

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f722at-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0											
00h ⁽²⁾	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)									22,30
01h	TMR0	Timer0 Mod	lule Register							xxxx xxxx	91,30
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	cant Byte					0000 0000	21,30
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
04h ⁽²⁾	FSR	Indirect Dat	a Memory A	ddress Point	er					XXXX XXXX	22,30
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	43,30
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	52,30
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	62,30
09h	PORTE	_	—	_	—	RE3	_	_	_	xxxx	69,30
0Ah ^(1, 2)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the	Program Co	unter	0 0000	21,30
0Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	39,30
0Dh	PIR2	_	_		_	_	_	_	CCP2IF	0	40,30
0Eh	TMR1L	Holding Reg	gister for the	Least Signif	icant Byte of	the 16-bit TN	IR1 Register			xxxx xxxx	99,30
0Fh	TMR1H	Holding Re	gister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1 Register			xxxx xxxx	99,30
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	103,30
11h	TMR2	Timer2 Mod	ule Register							0000 0000	106,30
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	107,30
13h	SSPBUF	Synchronou	us Serial Port	t Receive Bu	Iffer/Transmit	Register				xxxx xxxx	147,30
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	164,30
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	SB)					xxxx xxxx	116,30
16h	CCPR1H	Capture/Co	mpare/PWM	Register (N	SB)					xxxx xxxx	116,30
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	115,30
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	134,30
19h	TXREG	USART Tra	nsmit Data F	Register				•	•	0000 0000	133,30
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	131,30
1Bh	CCPR2L	Capture/Compare/PWM Register 2 (LSB)								xxxx xxxx	116,30
1Ch	CCPR2H	Capture/Co	Capture/Compare/PWM Register 2 (MSB)								116,30
1Dh	CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	115,30
1Eh	ADRES	A/D Result	Register						•	xxxx xxxx	86,30
1Fh	ADCON0	—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	85,30

TABLE 2-1:	PIC16(L)F722A/723A SPECIAL FUNCTION REGISTER SUMMARY	(

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0> = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

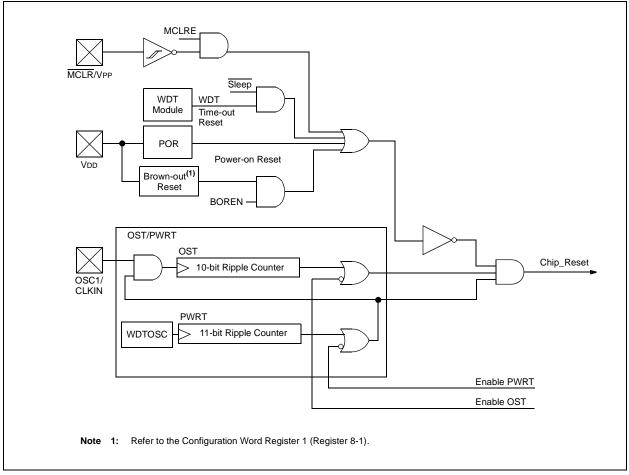
5: This bit is always '1' as RE3 is input-only.

3.0 RESETS

The PIC16(L)F722A/723A differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- Power-on Reset (POR)
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 3-3. These bits are used in software to determine the nature of the Reset.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 23.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

4.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

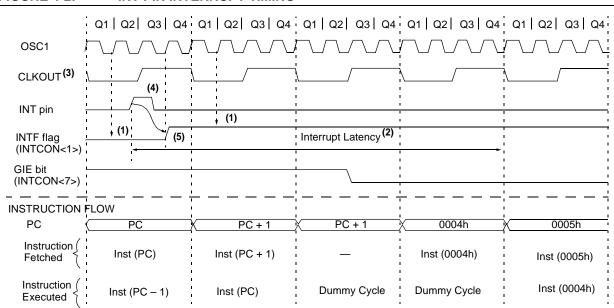
The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- · PC is loaded with the interrupt vector 0004h

The ISR determines the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated

interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.


The RETFIE instruction exits the ISR by popping the previous address from the stack and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

4.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three instruction cycles. For asynchronous interrupts, the latency is three to four instruction cycles, depending on when the interrupt occurs. See Figure 4-2 for timing details.

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

4.5.1 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTB change and external RB0/INT/SEG0 pin interrupts.

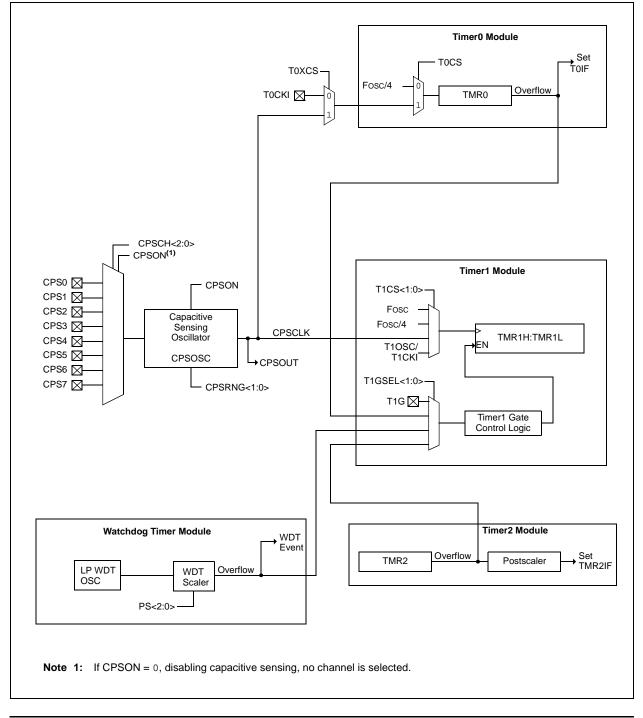
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TOIE	INTE	RBIE ⁽¹⁾	T0IF ⁽²⁾	INTF	RBIF
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit
	1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
L:1. F	
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt
	0 = Disables the Timer0 interrupt
bit 4	INTE: RB0/INT External Interrupt Enable bit
	1 = Enables the RB0/INT external interrupt
	0 = Disables the RB0/INT external interrupt
bit 3	RBIE: PORTB Change Interrupt Enable bit ⁽¹⁾
	1 = Enables the PORTB change interrupt
	0 = Disables the PORTB change interrupt
bit 2	T0IF: Timer0 Overflow Interrupt Flag bit ⁽²⁾
	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software)
	0 = The RBO/INT external interrupt did not occur
bit 0	RBIF: PORTB Change Interrupt Flag bit
bit 0	 1 = When at least one of the PORTB general purpose I/O pins changed state (must be cleared in software)
	0 = None of the PORTB general purpose I/O pins have changed state
N 4 4	
Note 1:	The appropriate bits in the IOCB register must also be set.


- **Note 1:** The appropriate bits in the IOCB register must also be set.
 - 2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit.

14.0 CAPACITIVE SENSING MODULE

The capacitive sensing module allows for an interaction with an end user without a mechanical interface. In a typical application, the capacitive sensing module is attached to a pad on a printed circuit board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the capacitive sensing module. The capacitive sensing module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple timer resources
- Software control
- · Operation during Sleep

FIGURE 14-1: CAPACITIVE SENSING BLOCK DIAGRAM

14.6 Operation During Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts. One way to acquire the Timer1 counts while in Sleep is to have Timer1 gated with the overflow of the Watchdog Timer. This can be accomplished using the following steps:

- 1. Configure the Watchdog Time-out overflow as the Timer1's gate source T1GSS<1:0> = 11.
- 2. Set Timer1 gate to toggle mode by setting the T1GTM bit of the T1GCON register.
- 3. Set the TMR1GE bit of the T1GCON register.
- 4. Set TMR1ON bit of the T1CON register.
- 5. Enable capacitive sensing module with the appropriate current settings and pin selection.
- 6. Clear Timer1.
- 7. Put the part to Sleep.
- 8. On the first WDT overflow, the capacitive sensing oscillator will begin to increment Timer1. Then put the part to Sleep.
- 9. On the second WDT overflow Timer1 will stop incrementing. Then run the software routine to determine if a frequency change has occurred.

Refer to Section 12.0 "Timer1 Module with Gate Control" for additional information.

- Note 1: When using the WDT to set the interval on Timer1, any other source that wakes the part up early will cause the WDT overflow to be delayed, affecting the value captured by Timer1.
 - 2: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

REGISTER 14-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1									
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	_	CPSCH2	CPSCH1	CPSCH0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x =				x = Bit is unkr	nown				

bit 7-3	Unimplemented: Read as '0'						
bit 2-0	CPSCH<2:0>: Capacitive Sensing Channel Select bits						
	If CPSON = 0:						
	These bits are ignored. No channel is selected.						
	<u>If CPSON = 1</u> :						
	000 = channel 0, (CPS0)						
	001 = channel 1, (CPS1)						
	010 = channel 2, (CPS2)						
	011 = channel 3, (CPS3)						
	100 = channel 4, (CPS4)						
	101 = channel 5, (CPS5)						
	110 = channel 6, (CPS6)						
	111 = channel 7, (CPS7)						

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA		—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	44
ANSELB	-	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	19
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	103
T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	43
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the capacitive sensing module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART R	eceive Data	a Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous reception.

16.3.1.4 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the AUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit of the PIR1 register is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are un-read characters in the receive FIFO.

16.3.1.5 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/ CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

16.3.1.6 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register.

16.3.1.7 Receiving 9-bit Characters

The AUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set, the AUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

Address detection in Synchronous modes is not supported, therefore the ADDEN bit of the RCSTA register must be cleared.

16.3.1.8 Synchronous Master Reception Setup:

- 1. Initialize the SPBRG register for the appropriate baud rate. Set or clear the BRGH bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCIF of the PIR1 register will be set when reception of a character is complete. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit, which resets the AUSART.

17.1.2 SLAVE MODE

For any SPI device acting as a slave, the data is transmitted and received as external clock pulses appear on SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

17.1.2.1 Slave Mode Operation

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready.

The slave has no control as to when data will be clocked in or out of the device. All data that is to be transmitted, to a master or another slave, must be loaded into the SSPBUF register before the first clock pulse is received.

Once eight bits of data have been received:

- · Received byte is moved to the SSPBUF register
- BF bit of the SSPSTAT register is set
- SSPIF bit of the PIR1 register is set

Any write to the SSPBUF register during transmission/ reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

The user's firmware must read SSPBUF, clearing the BF flag, or the SSPOV bit of the SSPCON register will be set with the reception of the next byte and communication will be disabled.

A SPI module transmits and receives at the same time, occasionally causing dummy data to be transmitted/ received. It is up to the user to determine which data is to be used and what can be discarded.

17.1.2.2 Enabling Slave I/O

To enable the serial port, the SSPEN bit of the SSPCON register must be set. If a Slave mode of operation is selected in the SSPM bits of the SSPCON register, the SDI, SDO and SCK pins will be assigned as serial port pins.

For these pins to function as serial port pins, they must have their corresponding data direction bits set or cleared in the associated TRIS register as follows:

- · SDI configured as input
- · SDO configured as output
- · SCK configured as input

Optionally, a fourth pin, Slave Select (\overline{SS}) may be used in Slave mode. Slave Select may be configured to operate on one of the following pins via the SSSEL bit in the APFCON register.

- RA5/AN4/SS
- RA0/AN0/SS

Upon selection of a Slave Select pin, the appropriate bits must be set in the ANSELA and TRISA registers. Slave Select must be set as an input by setting the corresponding bit in TRISA, and digital I/O must be enabled on the SS pin by clearing the corresponding bit of the ANSELA register.

17.1.2.3 Slave Mode Setup

When initializing the SSP module to SPI Slave mode, compatibility must be ensured with the master device. This is done by programming the appropriate control bits of the SSPCON and SSPSTAT registers. These control bits allow the following to be specified:

- SCK as clock input
- Idle state of SCK (CKP bit)
- Data input sample phase (SMP bit)
- Output data on rising/falling edge of SCK (CKE bit)

Figure 17-4 and Figure 17-5 show example waveforms of Slave mode operation.

START AND STOP CONDITIONS 17.2.2

During times of no data transfer (Idle time), both the clock line (SCL) and the data line (SDA) are pulled high through external pull-up resistors. The Start and Stop conditions determine the start and stop of data transmission. The Start condition is defined as a high-to-low transition of the SDA line while SCL is high. The Stop condition is defined as a low-to-high transition of the SDA line while SCL is high.

Figure 17-9 shows the Start and Stop conditions. A master device generates these conditions for starting and terminating data transfer. Due to the definition of the Start and Stop conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

ACKNOWLEDGE 17.2.3

After the valid reception of an address or data byte, the hardware automatically will generate the Acknowledge (ACK) pulse and load the SSPBUF register with the received value currently in the SSPSR register. There are certain conditions that will cause the SSP module not to generate this ACK pulse. They include any or all of the following:

- The Buffer Full bit, BF of the SSPSTAT register, was set before the transfer was received.
- The SSP Overflow bit. SSPOV of the SSPCON register, was set before the transfer was received.
- The SSP module is being operated in Firmware Master mode.

In such a case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF of the PIR1 register is set. Table 17-2 shows the results of when a data transfer byte is received, given the status of bits BF and SSPOV. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

٦ SDA SCL S Р Change of Change of Data Allowed Data Allowed Start Stop Condition Condition

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		Puise	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

FIGURE 17-9: START AND STOP CONDITIONS

21.0 INSTRUCTION SET SUMMARY

The PIC16(L)F722A/723A instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 21-1, while the various opcode fields are summarized in Table 21-1.

Table 21-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

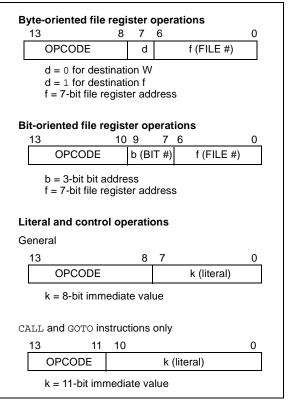
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

21.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTB instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended consequence of clearing the condition that set the RBIF flag.

TABLE 21-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

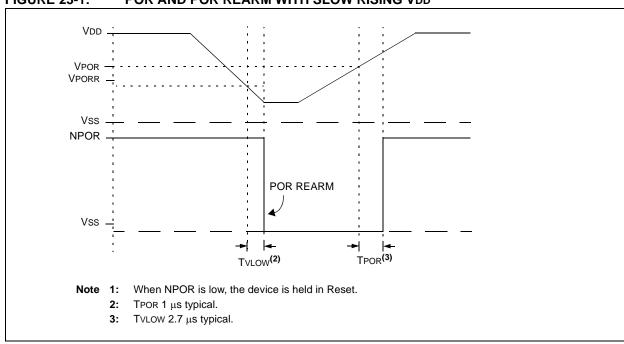
FIGURE 21-1: GENERAL FORMAT FOR INSTRUCTIONS

© 2010-2016 Microchip Technology Inc.

RLF	Rotate	Left f thi	roug	h Carry	y				
Syntax:	[label]	RLF	f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$								
Operation:	See de	scription	belov	N					
Status Affected:	С								
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example:	RLF	REG1,	0						
	Before Instruction								
		REG1	=	1110	0110				
	Aftor In	C = 0 After Instruction							
	Alter In	REG1	=	1110	0110				
		W	=	1100	1100				

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \overline{\underline{TO}}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f


SUBLW	Subtract W from literal						
Syntax:	[<i>label</i>] SUBLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \text{ - } (W) \to (V)$	V)					
Status Affected:	C, DC, Z						
Description:	complemen	ster is subtracted (2's t method) from the 8-bit e result is placed in the					
	C = 0	W > k					
	C = 1	$W \leq k$					

DC = 0

DC = 1

W<3:0> > k<3:0>

 $W < 3:0 > \le k < 3:0 >$

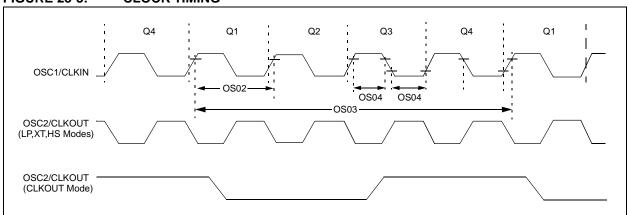
FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD

23.3 DC Characteristics: PIC16(L)F722A/723A-I/E (Power-Down)

PIC16LF722A/723A											
PIC16F722A/723A				$\begin{array}{llllllllllllllllllllllllllllllllllll$				C for industrial			
Param No.	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units		Conditions			
	Power-down Base Current	(Ipp)(2)					VDD	Note			
D020	Fower-down base current	(IPD)(/	0.02	0.7	3.9	μA	1.8	WDT, BOR, FVR, and T1OSC			
D020			0.02	1.0	4.3	μΑ	3.0	disabled, all Peripherals Inactive			
D020			4.3	10.2	4.3	μΑ	1.8	WDT, BOR, FVR, and T1OSC			
2020			5	10.2	18	μΑ	3.0	disabled, all Peripherals Inactive			
			5.5	11.8	21	μΑ	5.0	-			
D021		_	0.5	1.7	4.1	μΑ	1.8	LPWDT Current (Note 1)			
		_	0.8	2.5	4.8	μA	3.0				
D021			6	13.5	16.4	μA	1.8	LPWDT Current (Note 1)			
		_	6.5	14.5	16.8	μA	3.0				
		_	7.5	16	18.7	μA	5.0				
D021A		—	8.5	14	19	μA	1.8	FVR current (Note 1. Note 3)			
		_	8.5	14	20	μA	3.0				
D021A		—	23	44	48	μA	1.8	FVR current (Note 1, Note 3,			
		_	25	45	55	μA	3.0	Note 5)			
		_	26	60	70	μA	5.0				
D022		_	—	_	_	μΑ	1.8	BOR Current (Note 1, Note 3)			
		—	7.5	12	22	μΑ	3.0				
D022		_	—		—	μA	1.8	BOR Current (Note 1, Note 3,			
			23	42	49	μΑ	3.0	Note 5)			
		—	25	46	50	μΑ	5.0				
D026		_	0.6	2	—	μΑ	1.8	T1OSC Current (Note 1)			
		_	1.8	3.0		μΑ	3.0				
D026			4.5	11.1		μΑ	1.8	T1OSC Current (Note 1)			
			6	12.5	—	μΑ	3.0	-			
	—		7	13.5		μA	5.0				

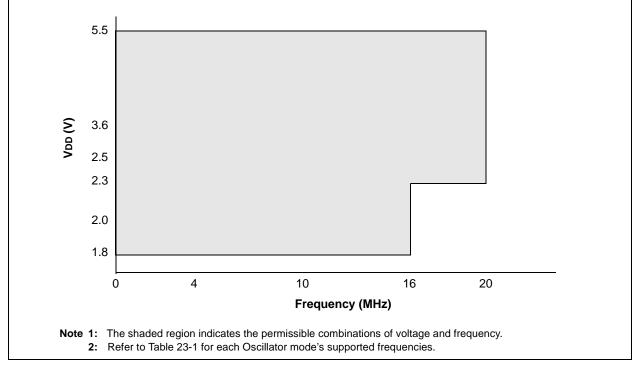
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.


2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.

4: A/D oscillator source is FRC.


5: 0.1 μF capacitor on VCAP (RA0).

23.7 AC Characteristics: PIC16F722A/723A-I/E

FIGURE 23-3: CLOCK TIMING

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
CS01	ISRC	Current Source	High	—	-5.8	-6	μΑ	
			Medium	—	-1.1	-3.2	μA	-40, -85°C
			Low	—	-0.2	-0.9	μA	
CS02	ISNK	Current Sink	High	—	6.6	6	μA	
			Medium	—	1.3	3.2	μA	-40, -85°C
			Low	—	0.24	0.9	μA	
CS03	VCHYST	Cap Hysteresis	High	-	525	—	mV	
			Medium	_	375		mV	VCTH-VCTL
			Low	_	280		mV	

TABLE 23-14: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

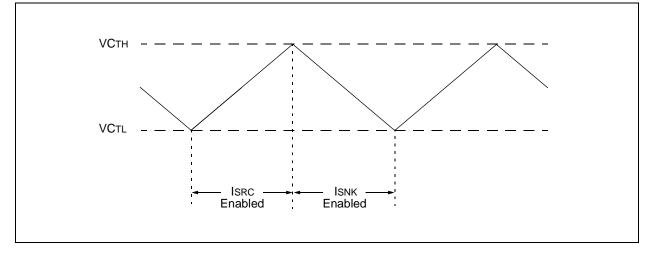
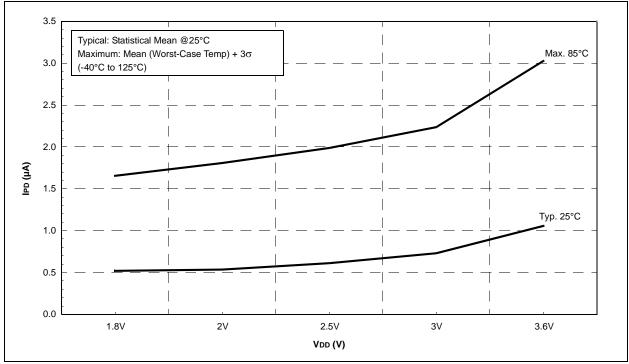
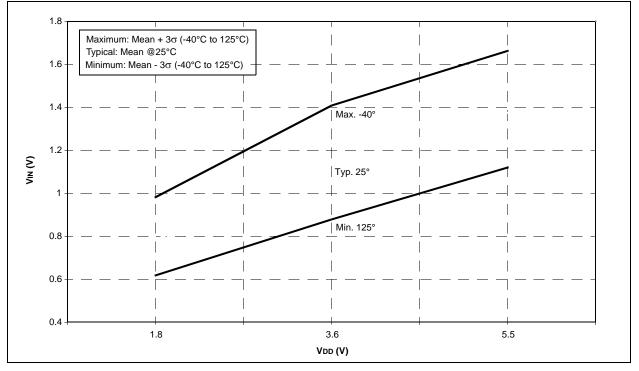
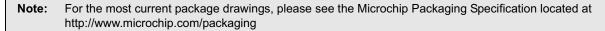
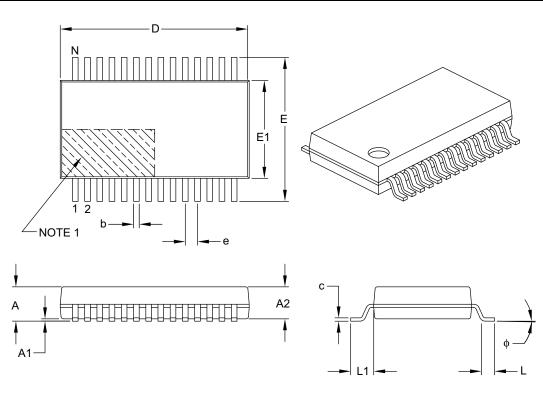




FIGURE 23-22: CAP SENSE OSCILLATOR





28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	1.25 REF				
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ф	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

NOTES: