

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f723at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). Bits RP0 and RP1 are bank select bits.

<u>RP1</u> <u>RP0</u>

0	0	\rightarrow	Bank 0 is selected
0	1	\rightarrow	Bank 1 is selected
1	0	\rightarrow	Bank 2 is selected
1	1	\rightarrow	Bank 3 is selected

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 bits in the PIC16(L)F722A and 192 x 8 bits in the PIC16(L)F723A. Each register is accessed either directly or indirectly through the File Select Register (FSR), (Refer to Section 2.5 "Indirect Addressing, INDF and FSR Registers").

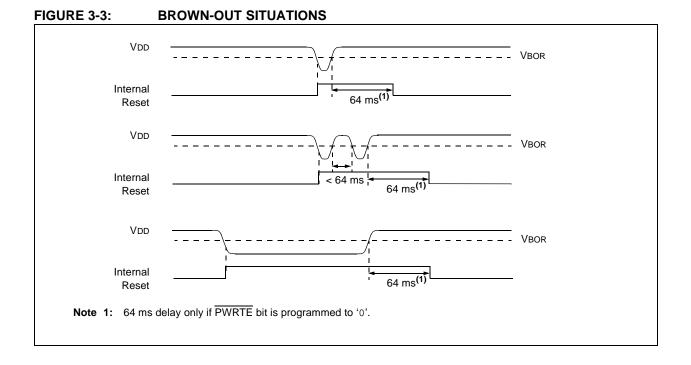
2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (refer to Table 2-1). These registers are static RAM.

The Special Function Registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

3.5 Brown-Out Reset (BOR)

Brown-out Reset is enabled by programming the BOREN<1:0> bits in the Configuration register. The brown-out trip point is selectable from two trip points via the BORV bit in the Configuration register.


Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

Two bits are used to enable the BOR. When BOREN = 11, the BOR is always enabled. When BOREN = 10, the BOR is enabled, but disabled during Sleep. When BOREN = 0X, the BOR is disabled.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 23.0** "**Electrical Specifica-tions**"), the brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not ensured to occur if VDD falls below VBOR for more than parameter (TBOR).

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

Note: When erasing Flash program memory, the BOR is forced to enabled at the minimum BOR setting to ensure that any code protection circuitry is operating properly.

4.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

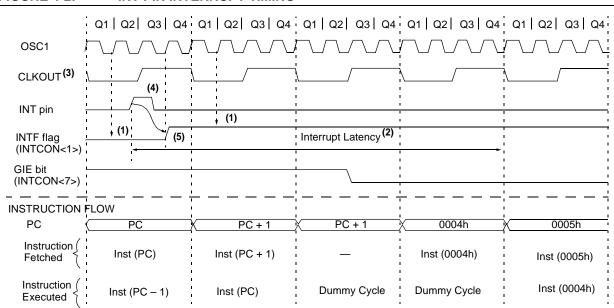
The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- · PC is loaded with the interrupt vector 0004h

The ISR determines the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated

interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.


The RETFIE instruction exits the ISR by popping the previous address from the stack and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

4.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three instruction cycles. For asynchronous interrupts, the latency is three to four instruction cycles, depending on when the interrupt occurs. See Figure 4-2 for timing details.

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

5.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F722A/723A devices differ from the PIC16LF722A/723A devices due to an internal Low Dropout (LDO) voltage regulator. The PIC16F722A/723A devices contain an internal LDO, while the PIC16LF722A/723A ones do not.

The lithography of the die allows a maximum operating voltage of 3.6V on the internal digital logic. In order to continue to support 5.0V designs, a LDO voltage regulator is integrated on the die. The LDO voltage regulator allows for the internal digital logic to operate at 3.2V, while I/O's operate at 5.0V (VDD).

The LDO voltage regulator requires an external bypass capacitor for stability. One of three pins, denoted as VCAP, can be configured for the external bypass capacitor. It is recommended that the capacitor be a ceramic cap between 0.1 to $1.0 \,\mu$ F. The VCAP pin is not intended to supply power to external loads. An external voltage regulator should be used if this functionality is required. In addition, external devices should not supply power to the VCAP pin.

On power-up, the external capacitor will look like a large load on the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information, refer to **Section 23.0 "Electrical Specifications"**.

See Configuration Word 2 register (Register 8-2) for VCAP enable bits.

6.2.2 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the A/D Converter (ADC), refer to the appropriate section in this data sheet.

6.2.2.1 RA0/AN0/SS/VCAP

Figure 6-1 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- Slave select input for the SSP(1)
- Voltage regulator capacitor pin (PIC16F722A/ 723A only)

Note 1: SS pin location may be selected as RA5 or RA0.

6.2.2.2 RA1/AN1

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC

6.2.2.3 RA2/AN2

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC

6.2.2.4 RA3/AN3/VREF

Figure 6-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- · Analog input for the ADC
- Voltage reference input for the ADC

6.2.2.5 RA4/CPS6/T0CKI

Figure 6-3 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Capacitive sensing input
- Clock input for Timer0

The Timer0 clock input function works independently of any TRIS register setting. Effectively, if TRISA4 = 0, the PORTA4 register bit will output to the pad and clock Timer0 at the same time.

6.2.2.6 RA5/AN4/CPS7/SS/VCAP

Figure 6-4 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the ADC
- · Capacitive sensing input
- Slave select input for the SSP⁽¹⁾
- Voltage regulator capacitor pin (PIC16F722A/ 723A only)

Note 1: SS pin location may be selected as RA5 or RA0.

6.2.2.7 RA6/OSC2/CLKOUT/VCAP

Figure 6-5 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Crystal/resonator connection
- Clock output
- Voltage regulator capacitor pin (PIC16F722A/ 723A only)

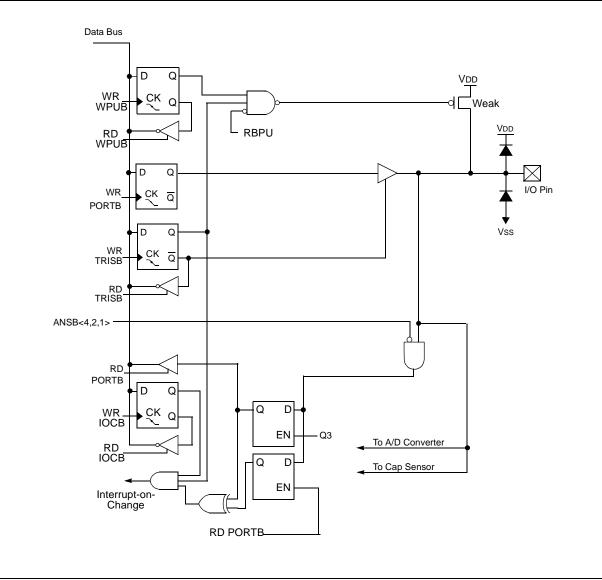
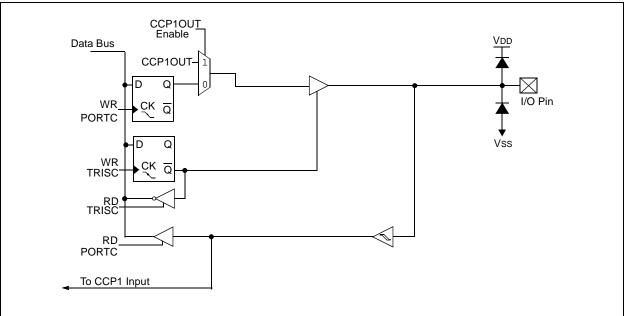
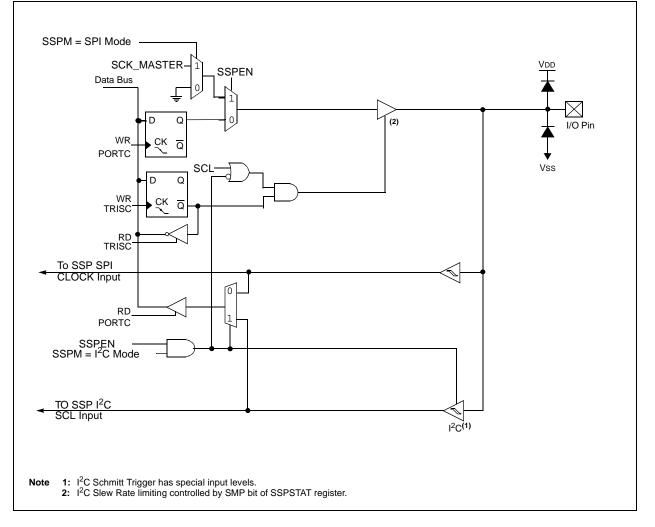

6.2.2.8 RA7/OSC1/CLKIN

Figure 6-6 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Crystal/resonator connection
- Clock input


PIC16(L)F722A/723A



PIC16(L)F722A/723A

7.0 OSCILLATOR MODULE

7.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 7-1 illustrates a block diagram of the oscillator module.

Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system can be configured to use an internal calibrated high-frequency oscillator as clock source, with a choice of selectable speeds via software.

Clock source modes are configured by the FOSC bits in Configuration Word 1 (CONFIG1). The oscillator module can be configured for one of eight modes of operation.

- 1. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT.
- 2. RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT.
- 3. INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN.
- 4. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT.
- 5. EC External clock with I/O on OSC2/CLKOUT.
- HS High Gain Crystal or Ceramic Resonator mode.
- 7. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode.
- 8. LP Low-Power Crystal mode.

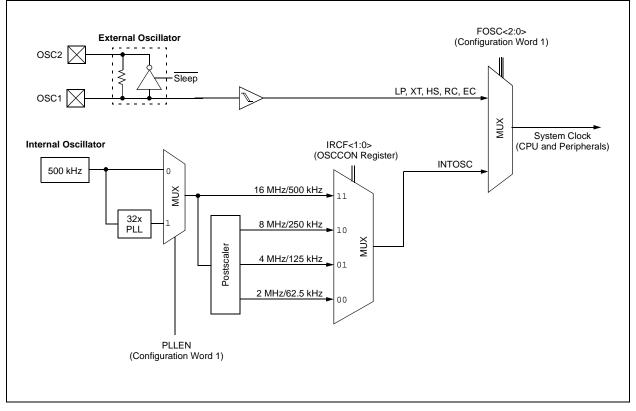


FIGURE 7-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

15.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

The timer resources used by the module are shown in Table 15-1.

Additional information on CCP modules is available in the Application Note *AN594, Using the CCP Modules* (DS00594).

TABLE 15-1: CCP MODE – TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Same TMR1 time base
Capture	Compare	Same TMR1 time base ^(1, 2)
Compare	Compare	Same TMR1 time base ^(1, 2)
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges will be aligned.
PWM	Capture	None
PWM	Compare	None

TABLE 15-2: INTERACTION OF TWO CCP MODULES

Note 1: If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on the CCP2 pin.

2: If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1, affecting the value captured on the CCP1 pin.

Note:	CCPRx	and	CCPx	throughout	this
	documer	nt refer	to CCP	R1 or CCPR2	and
	CCP1 or	CCP2	, respec	tively.	

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	—	BRGH	TRMT	TX9D
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7	CSRC: Cloc <u>Asynchronc</u>	ck Source Select	bit				
	Don't care	<u></u> .					
	<u>Synchronou</u>						
		r mode (clock ge			i)		
oit 6		mode (clock from ransmit Enable t		irce)			
		s 9-bit transmiss					
		s 8-bit transmiss					
bit 5	TXEN: Tran	ismit Enable bit ⁽¹)				
	1 = Transm						
	0 = Transm						
oit 4		SART Mode Sele	ct bit				
		onous mode Ironous mode					
bit 3	•	ented: Read as '	0'				
bit 2	-	h Baud Rate Sel					
	Asynchrono						
	1 = High sp						
	0 = Low sp						
	<u>Synchronou</u> Unused in t						
oit 1		ismit Shift Regist	er Status bit				
	1 = TSR er						
	0 = TSR fu						
bit 0	TX9D: Ninth	n bit of Transmit	Data				
	Can be add						

REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
oit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	nd as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7		ata Input Sample	e Phase bit				
	0 = Input dat <u>SPI Slave m</u>	a sampled at er a sampled at m	iddle of data o	output time			
bit 6	CKE: SPI CI	ock Edge Selec	t bit				
	<u>SPI mode, C</u> 1 = Data stat 0 = Data stat <u>SPI mode, C</u> 1 = Data stat	<u>KP = 0:</u> ble on rising edg ble on falling ed	ge of SCK ge of SCK ge of SCK				
bit 5	D/A: Data/Ad Used in I ² C r	ddress bit	,				
bit 4	P: Stop bit Used in I ² C r	node only.					
bit 3	S: Start bit Used in I ² C r	S: Start bit Used in I ² C mode only.					
bit 2	R/W : Read/V Used in I ² C r	Vrite Information node only.	n bit				
bit 1	UA: Update Used in I ² C r						
bit 0		ull Status bit complete, SSPI not complete, S		npty			

© 2010-2016 Microchip Technology Inc.

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	1 = Slew Rate	ta Input Sample e Control (limiti e Control (limiti	ng) disabled.			ode (100 kHz an 400 kHz).	id 1 MHz).
bit 6		ock Edge Selec be maintained		n SPI mode on	ly.		
bit 5	1 = Indicates	DDRESS bit (I ² that the last by that the last by	te received o	r transmitted w			
bit 4	1 = Indicates	ared when the that a Stop bit as not detecte	has been det			: bit is detected la eset)	ast.
bit 3	1 = Indicates	ared when the that a Start bit /as not detecte	has been det			bit is detected la eset)	ast.
bit 2	This bit holds	VRITE bit Infor the R/W bit inf h to the next S	ormation follo		address match.	. This bit is only v	valid from the
bit 1	1 = Indicates	Address bit (10- that the user n does not need t	eeds to upda	te the address	in the SSPAD	D register	
bit 0	0 = Receive r <u>Transmit:</u> 1 = Transmit i	Il Status bit complete, SSPI not complete, S in progress, SS complete, SSP	SPBUF is en				

REGISTER 17-4: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (I²C MODE)

REGISTER 17-5:	SSPMSK: SSP MASK REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	MSK<7:1>: Mask bits
	1 - The received add

1 = The received address bit n is compared to SSPADD <n> to detect I</n>	
0 = The received address bit n is not used to detect I ² C address match	۱

bit 0 MSK<0>: Mask bit for I²C Slave Mode, 10-bit Address

I²C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):

1 = The received address bit '0' is compared to SSPADD<0> to detect I^2C address match

0 = The received address bit '0' is not used to detect I²C address match

All other SSP modes: this bit has no effect.

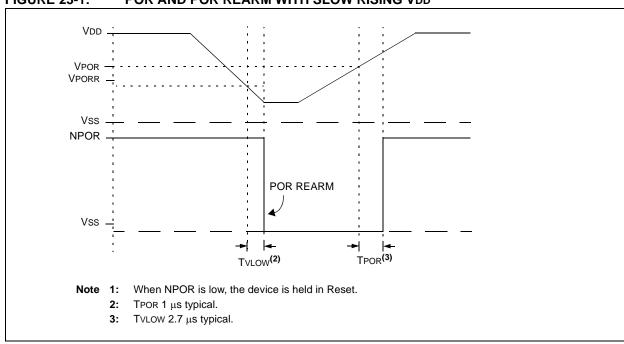
REGISTER 17-6: SSPADD: SSP I²C ADDRESS REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7 | ADD6 | ADD5 | ADD4 | ADD3 | ADD2 | ADD1 | ADD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADD<7:0>: Address bits Received address

TABLE 17-7: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	36
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
SSPBUF	SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register								147
SSPADD	Synchronous	Serial Por	t (I ² C mode	e) Address F	Register				155
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	164
SSPMSK ⁽²⁾ Synchronous Serial Port (I ² C mode) Address Mask Register								166	
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF	165
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

2: Accessible only when SSPM < 3:0 > = 1001.

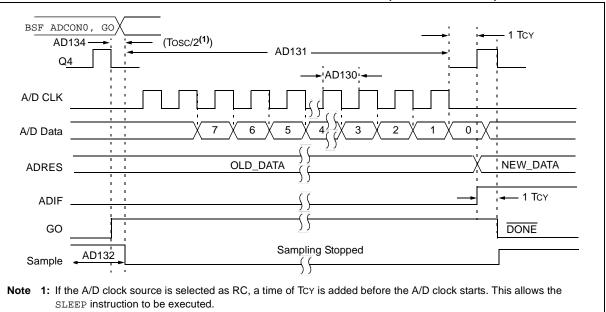
PIC16(L)F722A/723A

FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD

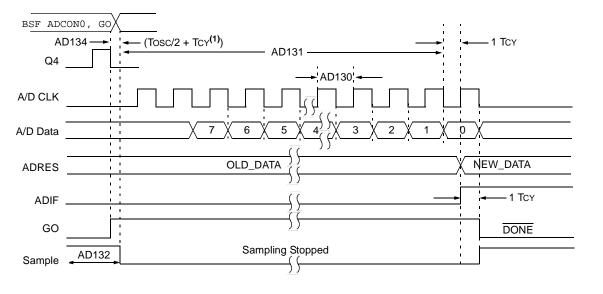
23.2 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended) (Continued)

PIC16LF7	722A/723A	Operating	g tempera	ature -	40°C ≤ T. 40°C ≤ T.	less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended			
PIC16F72	22A/723A	1		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param	Device	Min.	Тур†	Max.	Units		Conditions		
No.	Characteristics					VDD	Note		
	Supply Current (IDD) ^{(1,}	, 2)							
D014		_	290	330	μA	1.8	Fosc = 4 MHz		
	_	460	500	μA	3.0	EC Oscillator mode			
D014			300	430	μA	1.8	Fosc = 4 MHz		
			450	655	μA	3.0	EC Oscillator mode (Note 5)		
		—	500	730	μA	5.0			
D015		—	100	130	μA	1.8	Fosc = 500 kHz		
			120	150	μA	3.0	MFINTOSC mode		
D015		_	115	195	μA	1.8	Fosc = 500 kHz		
		_	135	200	μA	3.0	MFINTOSC mode (Note 5)		
		_	150	220	μA	5.0			
D016			650	800	μA	1.8	Fosc = 8 MHz		
		—	1000	1200	μA	3.0	HFINTOSC mode		
D016		—	625	850	μA	1.8	Fosc = 8 MHz		
		—	1000	1200	μA	3.0	HFINTOSC mode (Note 5)		
		—	1100	1500	μA	5.0			
D017		_	1.0	1.2	mA	1.8	Fosc = 16 MHz		
		—	1.5	1.85	mA	3.0	HFINTOSC mode		
D017		_	1	1.2	mA	1.8	Fosc = 16 MHz		
		_	1.5	1.7	mA	3.0	HFINTOSC mode (Note 5)		
			1.7	2.1	mA	5.0			
D018		_	210	240	μA	1.8	Fosc = 4 MHz		
		_	340	380	μA	3.0	EXTRC mode (Note 3, Note 5)		
D018			225	320	μA	1.8	Fosc = 4 MHz		
			360	445	μA	3.0	EXTRC mode (Note 3, Note 5)		
			410	650	μA	5.0			
D019		—	1.6	1.9	mA	3.0	Fosc = 20 MHz		
		_	2.0	2.8	mA	3.6	HS Oscillator mode		
D019		_	1.6	2	mA	3.0	Fosc = 20 MHz		
		_	1.9	3.2	mA	5.0	HS Oscillator mode (Note 5)		

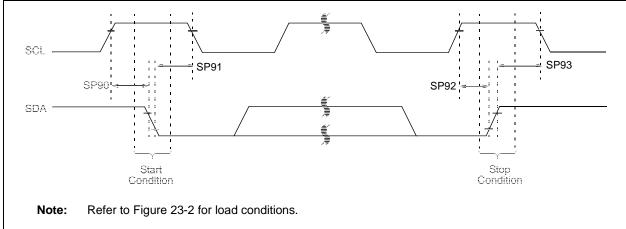
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

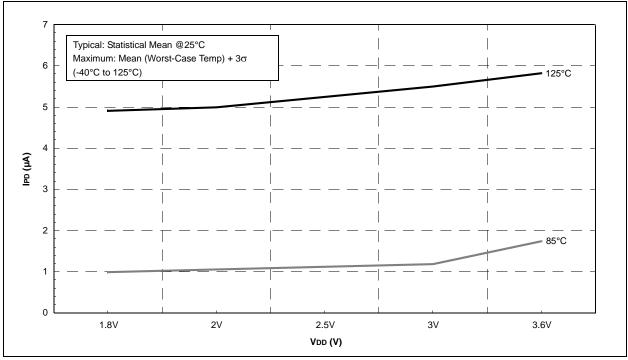

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RA0).

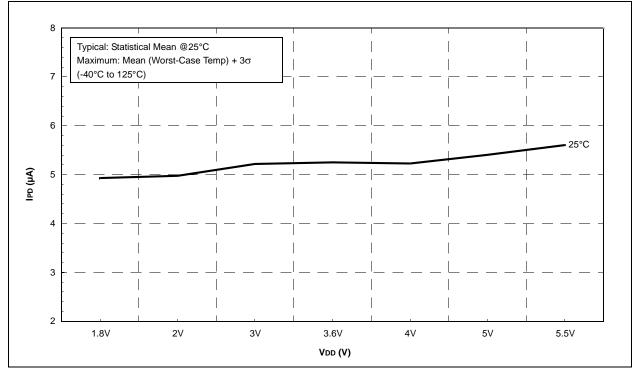

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү		-	ns		
SP71*	TscH	SCK input high time (Slave mode	e)	Tcy + 20			ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20			ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to S	SCK edge	100		—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SO	100		—	ns		
SP75*	SP75* TDOR SDO data output rise time		3.0-5.5V		10	25	ns	
			1.8-5.5V	_	25	50	ns	
SP76*	TDOF	SDO data output fall time	—	10	25	ns		
SP77*	TssH2doZ	SS↑ to SDO output high-impeda	nce	10	_	50	ns	
SP78*	TscR	SCK output rise time	3.0-5.5V		10	25	ns	
		(Master mode)	1.8-5.5V		25	50	ns	
SP79*	TscF	SCK output fall time (Master mo	de)		10	25	ns	
SP80*	TscH2doV,	SDO data output valid after	3.0-5.5V	—		50	ns	
	TscL2doV	SCK edge	1.8-5.5V	—	_	145	ns	
SP81*	TDOV2SCH, TDOV2SCL	SDO data output setup to SCK e	Тсу	_	—	ns		
SP82*	TssL2doV	SDO data output valid after $\overline{\text{SS}}\downarrow$	—	_	50	ns		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 TCY + 40		-	ns		

TABLE 23-11: SPI MODE REQUIREMENTS

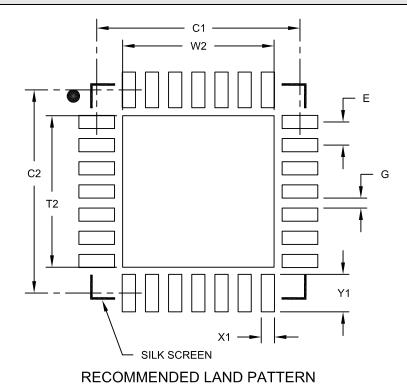

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

I²C BUS START/STOP BITS TIMING **FIGURE 23-20:**



PIC16(L)F722A/723A

FIGURE 24-28: PIC16LF722A/723A MAXIMUM BASE IPD vs. VDD

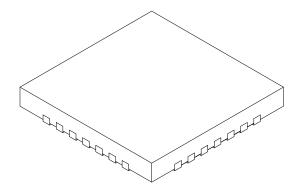


28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	Dimension Limits			
Contact Pitch	E			
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimens	Dimension Limits			MAX
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.55 2.65 2.75		
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75
Contact Width	b	0.15 0.20 0.25		
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2