

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f723a-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

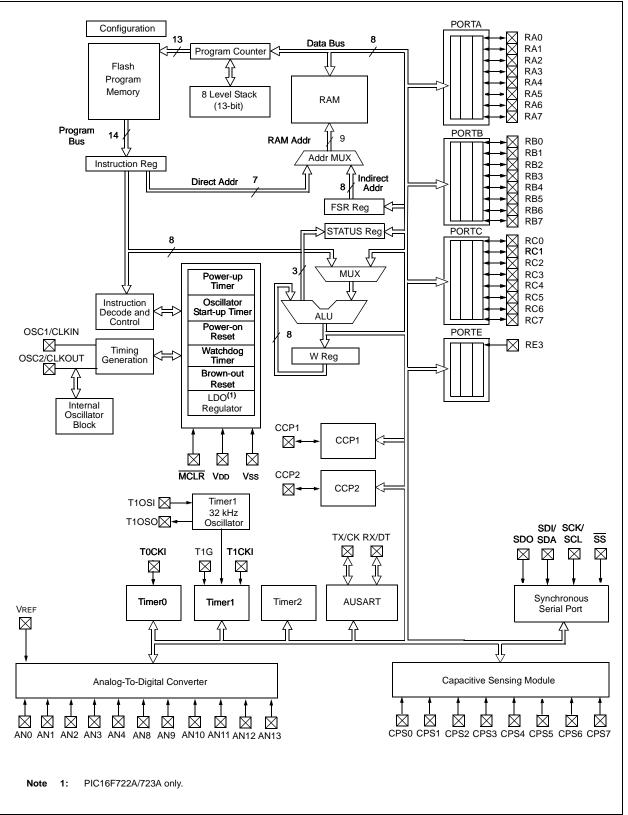
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)


When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

PIC16(L)F722A/723A

PIC16(L)F722A/723A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 1											
80h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (no	t a physical r	egister)	xxxx xxxx	22,30
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19,30
82h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signifie	cant Byte					0000 0000	21,30
83h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
84h ⁽²⁾	FSR	Indirect Data	a Memory A	ddress Point	ter					xxxx xxxx	22,30
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	43,30
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	52,30
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	62,30
89h	TRISE	_			_	TRISE3 ⁽⁵⁾	_	_	_	1111	69,30
8Ah ^(1, 2)	PCLATH	_			Write Buffer	for the upper	r 5 bits of the	Program Co	unter	0 0000	21,30
8Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	x000 000x	36,30
8Ch	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	37,31
8Dh	PIE2	—	-	-	—	—	_	—	CCP2IE	0	38,31
8Eh	PCON	_			_	_	_	POR	BOR	dd	20,31
8Fh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	104,31
90h	OSCCON	—	-	IRCF1	IRCF0	ICSL	ICSS	—	_	10 qq	73,31
91h	OSCTUNE	—		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	74,31
92h	PR2	Timer2 Peri	od Register							1111 1111	106,31
93h	SSPADD(4)	Synchronou	s Serial Port	t (I ² C mode)	Address Reg	ister				0000 0000	155,31
93h	SSPMSK ⁽³⁾	Synchronou	s Serial Port	t (I ² C mode)	Address Mas	k Register				1111 1111	166,31
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	153,31
95h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	52,31
96h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	53,31
97h		Unimpleme	nted							_	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	133,31
99h	SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	135,31
9Ah	_	Unimpleme	nted							—	—
9Bh	—	Unimpleme	nted							_	_
9Ch	APFCON	_	_	_	_	—	_	SSSEL	CCP2SEL	00	42,31
9Dh	FVRCON	FVRRDY	FVREN	—	_	_	_	ADFVR1	ADFVR0	q000	90,31
9Eh	—	Unimpleme	nted							_	—
9Fh	ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	000000	86,31

TABLE 2-1:PIC16(L)F722A/723A SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0> = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

2.2.2.2 **OPTION** register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull ups on PORTB

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to '1'. Refer to Section 12.3 "Timer1 Prescaler".

bit 0

REGISTER 2-	2: OPTIO	N_REG: OP	FION REGIS	TER			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit
	1 = PORTB pull ups are disabled
	0 = PORTB pull ups are enabled by individual bits in the WPUB register
bit 6	INTEDG: Interrupt Edge Select bit
	1 = Interrupt on rising edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pin
bit 5	TOCS: Timer0 Clock Source Select bit
	1 = Transition on RA4/T0CKI pin0 = Internal instruction cycle clock (Fosc/4)
bit 4	T0SE: Timer0 Source Edge Select bit
	1 = Increment on high-to-low transition on RA4/T0CKI pin
	0 = Increment on low-to-high transition on RA4/T0CKI pin
bit 3	PSA: Prescaler Assignment bit
	1 = Prescaler is assigned to the WDT
	0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS<2:0>: Prescaler Rate Select bits
	Bit Value Timer0 Rate WDT Rate
	000 1:2 1:1
	010 1:8 1:4 011 1:16 1:8
	101 1:64 1:32
	110 1:128 1:64
	111 1:256 1:128

6.2 PORTA and the TRISA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 6-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 6-1 shows how to initialize PORTA.

Reading the PORTA register (Register 6-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISA register (Register 6-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the

REGISTER 6-2: PORTA: PORTA REGISTER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x RA6 RA5 RA2 RA7 RA4 RA3 RA1 RA0 bit 7 bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 RA<7:0>: PORTA I/O Pin bit

1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 6-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSELA register must be initialized
	to configure an analog channel as a digital
	input. Pins configured as analog inputs
	will read '0'.

BANKSEL PORTA ; CLRF PORTA ;Init PORTA BANKSEL ANSELA ; CLRF ANSELA ;digital I/O BANKSEL TRISA ; MOVLW 0Ch ;Set RA<3:2> as inputs MOVWF TRISA ;and set RA<7:4,1:0>	EXAMPLE 6-1:	INITIALIZING PORTA
, as outputs	CLRF PORTA BANKSEL ANSELA CLRF ANSELA BANKSEL TRISA MOVLW OCh	;Init PORTA ; ;digital I/O ; ;Set RA<3:2> as inputs

9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 9.1.5** "Interrupts" for more information.

9.2 ADC Operation

9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 "A/D Conversion Procedure".

9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRES register with new conversion result

9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRES register will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

9.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCP module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 15.0 "Capture/Compare/PWM (CCP) Module" for more information.

12.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

12.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note:	The oscillator requires a start-up and
	stabilization time before use. Thus,
	T1OSCEN should be set and a suitable
	delay observed prior to enabling Timer1.

12.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 12.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

12.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

12.11 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 12-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	TMR1CS<1:0>: Timer1 Clock Source Select bits
	 11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC) 10 = Timer1 clock source is pin or oscillator:
	$\frac{\text{If } T10SCEN = 0}{T10SCEN = 0}$
	External clock from T1CKI pin (on the rising edge) If T1OSCEN = 1:
	Crystal oscillator on T1OSI/T1OSO pins
	01 = Timer1 clock source is system clock (Fosc) 00 = Timer1 clock source is instruction clock (Fosc/4)
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
bit 0 4	11 = 1.8 Prescale value
	10 = 1:4 Prescale value
	01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	TIOSCEN: LP Oscillator Enable Control bit
bit 5	1 = Dedicated Timer1 oscillator circuit enabled
	0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	TISTIC. Timer External Clock input Synchronization Control bit
	<u>TMR1CS<1:0> = $1X$</u>
	$\frac{\text{TMR1CS}<1:0> = 1x}{1 = \text{Do not synchronize external clock input}}$
	$\underline{TMR1CS} = \underline{1X}$
	$\frac{\text{TMR1CS} < 1:0> = 1x}{1 = \text{Do not synchronize external clock input}}$ 0 = Synchronize external clock input with system clock (Fosc) $\frac{\text{TMR1CS} < 1:0> = 0x}{10}$
	$\frac{\text{TMR1CS}<1:0> = 1x}{1 = \text{ Do not synchronize external clock input}}$ $0 = \text{Synchronize external clock input with system clock (Fosc)}$ $\frac{\text{TMR1CS}<1:0> = 0x}{\text{This bit is ignored. Timer1 uses the internal clock when TMR1CS}<1:0> = 1x.$
bit 1	$\frac{\text{TMR1CS} < 1:0 > = 1x}{1 = \text{Do not synchronize external clock input}}$ $0 = \text{Synchronize external clock input with system clock (Fosc)}$ $\frac{\text{TMR1CS} < 1:0 > = 0x}{\text{This bit is ignored. Timer1 uses the internal clock when TMR1CS} < 1:0 > = 1x.$ Unimplemented: Read as '0'
bit 1 bit 0	$\frac{\text{TMR1CS}<1:0> = 1x}{1 = \text{ Do not synchronize external clock input}}$ $0 = \text{Synchronize external clock input with system clock (Fosc)}$ $\frac{\text{TMR1CS}<1:0> = 0x}{\text{This bit is ignored. Timer1 uses the internal clock when TMR1CS}<1:0> = 1x.$ Unimplemented: Read as '0' TMR1ON: Timer1 On bit
	$\frac{\text{TMR1CS} < 1:0 > = 1x}{1 = \text{Do not synchronize external clock input}}$ $0 = \text{Synchronize external clock input with system clock (Fosc)}$ $\frac{\text{TMR1CS} < 1:0 > = 0x}{\text{This bit is ignored. Timer1 uses the internal clock when TMR1CS} < 1:0 > = 1x.$ Unimplemented: Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53	
CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	115	
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115	
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	36	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52	
TMR1H	Holding Reg	ister for the	Most Signifi	cant Byte of	the 16-bit T	MR1 Regis	ter		99	
TMR1L	Holding Reg	ister for the	Least Signif	icant Byte o	f the 16-bit 7	MR1 Regis	ster		99	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62	
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	103	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	104	

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

		SYNC = 0, BRGH = 1										
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		—	_	_	_		_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	_	—	—	115.2k	0.00	1	_	—	_

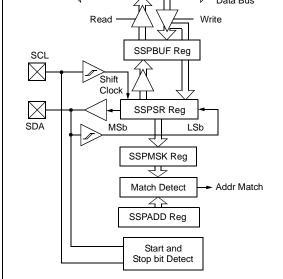
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7	·	·		•	•	•	bit (
Legend:							
R = Reada		W = Writable		-	mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7	WCOL: W	rite Collision Dete	ct bit				
	1 = The S softwa	SPBUF register is are)	s written while	e it is still transr	mitting the prev	ious word (mus	t be cleared i
	0 = No co	Ilision					
bit 6	SSPOV : R	eceive Overflow I	ndicator bit				
	overfle the S overfle	v byte is received ow, the data in SS SPBUF, even if ow bit is not set s SUF register. erflow	PSR is lost. (Overflow can or ting data, to a	nly occur in Sla	ve mode. The uverflow. In Mas	user must rea ster mode, th
bit 5	SSPEN: S	ynchronous Seria	l Port Enable	bit			
		es serial port and es serial port and				rt pins ⁽¹⁾	
bit 4	CKP: Cloc	k Polarity Select I	oit				
		ate for clock is a h ate for clock is a le	0				
bit 3-0	SSPM<3:0)> : Synchronous \$	Serial Port Mo	ode Select bits			
	0001 = SF 0010 = SF 0011 = SF 0100 = SF	PI Master mode, c PI Master mode, c PI Master mode, c PI Master mode, c PI Slave mode, clo PI Slave mode, clo	lock = Fosc/1 lock = Fosc/6 lock = TMR2 ock = SCK pir	16 64 output/2 n. SS pin contro			1/O pip
Note 1:		these pins must b	•	•			" O pii.

REGISTER 17-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)

Note 1: When enabled, these pins must be properly configured as input or output.

17.2 I²C Mode


The SSP module, in I^2C mode, implements all slave functions, except general call support. It provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the I^2C Standard mode specifications:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- Start and Stop bit interrupts enabled to support firmware Master mode
- Address masking

Two pins are used for data transfer; the SCL pin (clock line) and the SDA pin (data line). The user must configure the two pin's data direction bits as inputs in the appropriate TRIS register. Upon enabling I^2C mode, the I^2C slew rate limiters in the I/O pads are controlled by the SMP bit of SSPSTAT register. The SSP module functions are enabled by setting the SSPEN bit of SSPCON register.

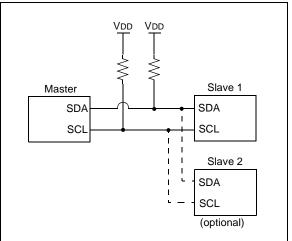

Data is sampled on the rising edge and shifted out on the falling edge of the clock. This ensures that the SDA signal is valid during the SCL high time. The SCL clock input must have minimum high and low times for proper operation. Refer to **Section 23.0** "**Electrical Specifications**".

FIGURE 17-7: I²C MODE BLOCK DIAGRAM

FIGURE 17-8: TYPICAL I²C

CONNECTIONS

The SSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are:

- SSP Control (SSPCON) register
- SSP Status (SSPSTAT) register
- Serial Receive/Transmit Buffer (SSPBUF) register
- SSP Shift Register (SSPSR), not directly accessible
- SSP Address (SSPADD) register
- SSP Address Mask (SSPMSK) register

17.2.1 HARDWARE SETUP

Selection of I^2C mode, with the SSPEN bit of the SSPCON register set, forces the SCL and SDA pins to be open drain, provided these pins are programmed as inputs by setting the appropriate TRISC bits. The SSP module will override the input state with the output data, when required, such as for Acknowledge and slave-transmitter sequences.

Note: Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

23.2 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended)

PIC16LF	722A/723A		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F7	22A/723A			d Operati g tempera	ature	itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param	Device	Min.	Typt	Max.	Units		Conditions			
No.	Characteristics	IVIIII.	Тур†	IVIAX.	Units	VDD	Note			
	Supply Current (IDD) ^(1, 2)									
D009	LDO Regulator	-	350	_	μΑ	—	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled			
			50	—	μΑ	_	All VCAP pins disabled			
		—	30	—	μA	—	VCAP enabled on RA0, RA5 or RA6			
		_	5	_	μΑ	—	LP Clock mode and Sleep (requires FVR and BOR to be disabled)			
D010		_	7.0	12	μΑ	1.8	Fosc = 32 kHz			
		—	9.0	14	μΑ	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C			
D010			11	20	μΑ	1.8	Fosc = 32 kHz			
		—	14	22	μΑ	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C			
		—	15	24	μΑ	5.0	-40 C \leq 1A \leq +63 C			
D011			7.0	12	μΑ	1.8	Fosc = 32 kHz			
		_	9.0	18	μΑ	3.0	LP Oscillator mode -40°C \leq TA \leq +125°C			
D011			11	21	μΑ	1.8	Fosc = 32 kHz			
		_	14	25	μΑ	3.0	LP Oscillator mode (Note 4) -40°C \leq TA \leq +125°C			
		—	15	27	μΑ	5.0	-40 C \sec 1A \sec +125 C			
D011			110	150	μΑ	1.8	Fosc = 1 MHz			
			150	215	μΑ	3.0	XT Oscillator mode			
D011			120	175	μΑ	1.8	Fosc = 1 MHz			
			180	250	μΑ	3.0	XT Oscillator mode (Note 5)			
B 4 4 5			240	300	μA	5.0				
D012			230	300	μΑ	1.8	Fosc = 4 MHz XT Oscillator mode			
Data		-	400	600	μΑ	3.0				
D012			250	350	μΑ	1.8	Fosc = 4 MHz XT Oscillator mode (Note 5)			
			420	650	μΑ	3.0	-			
D012			500	750	μΑ	5.0				
D013		<u> </u>	125 230	180 270	μΑ	1.8 3.0	Fosc = 1 MHz EC Oscillator mode			
D012					μΑ					
D013			150	205	μΑ	1.8	Fosc = 1 MHz EC Oscillator mode (Note 5)			
			225	320	μΑ	3.0	-			
	The test conditions for		250	410	μΑ	5.0				

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

4: FVR and BOR are disabled.

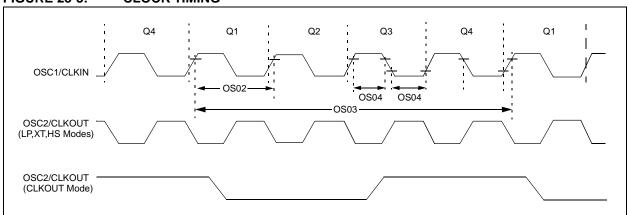
5: 0.1 μ F capacitor on VCAP (RA0).

23.3 DC Characteristics: PIC16(L)F722A/723A-I/E (Power-Down) (Continued)

PIC16LF7	22A/723A			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F722A/723A			Standard Operating Cone Operating temperature			ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended					
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions			
No.				+85°C	+125°C		VDD	Note			
	Power-down Base Current	(IPD) ⁽²⁾		-			-				
D027			0.06	0.7	5.0	μA	1.8	A/D Current (Note 1, Note 4), no			
		—	0.08	1.0	5.5	μΑ	3.0	conversion in progress			
D027			6	10.7	18	μΑ	1.8	A/D Current (Note 1, Note 4), no			
			7	10.6	20	μΑ	3.0	conversion in progress			
		—	7.2	11.9	22	μΑ	5.0				
D027A			250	400	—	μΑ	1.8	A/D Current (Note 1, Note 4),			
		—	250	400	—	μΑ	3.0	conversion in progress			
D027A			280	430	—	μΑ	1.8	A/D Current (Note 1, Note 4,			
			280	430	—	μΑ	3.0	Note 5), conversion in progress			
		—	280	430	—	μΑ	5.0				
D028		—	2.2	3.2	14.4	μA	1.8	Cap Sense Low Power			
		—	3.3	4.4	15.6	μA	3.0	Oscillator mode			
D028		_	6.5	13	21	μΑ	1.8	Cap Sense Low Power			
		—	8	14	23	μΑ	3.0	Oscillator mode			
		—	8	14	25	μΑ	5.0				
D028A			4.2	6	17	μA	1.8	Cap Sense Medium Power			
		—	6	7	18	μA	3.0	Oscillator mode			
D028A			8.5	15.5	23	μA	1.8	Cap Sense Medium Power			
		_	11	17	24	μΑ	3.0	Oscillator mode			
		_	11	18	27	μA	5.0				
D028B		_	12	14	25	μA	1.8	Cap Sense High Power			
			32	35	44	μA	3.0	Oscillator mode			
D028B		_	16	20	31	μA	1.8	Cap Sense High Power			
		_	36	41	50	μA	3.0	Oscillator mode			
			42	49	58	μΑ	5.0]			

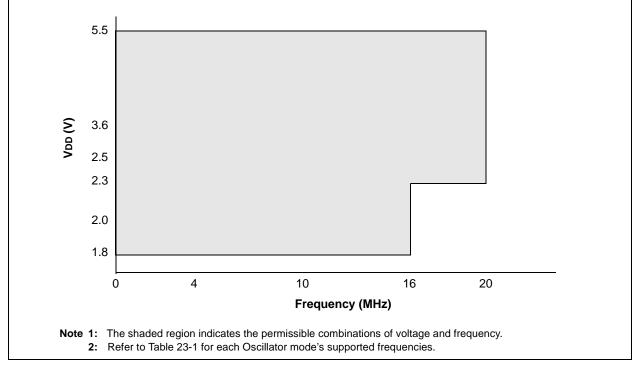
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.


2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.

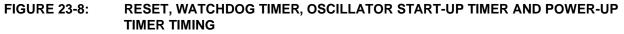
4: A/D oscillator source is FRC.

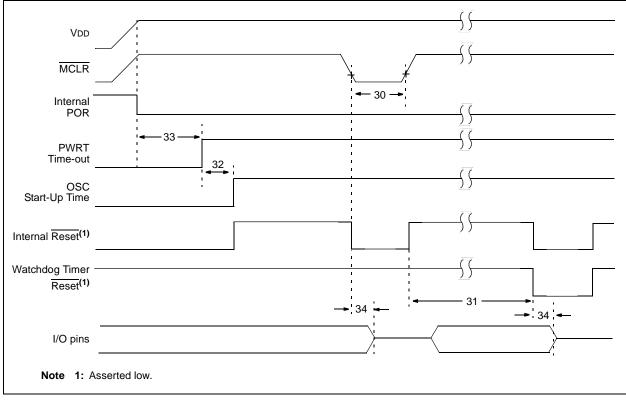

5: 0.1 μ F capacitor on VCAP (RA0).

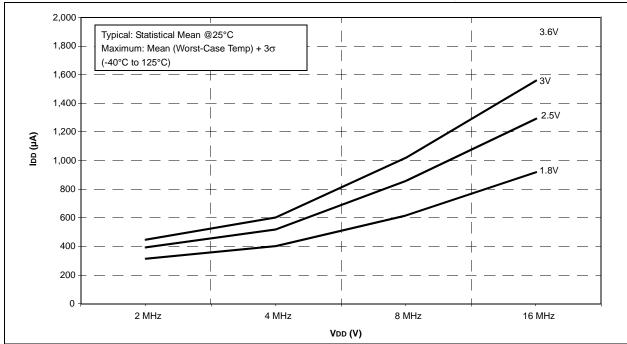
23.7 AC Characteristics: PIC16F722A/723A-I/E

FIGURE 23-3: CLOCK TIMING

TABLE 23-3:	CLKOUT AND I/O TIMING PARAMETERS
-------------	----------------------------------

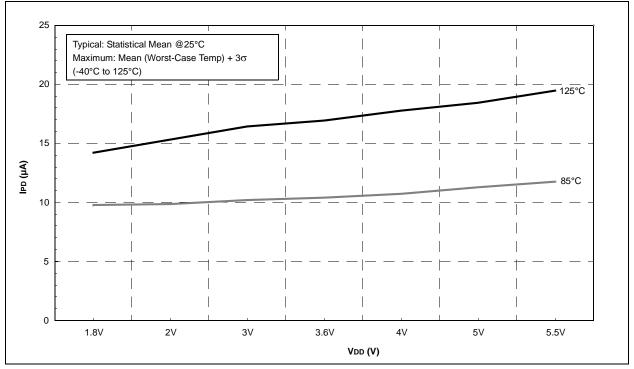

		g Conditions (unless otherwise stated) ure -40°C \leq TA \leq +125°C					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	_	70	ns	VDD = 3.3-5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾		_	72	ns	VDD = 3.3-5.0V
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_	_	20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50		_	ns	VDD = 3.3-5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20		_	ns	
OS18	TioR	Port output rise time ⁽²⁾	_	40 15	72 32	ns	VDD = 2.0V VDD = 3.3-5.0V
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V
OS20*	Tinp	INT pin input high or low time	25	_	_	ns	
OS21*	Trbp	PORTB interrupt-on-change new input level time	Тсү			ns	
*	These nara	meters are characterized but not tested.					

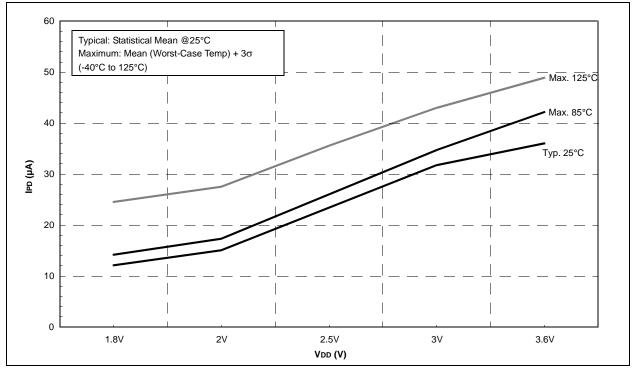

These parameters are characterized but not tested.

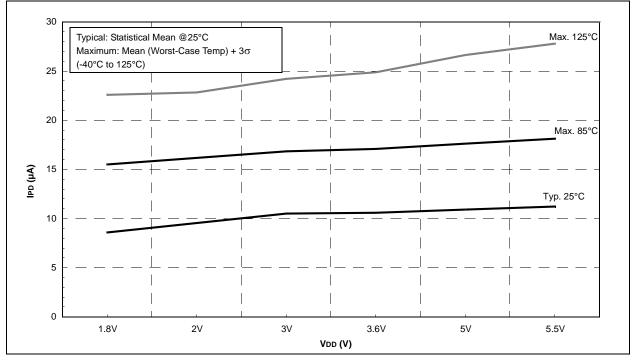

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

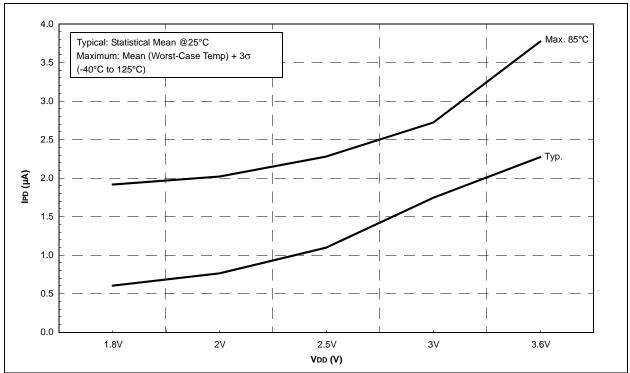
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

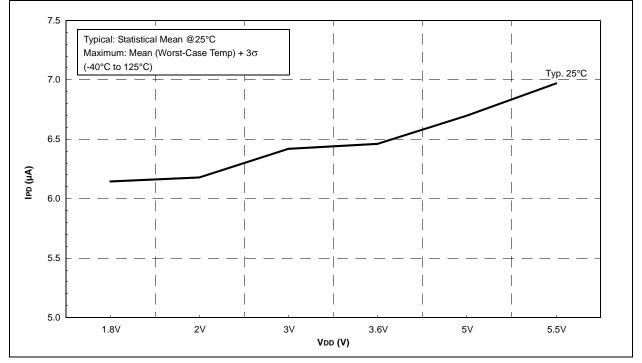
2: Includes OSC2 in CLKOUT mode.










FIGURE 24-36: PIC16LF722A/723A CAP SENSE HIGH POWER IPD vs. VDD

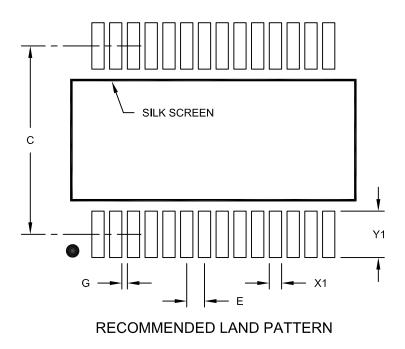


FIGURE 24-42: PIC16LF722A/723A T1OSC 32 kHz IPD vs. VDD

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units						
Dimensior	Dimension Limits						
Contact Pitch	E		0.65 BSC				
Contact Pad Spacing	С		7.20				
Contact Pad Width (X28)	X1			0.45			
Contact Pad Length (X28)	Y1			1.75			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A