



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 20MHz                                                                      |
| Connectivity               | I²C, SPI, UART/USART                                                       |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 25                                                                         |
| Program Memory Size        | 7KB (4K x 14)                                                              |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 192 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                |
| Data Converters            | A/D 11x8b                                                                  |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                             |
| Supplier Device Package    | 28-SOIC                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f723at-i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| I/O | 28-Pin<br>SPDIP,<br>SOIC,<br>SSOP | 28-Pin<br>QFN,<br>UQFN | A/D      | Cap Sensor | Timers      | ССР                 | AUSART | SSP               | Interrupt | Pull Up | Basic                           |
|-----|-----------------------------------|------------------------|----------|------------|-------------|---------------------|--------|-------------------|-----------|---------|---------------------------------|
| RA0 | 2                                 | 27                     | AN0      | —          | —           | _                   | -      | SS <sup>(3)</sup> | —         | —       | VCAP <sup>(4)</sup>             |
| RA1 | 3                                 | 28                     | AN1      | _          | _           | _                   | -      | _                 | _         | —       | —                               |
| RA2 | 4                                 | 1                      | AN2      | _          | _           | _                   | _      | _                 | _         | —       | _                               |
| RA3 | 5                                 | 2                      | AN3/VREF | _          | —           | _                   | _      | _                 | _         | _       | —                               |
| RA4 | 6                                 | 3                      | _        | CPS6       | TOCKI       | —                   | _      | _                 | _         | —       | —                               |
| RA5 | 7                                 | 4                      | AN4      | CPS7       | _           | _                   | -      | SS <sup>(3)</sup> | _         | —       | VCAP <sup>(4)</sup>             |
| RA6 | 10                                | 7                      | _        | _          | _           | _                   | _      | _                 | _         | —       | OSC2/CLKOUT/VCAP <sup>(4)</sup> |
| RA7 | 9                                 | 6                      | _        | _          | —           | _                   | _      | _                 | _         | _       | OSC1/CLKIN                      |
| RB0 | 21                                | 18                     | AN12     | CPS0       | —           | _                   | _      | _                 | IOC/INT   | Y       | —                               |
| RB1 | 22                                | 19                     | AN10     | CPS1       | —           | -                   | _      | —                 | IOC       | Y       | —                               |
| RB2 | 23                                | 20                     | AN8      | CPS2       | —           | _                   | _      | _                 | IOC       | Y       | —                               |
| RB3 | 24                                | 21                     | AN9      | CPS3       | —           | CCP2 <sup>(2)</sup> | -      | —                 | IOC       | Y       |                                 |
| RB4 | 25                                | 22                     | AN11     | CPS4       | —           | _                   | _      | —                 | IOC       | Y       | —                               |
| RB5 | 26                                | 23                     | AN13     | CPS5       | T1G         |                     |        | —                 | IOC       | Y       |                                 |
| RB6 | 27                                | 24                     | _        | _          | _           |                     |        | _                 | IOC       | Y       | ICSPCLK/ICDCLK                  |
| RB7 | 28                                | 25                     | _        | —          | —           |                     |        | —                 | IOC       | Y       | ICSPDAT/ICDDAT                  |
| RC0 | 11                                | 8                      | _        |            | T1OSO/T1CKI |                     |        | -                 |           | _       |                                 |
| RC1 | 12                                | 9                      | —        | _          | T1OSI       | CCP2 <sup>(2)</sup> |        | _                 | -         | _       |                                 |
| RC2 | 13                                | 10                     | —        | —          | —           | CCP1                | -      | —                 | -         | _       | _                               |
| RC3 | 14                                | 11                     | —        | _          | —           | _                   |        | SCK/SCL           | -         | _       | _                               |
| RC4 | 15                                | 12                     | —        | —          |             | _                   | -      | SDI/SDA           | -         | _       | _                               |
| RC5 | 16                                | 13                     | —        | _          | —           | _                   | _      | SDO               | -         | _       | _                               |
| RC6 | 17                                | 14                     | _        | _          | _           |                     | TX/CK  | _                 |           | _       |                                 |
| RC7 | 18                                | 15                     | —        | _          | —           |                     | RX/DT  | —                 |           | —       |                                 |
| RE3 | 1                                 | 26                     | _        | _          | _           | _                   | _      | —                 | _         | Y(1)    | MCLR/Vpp                        |
| _   | 20                                | 17                     | —        | —          | —           | —                   | _      | —                 | —         | —       | Vdd                             |
| —   | 8,19                              | 5,16                   | _        | —          | _           | _                   | -      | —                 | _         | —       | Vss                             |

#### TABLE 1: 28-PIN SPDIP/SOIC/SSOP/QFN/UQFN SUMMARY (PIC16(L)F722A/723A)

**Note 1:** Pull up enabled only with external MCLR configuration.

2: RC1 is the default pin location for CCP2. RB3 may be selected by changing the CCP2SEL bit in the APFCON register.

3: RA5 is the default pin location for SS. RA0 may be selected by changing the SSSEL bit in the APFCON register.

4: PIC16F722A/723A devices only.

Note: The PIC16F722A/723A devices have an internal low dropout voltage regulator. An external capacitor must be connected to one of the available VCAP pins to stabilize the regulator. For more information, see Section 5.0 "Low Dropout (LDO) Voltage Regulator". The PIC16LF722A/723A devices do not have the voltage regulator and therefore no external capacitor is required.

#### FIGURE 2-3:

# PIC16(L)F722A SPECIAL FUNCTION REGISTERS

|          | 00h | Indirect addr.(*) | 80h   | Indirect addr. <sup>(*)</sup> | 100h | Indirect addr.(*) | 180h |
|----------|-----|-------------------|-------|-------------------------------|------|-------------------|------|
| TMR0     | 01h | OPTION            | 81h   | TMR0                          | 101h | OPTION            | 181h |
| PCL      | 02h | PCL               | 82h   | PCL                           | 102h | PCL               | 182h |
| STATUS   | 03h | STATUS            | 83h   | STATUS                        | 103h | STATUS            | 183h |
| FSR      | 04h | FSR               | 84h   | FSR                           | 104h | FSR               | 184h |
| PORTA    | 05h | TRISA             | 85h   |                               | 105h | ANSELA            | 185h |
| PORTB    | 06h | TRISB             | 86h   |                               | 106h | ANSELB            | 186h |
| PORTC    | 07h | TRISC             | 87h   |                               | 107h |                   | 187h |
|          | 08h |                   | 88h   | CPSCON0                       | 108h |                   | 188h |
| PORTE    | 09h | TRISE             | 89h   | CPSCON1                       | 109h |                   | 189h |
| PCLATH   | 0Ah | PCLATH            | 8Ah   | PCLATH                        | 10Ah | PCLATH            | 18Ah |
| INTCON   | 0Bh | INTCON            | 8Bh   | INTCON                        | 10Bh | INTCON            | 18Bh |
| PIR1     | 0Ch | PIE1              | 8Ch   | PMDATL                        | 10Ch | PMCON1            | 18Ch |
| PIR2     | 0Dh | PIE2              | 8Dh   | PMADRL                        | 10Dh | Reserved          | 18Dh |
| TMR1L    | 0Eh | PCON              | 8Eh   | PMDATH                        | 10Eh | Reserved          | 18Eh |
| TMR1H    | 0Fh | T1GCON            | 8Fh   | PMADRH                        | 10Fh | Reserved          | 18Fh |
| T1CON    | 10h | OSCCON            | 90h   |                               | 110h |                   | 190h |
| TMR2     | 11h | OSCTUNE           | 91h   |                               | 111h |                   | 191h |
| T2CON    | 12h | PR2               | 92h   |                               | 112h |                   | 192h |
| SSPBUF   | 13h | SSPADD/SSPMS      | K 93h |                               | 113h |                   | 193h |
| SSPCON   | 14h | SSPSTAT           | 94h   |                               | 114h |                   | 194h |
| CCPR1L   | 15h | WPUB              | 95h   |                               | 115h |                   | 195h |
| CCPR1H   | 16h | IOCB              | 96h   |                               | 116h |                   | 196h |
| CCP1CON  | 17h |                   | 97h   |                               | 117h |                   | 197h |
| RCSTA    | 18h | TXSTA             | 98h   |                               | 118h |                   | 198h |
| TXREG    | 19h | SPBRG             | 99h   |                               | 119h |                   | 199h |
| RCREG    | 1Ah |                   | 9Ah   |                               | 11Ah |                   | 19Ah |
| CCPR2L   | 1Bh |                   | 9Bh   |                               | 11Bh |                   | 19Bh |
| CCPR2H   | 1Ch | APFCON            | 9Ch   |                               | 11Ch |                   | 19Ch |
| CCP2CON  | 1Dh | FVRCON            | 9Dh   |                               | 11Dh |                   | 19Dh |
| ADRES    | 1Eh |                   | 9Eh   |                               | 11Eh |                   | 19Eh |
| ADCON0   | 1Fh | ADCON1            | 9Fh   |                               | 11Fh |                   | 19Fh |
|          | 20h |                   | A0h   |                               | 120h |                   | 1A0h |
|          |     | General           |       |                               |      |                   |      |
|          |     | Purpose           |       |                               |      |                   |      |
|          |     | Register          |       |                               |      |                   |      |
| _        |     | 32 Bytes          |       |                               |      |                   |      |
| General  |     |                   | BFh   |                               |      |                   |      |
| Purpose  |     |                   | C0h   |                               |      |                   |      |
| 96 Bytes |     |                   | FFh   |                               | 16Fh |                   | 1EEb |
| 00 0,000 |     | -                 | F0h   |                               | 170h | -                 | 1E0h |
|          |     |                   |       |                               |      |                   |      |
|          |     | Accesses          |       | Accesses                      |      | Accesses          |      |
|          |     | 7011-7711         |       |                               |      | /01-/11           |      |
|          | 7Fh |                   | FFh   |                               | 17Fh |                   | 1FFh |
| Bank 0   |     | Bank 1            |       | Bank 2                        |      | Bank 3            |      |

### TABLE 3-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

| Condition                          | Program<br>Counter    | STATUS<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 0000h                 | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 0000h                 | 000u uuuu          | uu               |
| MCLR Reset during Sleep            | 0000h                 | 0001 Ouuu          | uu               |
| WDT Reset                          | 0000h                 | 0000 uuuu          | uu               |
| WDT Wake-up                        | PC + 1                | uuu0 0uuu          | uu               |
| Brown-out Reset                    | 0000h                 | 0001 1xxx          | 10               |
| Interrupt Wake-up from Sleep       | PC + 1 <sup>(1)</sup> | uuul Ouuu          | uu               |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

**Note 1:** When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

# TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

| Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register on<br>Page |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------|
| STATUS | IRP   | RP1   | RP0   | TO    | PD    | Z     | DC    | С     | 18                  |
| PCON   | _     | _     | —     | _     | _     | _     | POR   | BOR   | 20                  |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by Resets.

**Note 1:** Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

# 6.0 I/O PORTS

There are as many as thirty-five general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

# 6.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 6-1. For this device family, the following functions can be moved between different pins:

- SS (Slave Select)
- CCP2

# REGISTER 6-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0   |
|-------|-----|-----|-----|-----|-----|-------|---------|
| —     | —   | —   | —   | —   | —   | SSSEL | CCP2SEL |
| bit 7 |     |     |     |     |     |       | bit 0   |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 7-2 | Unimplemented: Read as '0'.                                                                       |
|---------|---------------------------------------------------------------------------------------------------|
| bit 1   | SSSEL: SS Input Pin Selection bit                                                                 |
|         | 0 = <u>SS</u> function is on RA5/AN4/CPS7/SS/VCAP<br>1 = <u>SS</u> function is on RA0/AN0/SS/VCAP |
| bit 0   | CCP2SEL: CCP2 Input/Output Pin Selection bit                                                      |
|         | 0 = CCP2 function is on RC1/T1OSI/CCP2<br>1 = CCP2 function is on RB3/CCP2                        |

# 7.5 Oscillator Tuning

The INTOSC is factory-calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 7-2).

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

#### REGISTER 7-2: OSCTUNE: OSCILLATOR TUNING REGISTER

| U-0   | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-------|-------|-------|-------|-------|-------|
| —     | —   | TUN5  | TUN4  | TUN3  | TUN2  | TUN1  | TUN0  |
| bit 7 |     |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

#### bit 7-6 Unimplemented: Read as '0'

bit 5-0

### 9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

| Note 1: | The ADIF bit is set at the completion of |
|---------|------------------------------------------|
|         | every conversion, regardless of whether  |
|         | or not the ADC interrupt is enabled.     |

**2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

Please refer to **Section 9.1.5** "Interrupts" for more information.

# 9.2 ADC Operation

# 9.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 "A/D Conversion Procedure".

# 9.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRES register with new conversion result

# 9.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRES register will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

| Note: | A device Reset forces all registers to their |
|-------|----------------------------------------------|
|       | Reset state. Thus, the ADC module is         |
|       | turned off and any pending conversion is     |
|       | terminated.                                  |

### 9.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

# 9.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCP module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 15.0 "Capture/Compare/PWM (CCP) Module" for more information.

#### 16.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit of the PIR1 register will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE bit of the PIE1 register was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

#### 16.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit of the PIR1 register will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

#### **FIGURE 16-5: ASYNCHRONOUS RECEPTION** Start Start Star bit 7/8/ Stop Stop RX/DT pin bit ΄bit 0 🗙 bit 1 (bit 7/8/ bit 7/8/ Stop bit bit bit 0 bit bit Rcv Shift Reg → Rcv Buffer Reg Word 2 RCREG Word 1 RCREG Read Rcv Buffer Reg RCREG RCIF (Interrupt Flag) OFRR bit CREN This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, Note: causing the OERR (overrun) bit to be set.

| Name   | Bit 7    | Bit 6       | Bit 5      | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|--------|----------|-------------|------------|--------|--------|--------|--------|--------|----------------------|---------------------------------|
| INTCON | GIE      | PEIE        | T0IE       | INTE   | RBIE   | T0IF   | INTF   | RBIF   | 0000 000x            | 0000 000x                       |
| PIE1   | TMR1GIE  | ADIE        | RCIE       | TXIE   | SSPIE  | CCP1IE | TMR2IE | TMR1IE | 0000 0000            | 0000 0000                       |
| PIR1   | TMR1GIF  | ADIF        | RCIF       | TXIF   | SSPIF  | CCP1IF | TMR2IF | TMR1IF | 0000 0000            | 0000 0000                       |
| RCREG  | AUSART R | eceive Data | a Register |        |        |        |        |        | 0000 0000            | 0000 0000                       |
| RCSTA  | SPEN     | RX9         | SREN       | CREN   | ADDEN  | FERR   | OERR   | RX9D   | 0000 000x            | 0000 000x                       |
| SPBRG  | BRG7     | BRG6        | BRG5       | BRG4   | BRG3   | BRG2   | BRG1   | BRG0   | 0000 0000            | 0000 0000                       |
| TRISC  | TRISC7   | TRISC6      | TRISC5     | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 | 1111 1111            | 1111 1111                       |
| TXSTA  | CSRC     | TX9         | TXEN       | SYNC   | _      | BRGH   | TRMT   | TX9D   | 0000 -010            | 0000 -010                       |

### TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous reception.

| R/W-0         | R/W-0                          | R/W-0                            | R/W-0                              | R/W-0            | R-0               | R-0              | R-x           |
|---------------|--------------------------------|----------------------------------|------------------------------------|------------------|-------------------|------------------|---------------|
| SPEN          | RX9                            | SREN                             | CREN                               | ADDEN            | FERR              | OERR             | RX9D          |
| bit 7         | 1                              |                                  |                                    |                  |                   |                  | bit 0         |
|               |                                |                                  |                                    |                  |                   |                  |               |
| Legend:       |                                |                                  |                                    |                  |                   |                  |               |
| R = Readab    | le bit                         | W = Writable                     | bit                                | U = Unimple      | mented bit, read  | d as '0'         |               |
| -n = Value at | t POR                          | '1' = Bit is set                 | t                                  | '0' = Bit is cle | eared             | x = Bit is unkr  | nown          |
| h:+ 7         |                                | Dant Enable b                    | :(1)                               |                  |                   |                  |               |
|               | 1 - Serial no                  | rt enabled (co                   | ntigures RX/D                      | T and TX/CK r    | nine as serial no | ort nins)        |               |
|               | 0 = Serial po                  | rt disabled (be                  | Id in Reset)                       |                  | onis as senai po  | nt pins)         |               |
| bit 6         | <b>RX9:</b> 9-bit Re           | ceive Enable l                   | oit                                |                  |                   |                  |               |
|               | 1 = Selects 9<br>0 = Selects 8 | -bit reception<br>-bit reception |                                    |                  |                   |                  |               |
| bit 5         | SREN: Single                   | e Receive Enal                   | ble bit                            |                  |                   |                  |               |
|               | Asynchronou                    | <u>s mode</u> :                  |                                    |                  |                   |                  |               |
|               | Don't care                     |                                  |                                    |                  |                   |                  |               |
|               | Synchronous                    | mode – Maste                     | <u>er</u> :                        |                  |                   |                  |               |
|               | 1 = Enables<br>0 = Disables    | single receive                   |                                    |                  |                   |                  |               |
|               | This bit is clea               | ared after rece                  | ption is comp                      | lete.            |                   |                  |               |
|               | <u>Synchronous</u>             | mode – Slave                     | •<br>•                             |                  |                   |                  |               |
|               | Don't care                     |                                  |                                    |                  |                   |                  |               |
| bit 4         | CREN: Conti                    | nuous Receive                    | Enable bit                         |                  |                   |                  |               |
|               | Asynchronou                    | <u>s mode</u> :                  |                                    |                  |                   |                  |               |
|               | 1 = Enables                    | receiver                         |                                    |                  |                   |                  |               |
|               | <u>Synchronous</u>             | mode:                            |                                    |                  |                   |                  |               |
|               | 1 = Enables                    | continuous rec                   | eive until ena                     | ble bit CREN i   | s cleared (CRE    | N overrides SR   | EN)           |
|               | 0 = Disables                   | continuous re                    | ceive                              |                  |                   |                  |               |
| bit 3         | ADDEN: Add                     | ress Detect Er                   | hable bit                          |                  |                   |                  |               |
|               | Asynchronou                    | s mode 9-bit (F                  | <u>RX9 = 1</u> ):                  |                  |                   |                  |               |
|               | 1 = Enables                    | address detec                    | tion, enable in<br>tion, all bytes | Iterrupt and loa | ad the receive b  | uffer when RSR   | l<8> is set   |
|               | Asynchronou                    | s mode 8-bit (F                  | <u>RX9 = </u> 0 <u>)</u> :         |                  |                   |                  |               |
|               | Don't care                     |                                  |                                    |                  |                   |                  |               |
|               | <u>Synchronous</u>             | mode:                            |                                    |                  |                   |                  |               |
|               | Must be set to                 | oʻ0'                             |                                    |                  |                   |                  |               |
| bit 2         | FERR: Frami                    | ng Error bit                     |                                    |                  |                   |                  |               |
|               | 1 = Framing<br>0 = No frami    | error (can be ι<br>ng error      | updated by rea                     | ading RCREG      | register and rec  | ceive next valid | byte)         |
| bit 1         | OERR: Overr                    | un Error bit                     |                                    |                  |                   |                  |               |
|               | 1 = Overrun<br>0 = No overr    | error (can be c<br>un error      | leared by clea                     | aring bit CREN   | 1)                |                  |               |
| bit 0         | RX9D: Ninth                    | bit of Received                  | d Data                             |                  |                   |                  |               |
|               | This can be a                  | ddress/data bi                   | t or a parity bi                   | t and must be    | calculated by u   | ser firmware.    |               |
| Note 1:       | The AUSART m                   | odule automa                     | tically change                     | es the pin fro   | om tri-state to   | drive as need    | ed. Configure |

|        |                   |            |                             |                   | <b>SYNC</b> = 0, <b>BRGH</b> = 0 |                             |                    |            |                             |                    |            |                             |
|--------|-------------------|------------|-----------------------------|-------------------|----------------------------------|-----------------------------|--------------------|------------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD   | Fosc = 20.000 MHz |            |                             | Fosc = 18.432 MHz |                                  |                             | Fosc = 16.0000 MHz |            |                             | Fosc = 11.0592 MHz |            |                             |
| RATE   | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error                       | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | _                 |            | _                           | _                 | _                                | _                           |                    |            | —                           |                    | _          | _                           |
| 1200   | 1221              | 1.73       | 255                         | 1200              | 0.00                             | 239                         | 1201               | 0.08       | 207                         | 1200               | 0.00       | 143                         |
| 2400   | 2404              | 0.16       | 129                         | 2400              | 0.00                             | 119                         | 2403               | 0.16       | 103                         | 2400               | 0.00       | 71                          |
| 9600   | 9470              | -1.36      | 32                          | 9600              | 0.00                             | 29                          | 9615               | 0.16       | 25                          | 9600               | 0.00       | 17                          |
| 10417  | 10417             | 0.00       | 29                          | 10286             | -1.26                            | 27                          | 10416              | -0.01      | 23                          | 10165              | -2.42      | 16                          |
| 19.2k  | 19.53k            | 1.73       | 15                          | 19.20k            | 0.00                             | 14                          | 19.23k             | 0.16       | 12                          | 19.20k             | 0.00       | 8                           |
| 57.6k  | —                 | _          | _                           | 57.60k            | 0.00                             | 7                           | —                  | —          | —                           | 57.60k             | 0.00       | 2                           |
| 115.2k | —                 | —          | —                           | —                 | —                                | —                           | —                  | —          | —                           | —                  | —          | —                           |

#### TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

| BAUD   | Fosc = 8.000 MHz |            |                             | Fosc = 4.000 MHz |            |                             | Fosc = 3.6864 MHz |            |                             | Fosc = 1.000 MHz |            |                             |
|--------|------------------|------------|-----------------------------|------------------|------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|
| RATE   | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | _                | _          | _                           | 300              | 0.16       | 207                         | 300               | 0.00       | 191                         | 300              | 0.16       | 51                          |
| 1200   | 1202             | 0.16       | 103                         | 1202             | 0.16       | 51                          | 1200              | 0.00       | 47                          | 1202             | 0.16       | 12                          |
| 2400   | 2404             | 0.16       | 51                          | 2404             | 0.16       | 25                          | 2400              | 0.00       | 23                          | —                | —          | —                           |
| 9600   | 9615             | 0.16       | 12                          | —                | _          | _                           | 9600              | 0.00       | 5                           | —                | —          | —                           |
| 10417  | 10417            | 0.00       | 11                          | 10417            | 0.00       | 5                           | —                 | _          | _                           | _                | _          | _                           |
| 19.2k  | _                | _          | —                           | —                | _          | _                           | 19.20k            | 0.00       | 2                           | —                | —          | —                           |
| 57.6k  | —                | —          | —                           | —                | —          | —                           | 57.60k            | 0.00       | 0                           | —                | —          | —                           |
| 115.2k | —                | _          | _                           | —                | _          | —                           | _                 | _          | _                           | —                | _          | _                           |

|        |                |            |                             |                |            | SYNC = 0,                   | BRGH = :       | 1          |                             |                |            |                             |
|--------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|------------|-----------------------------|
| BAUD   | Foso           | : = 20.00  | 0 MHz                       | Foso           | : = 18.43  | 2 MHz                       | Fosc           | = 16.00    | 00 MHz                      | Fosc           | = 11.059   | 92 MHz                      |
| RATE   | Actual<br>Rate | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | —              | _          | —                           | —              | _          | _                           |                | —          | _                           |                |            | —                           |
| 1200   | —              | —          | —                           | —              | —          | —                           | —              | —          | —                           | —              | —          | —                           |
| 2400   | —              | —          | —                           | —              | —          | —                           | —              | —          | —                           | _              | _          | _                           |
| 9600   | 9615           | 0.16       | 129                         | 9600           | 0.00       | 119                         | 9615           | 0.16       | 103                         | 9600           | 0.00       | 71                          |
| 10417  | 10417          | 0.00       | 119                         | 10378          | -0.37      | 110                         | 10417          | 0.00       | 95                          | 10473          | 0.53       | 65                          |
| 19.2k  | 19.23k         | 0.16       | 64                          | 19.20k         | 0.00       | 59                          | 19.23k         | 0.16       | 51                          | 19.20k         | 0.00       | 35                          |
| 57.6k  | 56.82k         | -1.36      | 21                          | 57.60k         | 0.00       | 19                          | 58.8k          | 2.12       | 16                          | 57.60k         | 0.00       | 11                          |
| 115.2k | 113.64k        | -1.36      | 10                          | 115.2k         | 0.00       | 9                           | _              | _          | _                           | 115.2k         | 0.00       | 5                           |

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] BTFSS f,b                                                                                                                                                                                      |
| Operands:        | $0 \le f \le 127$<br>$0 \le b < 7$                                                                                                                                                                              |
| Operation:       | skip if (f <b>) = 1</b>                                                                                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                                            |
| Description:     | If bit 'b' in register 'f' is '0', the next<br>instruction is executed.<br>If bit 'b' is '1', then the next<br>instruction is discarded and a NOP<br>is executed instead, making this a<br>2-cycle instruction. |

| CLRWDT           | Clear Watchdog Timer                                                                                                                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] CLRWDT                                                                                                                                           |
| Operands:        | None                                                                                                                                                     |
| Operation:       | $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$ |
| Status Affected: | TO, PD                                                                                                                                                   |
| Description:     | CLRWDT instruction resets the<br>Watchdog Timer. It also resets the<br>prescaler of the WDT.<br>Status bits TO and PD are set.                           |

| CALL             | Call Subroutine                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] CALL k                                                                                                                                                                                                                 |
| Operands:        | $0 \leq k \leq 2047$                                                                                                                                                                                                                    |
| Operation:       | (PC)+ 1 $\rightarrow$ TOS,<br>k $\rightarrow$ PC<10:0>,<br>(PCLATH<4:3>) $\rightarrow$ PC<12:11>                                                                                                                                        |
| Status Affected: | None                                                                                                                                                                                                                                    |
| Description:     | Call Subroutine. First, return<br>address (PC + 1) is pushed onto<br>the stack. The 11-bit immediate<br>address is loaded into PC bits<br><10:0>. The upper bits of the PC<br>are loaded from PCLATH. CALL is<br>a 2-cycle instruction. |

| COMF             | Complement f                                                                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] COMF f,d                                                                                                                                               |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                |
| Operation:       | $(\overline{f}) \rightarrow (destination)$                                                                                                                     |
| Status Affected: | Z                                                                                                                                                              |
| Description:     | The contents of register 'f' are<br>complemented. If 'd' is '0', the<br>result is stored in W. If 'd' is '1',<br>the result is stored back in<br>register 'f'. |

| CLRF             | Clear f                                                               |  |  |  |  |
|------------------|-----------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [label] CLRF f                                                        |  |  |  |  |
| Operands:        | $0 \leq f \leq 127$                                                   |  |  |  |  |
| Operation:       | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$ |  |  |  |  |
| Status Affected: | Z                                                                     |  |  |  |  |
| Description:     | The contents of register 'f' are<br>cleared and the Z bit is set.     |  |  |  |  |

| DECF             | Decrement f                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] DECF f,d                                                                                                                                |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                 |
| Operation:       | (f) - 1 $\rightarrow$ (destination)                                                                                                               |
| Status Affected: | Z                                                                                                                                                 |
| Description:     | Decrement register 'f'. If 'd' is '0',<br>the result is stored in the W<br>register. If 'd' is '1', the result is<br>stored back in register 'f'. |

| CLRW             | Clear W                                                               |
|------------------|-----------------------------------------------------------------------|
| Syntax:          | [label] CLRW                                                          |
| Operands:        | None                                                                  |
| Operation:       | $\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$ |
| Status Affected: | Z                                                                     |
| Description:     | W register is cleared. Zero bit (Z) is set.                           |

| Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +125^{\circ}C$ |       |                                         |      |        |          |       |                                    |  |
|----------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|------|--------|----------|-------|------------------------------------|--|
| Param<br>No.                                                                                                         | Sym.  | Characteristic                          | Min. | Тур†   | Max.     | Units | Conditions                         |  |
| OS01                                                                                                                 | Fosc  | External CLKIN Frequency <sup>(1)</sup> | DC   | _      | 37       | kHz   | LP Oscillator mode                 |  |
|                                                                                                                      |       |                                         | DC   | —      | 4        | MHz   | XT Oscillator mode                 |  |
|                                                                                                                      |       |                                         | DC   | —      | 20       | MHz   | HS Oscillator mode                 |  |
|                                                                                                                      |       |                                         | DC   | —      | 20       | MHz   | EC Oscillator mode                 |  |
|                                                                                                                      |       | Oscillator Frequency <sup>(1)</sup>     | —    | 32.768 | _        | kHz   | LP Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 0.1  | _      | 4        | MHz   | XT Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 1    | _      | 20       | MHz   | HS Oscillator mode, $VDD \ge 2.7V$ |  |
|                                                                                                                      |       |                                         | DC   | _      | 4        | MHz   | RC Oscillator mode                 |  |
| OS02                                                                                                                 | Tosc  | External CLKIN Period <sup>(1)</sup>    | 27   | _      | ×        | μs    | LP Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 250  | —      | $\infty$ | ns    | XT Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 50   | _      | $\infty$ | ns    | HS Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 50   | —      | $\infty$ | ns    | EC Oscillator mode                 |  |
|                                                                                                                      |       | Oscillator Period <sup>(1)</sup>        | —    | 30.5   | —        | μs    | LP Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 250  | —      | 10,000   | ns    | XT Oscillator mode                 |  |
|                                                                                                                      |       |                                         | 50   | —      | 1,000    | ns    | HS Oscillator mode, $VDD \ge 2.7V$ |  |
|                                                                                                                      |       |                                         | 250  | —      | —        | ns    | RC Oscillator mode                 |  |
| OS03                                                                                                                 | TCY   | Instruction Cycle Time <sup>(1)</sup>   | 200  | TCY    | DC       | ns    | TCY = 4/FOSC                       |  |
| OS04*                                                                                                                | TosH, | External CLKIN High,                    | 2    | _      |          | μs    | LP oscillator                      |  |
|                                                                                                                      | TosL  | External CLKIN Low                      | 100  | —      | —        | ns    | XT oscillator                      |  |
|                                                                                                                      |       |                                         | 20   | -      | —        | ns    | HS oscillator                      |  |
| OS05*                                                                                                                | TosR, | External CLKIN Rise,                    | 0    | —      | ×        | ns    | LP oscillator                      |  |
|                                                                                                                      | TosF  | External CLKIN Fall                     | 0    | -      | $\infty$ | ns    | XT oscillator                      |  |
|                                                                                                                      |       |                                         | 0    | —      | ×        | ns    | HS oscillator                      |  |

#### TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

| Param<br>No. | Symbol  | Characteristic  |              | Min. | Тур | Max. | Units | Conditions                   |  |
|--------------|---------|-----------------|--------------|------|-----|------|-------|------------------------------|--|
| SP90*        | TSU:STA | Start condition | 100 kHz mode | 4700 |     | _    | ns    | Only relevant for Repeated   |  |
|              |         | Setup time      | 400 kHz mode | 600  | _   | —    |       | Start condition              |  |
| SP91*        | THD:STA | Start condition | 100 kHz mode | 4000 | _   | _    | ns    | After this period, the first |  |
|              |         | Hold time       | 400 kHz mode | 600  | —   | _    |       | clock pulse is generated     |  |
| SP92*        | TSU:STO | Stop condition  | 100 kHz mode | 4700 | —   |      | ns    |                              |  |
|              |         | Setup time      | 400 kHz mode | 600  |     | _    |       |                              |  |
| SP93         | THD:STO | Stop condition  | 100 kHz mode | 4000 | _   | _    | ns    |                              |  |
|              |         | Hold time       | 400 kHz mode | 600  | _   |      |       |                              |  |

# TABLE 23-12: I<sup>2</sup>C BUS START/STOP BITS REQUIREMENTS

\* These parameters are characterized but not tested.











FIGURE 24-53: VOH vs. IOH OVER TEMPERATURE, VDD = 3.6V







#### FIGURE 24-60: PIC16F722A/723A HFINTOSC WAKE-UP FROM SLEEP START-UP TIME







# 25.0 PACKAGING INFORMATION

# 25.1 Package Marking Information



\* Standard PICmicro<sup>®</sup> device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

# 25.2 Package Details

The following sections give the technical details of the packages.

#### 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | INCHES           |       |          |        |  |  |
|----------------------------|------------------|-------|----------|--------|--|--|
| Dimension                  | Dimension Limits |       | NOM      | MAX    |  |  |
| Number of Pins             | Ν                | 28    |          |        |  |  |
| Pitch                      | е                |       | .100 BSC | )0 BSC |  |  |
| Top to Seating Plane       | Α                | -     | -        | .200   |  |  |
| Molded Package Thickness   | A2               | .120  | .135     | .150   |  |  |
| Base to Seating Plane      | A1               | .015  | -        | -      |  |  |
| Shoulder to Shoulder Width | Е                | .290  | .310     | .335   |  |  |
| Molded Package Width       | E1               | .240  | .285     | .295   |  |  |
| Overall Length             | D                | 1.345 | 1.365    | 1.400  |  |  |
| Tip to Seating Plane       | L                | .110  | .130     | .150   |  |  |
| Lead Thickness             | С                | .008  | .010     | .015   |  |  |
| Upper Lead Width           |                  | .040  | .050     | .070   |  |  |
| Lower Lead Width           |                  | .014  | .018     | .022   |  |  |
| Overall Row Spacing §      | eB               | -     | -        | .430   |  |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

<sup>© 2010-2016</sup> Microchip Technology Inc.

# 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | MILLIMETERS |          |      |      |
|----------------------------|-------------|----------|------|------|
| Dimensior                  | MIN         | NOM      | MAX  |      |
| Contact Pitch              | E           | 0.65 BSC |      |      |
| Optional Center Pad Width  | W2          |          |      | 4.25 |
| Optional Center Pad Length | T2          |          |      | 4.25 |
| Contact Pad Spacing        | C1          |          | 5.70 |      |
| Contact Pad Spacing        | C2          |          | 5.70 |      |
| Contact Pad Width (X28)    | X1          |          |      | 0.37 |
| Contact Pad Length (X28)   | Y1          |          |      | 1.00 |
| Distance Between Pads      | G           | 0.20     |      |      |

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

### 28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | MILLIMETERS |           |          |      |  |  |
|------------------------|-------------|-----------|----------|------|--|--|
| Dimension Lin          |             | MIN       | NOM      | MAX  |  |  |
| Number of Pins         | N           | 28        |          |      |  |  |
| Pitch                  | е           |           | 0.40 BSC |      |  |  |
| Overall Height         | A 0.45 0.50 |           |          | 0.55 |  |  |
| Standoff               | A1          | 0.00      | 0.02     | 0.05 |  |  |
| Contact Thickness      | A3          | 0.127 REF |          |      |  |  |
| Overall Width          | E           | 4.00 BSC  |          |      |  |  |
| Exposed Pad Width      | E2          | 2.55      | 2.65     | 2.75 |  |  |
| Overall Length         | D           | 4.00 BSC  |          |      |  |  |
| Exposed Pad Length     | D2          | 2.55      | 2.65     | 2.75 |  |  |
| Contact Width          | b           | 0.15      | 0.20     | 0.25 |  |  |
| Contact Length         | L           | 0.30      | 0.40     | 0.50 |  |  |
| Contact-to-Exposed Pad | K           | 0.20      | -        | -    |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2