


Note: When the Oscillator Start-up Timer (OST) is invoked, the WDT is held in Reset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled).

3.4.2 WDT CONTROL

The WDTE bit is located in the Configuration Word Register 1. When set, the WDT runs continuously.

The PSA and PS<2:0> bits of the OPTION register control the WDT period. See **Section 11.0 "Timer0 Module"** for more information.

TABLE 3-1: WDT STATUS

Conditions	WDT
WDTE = 0	Cleared
CLRWDT Command	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST

6.2.1 ANSELA REGISTER

The ANSELA register (Register 6-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

REGISTER 6-4: ANSELA: PORTA ANALOG SELECT REGISTER

'1' = Bit is set

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

bit 7-6 Unimplemented: Read as '0'

-n = Value at POR

bit 5-0 **ANSA<5:0>**: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

x = Bit is unknown

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
bit 7							bit 0
Legend:							
Legend: R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	

REGISTER 6-5: PORTB: PORTB REGISTER

bit 7-0 RB<7:0>: PORTB I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 6-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0

—

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

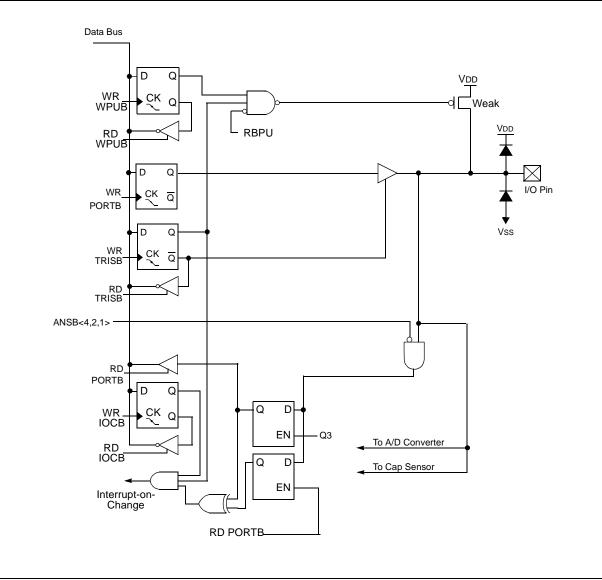
0 = PORTB pin configured as an output

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

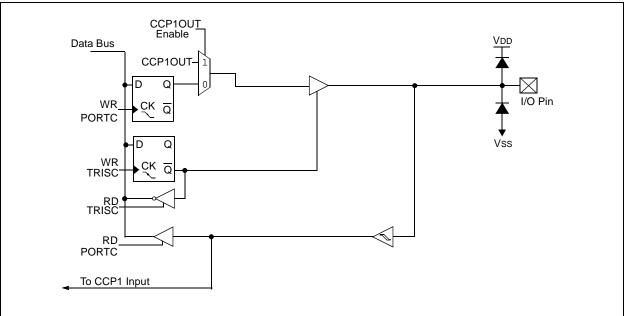
| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

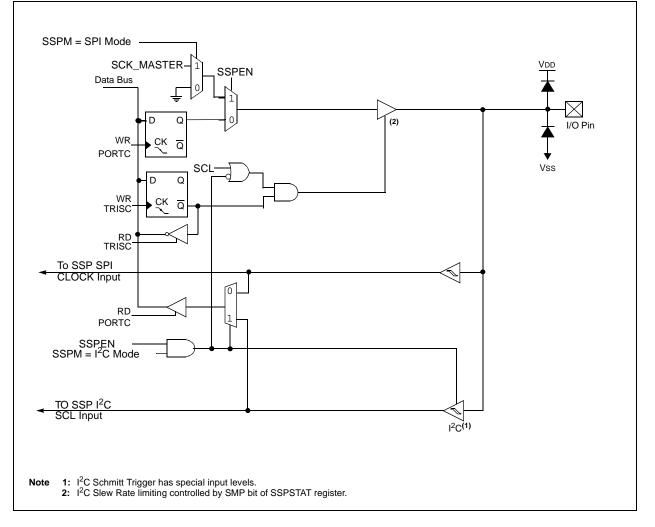
bit 7-0 **WPUB<7:0>**: Weak Pull-up Register bits


1 = Pull up enabled

0 = Pull up disabled


Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.



7.2 Clock Source Modes

Clock source modes can be classified as external or internal.

- Internal clock source (INTOSC) is contained within the oscillator module and derived from a 500 kHz high precision oscillator. The oscillator module has eight selectable output frequencies, with a maximum internal frequency of 16 MHz.
- External clock modes rely on external circuitry for the clock source. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

The system clock can be selected between external or internal clock sources via the FOSC bits of the Configuration Word 1.

7.3 Internal Clock Modes

The oscillator module has eight output frequencies derived from a 500 kHz high precision oscillator. The IRCF bits of the OSCCON register select the postscaler applied to the clock source dividing the frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the Configuration Word 1 locks the internal clock source to 16 MHz before the postscaler is selected by the IRCF bits. The PLLEN bit must be set or cleared at the time of programming; therefore, only the upper or low four clock source frequencies are selectable in software.

7.3.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the CONFIG1 register. See **Section 8.0** "**Device Configuration**" for more information.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In INTOSCIO mode, OSC1/CLKIN and OSC2/ CLKOUT are available for general purpose I/O.

7.3.2 FREQUENCY SELECT BITS (IRCF)

The output of the 500 kHz INTOSC and 16 MHz INTOSC, with Phase-Locked Loop enabled, connect to a postscaler and multiplexer (see Figure 7-1). The Internal Oscillator Frequency Select bits (IRCF) of the OSCCON register select the frequency output of the internal oscillator. Depending upon the PLLEN bit, one of four frequencies of two frequency sets can be selected via software:

If PLLEN = 1, frequency selection is as follows:

- 16 MHz
- 8 MHz (Default after Reset)
- 4 MHz
- 2 MHz
- If PLLEN = 0, frequency selection is as follows:
- 500 kHz
- 250 kHz (Default after Reset)
- 125 kHz
- 62.5 kHz
 - Note: Following any Reset, the IRCF<1:0> bits of the OSCCON register are set to '10' and the frequency selection is set to 8 MHz or 250 kHz. The user can modify the IRCF bits to select a different frequency.

There is no start-up delay before a new frequency selected in the IRCF bits takes effect. This is because the old and new frequencies are derived from INTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in Table 23-2 in Section 23.0 "Electrical Specifications".

7.5 Oscillator Tuning

The INTOSC is factory-calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 7-2).

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 7-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6 Unimplemented: Read as '0'

bit 5-0

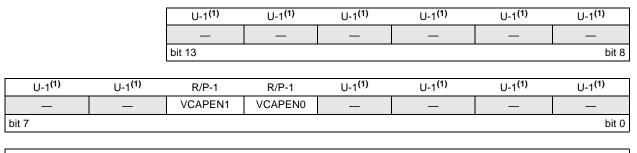
REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1 (CONTINUED)

bit 2-0

FOSC<2:0>: Oscillator Selection bits

111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN

110 = RCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN


101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN

- 100 = INTOSCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
- 011 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN
- 010 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN
- 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN
- 000 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN

Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.

- 2: The entire program memory will be erased when the code protection is turned off.
- 3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.
- 4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

REGISTER 8-2: CONFIG2: CONFIGURATION WORD REGISTER 2

Legend:	P = Programmable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 13-6 Unimplemented: Read as '1'

bit 5-4	VCAPEN<1:0>: Voltage Regulator Capacitor Enable bits For the PIC16LF722A/723A:
	These bits are ignored. All VCAP pin functions are disabled.
	For the PIC16F722A/723A:
	00 = VCAP functionality is enabled on RA0
	01 = VCAP functionality is enabled on RA5
	10 = VCAP functionality is enabled on RA6
	11 = All VCAP functions are disabled (not recommended)
bit 3-0	Unimplemented: Read as '1'

Note 1: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

9.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 9-3. The maximum recommended impedance for analog sources is 10 k Ω . As the source

impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (256 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 9-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V VDD$
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$
The value for TC can be approximated with the following equations:

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - e^{\frac{-TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) \ln(1/511)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.001957)$
= $1.12\mu s$

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.42\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

Name	Bit 7	a 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2		Bit 1	Bit 0	Register on Page					
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53		
CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	115		
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115		
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	36		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39		
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52		
TMR1H	Holding Reg	ister for the	Most Signifi	cant Byte of	the 16-bit T	MR1 Regis	ter		99		
TMR1L	Holding Reg	ister for the	Least Signif	icant Byte o	f the 16-bit 7	MR1 Regis	ster		99		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62		
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	103		
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	104		

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

				_		SYNC = 0,	BRGH = 1	1				
BAUD	Fosc = 8.000 MHz		Fos	Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		—	_	_	_		_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	—	_	_	—	—	115.2k	0.00	1	_	—	_

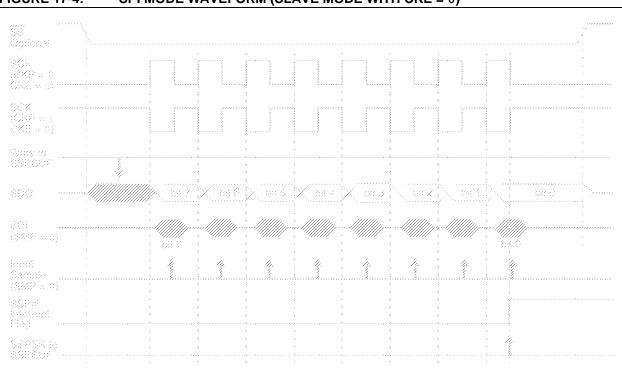

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

FIGURE 16-8:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)	
RX/DT pin	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin		
Write to bit SREN		
SREN bit	l	
CREN bit <u>'</u> 0'		ʻ0'
RCIF bit (Interrupt)		
Read RCREG		
Note: Timing d	iagram demonstrates Synchronous Master mode with bit SREN = 1 and bit BRGH = 0 .	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART R	eceive Data	a Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

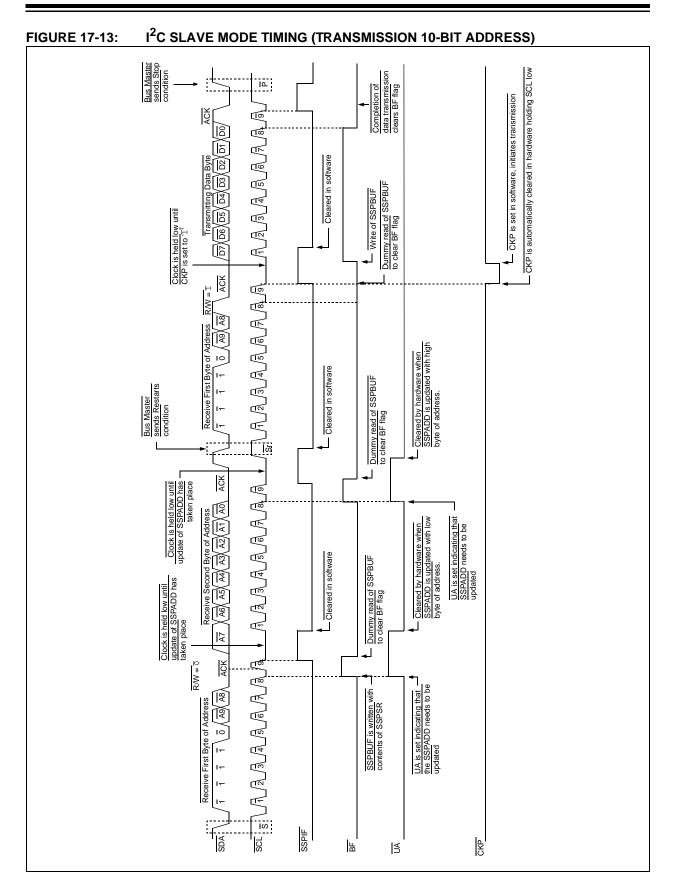

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

FIGURE 17-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

SS SCK (CKP = 0 $\dot{C}KE = 1)$ SCK (CKP = 1 CKE = 1) Write to SSPBUF bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 SDO bit '7 bit 3 ï SDI (SMP = 0)I bit 0 bit 7 Input Sample (SMP = 0)SSPIF Interrupt Flag SSPSR to SSPBUF 1 . i

FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SUBWF	Subtract W from f						
Syntax:	[label] SU	JBWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z						
Description:	Subtract (2's complement method W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.						
	C = 0	W > f					
	C = 1	$W \leq f$					

 $\overline{DC} = 0$

DC = 1

W<3:0> > f<3:0> W<3:0> \leq f<3:0>

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

PIC16LF	722A/723	A	$ \begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T A \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq T A \leq +125^\circ C \mbox{ for extended} \end{array} $						
PIC16F7	722A/723A	N		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC16LF722A/723A	1.8 1.8 2.3 2.5		3.6 3.6 3.6 3.6	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D001		PIC16F722A/723A	1.8 1.8 2.3 2.5		5.5 5.5 5.5 5.5	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
		PIC16LF722A/723A	1.5		—	V	Device in Sleep mode		
D002*		PIC16F722A/723A	1.7	—	_	V	Device in Sleep mode		
	VPOR*	Power-on Reset Release Voltage		1.6	_	V			
	VPORR*	Power-on Reset Rearm Voltage							
		PIC16LF722A/723A		0.8	—	V	Device in Sleep mode		
		PIC16F722A/723A	_	1.7		V	Device in Sleep mode		
D003	Vfvr	Fixed Voltage Reference Voltage, Initial Accuracy	-5.5 -5.5 -5.5	 	5.5 5.5 5.5	% % %	$ \begin{array}{l} {\sf VFVR} = 1.024{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 85^{\circ}{\sf C} \end{array} $		
			-6 -6 -6		6 6 6	% % %	$\label{eq:VFVR} \begin{split} &V{\sf FVR} = 1.024V, \ V{\sf DD} \geq 2.5V \\ &V{\sf FVR} = 2.048V, \ V{\sf DD} \geq 2.5V \\ &V{\sf FVR} = 4.096V, \ V{\sf DD} \geq 4.75V; \\ &-40 \leq {\sf TA} \leq 125^{\circ}{\sf C} \end{split}$		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		—	V/ms	See Section 3.2 "Power-on Reset (POR)" for details.		

23.1 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

Param. No.	Symbol	Charact	haracteristic		Max.	Units	Conditions	
SP100* THIGH Clock high time		Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			SSP Module	1.5Tcy	—			
SP101*	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	-	μS	Device must operate at a minimum of 10 MHz	
			SSP Module	1.5Tcy	—			
SP102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns		
time		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns		
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold	100 kHz mode	0	_	ns		
		time	400 kHz mode	0	0.9	μs		
SP107*	TSU:DAT	Data input setup	100 kHz mode	250	_	ns	(Note 2)	
		time	400 kHz mode	100	—	ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	—	_	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmis- sion can start	
SP111	Св	Bus capacitive loadi	ing	_	400	pF		

TABLE 23-13: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I^2C bus device can be used in a Standard mode (100 kHz) I^2C bus system, but the requirement TsU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I^2C bus specification), before the SCL line is released.