

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722a-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F72X Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Flash Memory (bytes)	I/O's ⁽²⁾	8-bit ADC (ch)	CapSense (ch)	Timers (8/16-bit)	AUSART	SSP (I ² C/SPI)	ССР	Debug ⁽¹⁾	ХГР
PIC16(L)F707	(1)	8192	363	0	36	14	32	4/2	1	1	2	I	Y
PIC16(L)F720	(2)	2048	128	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F721	(2)	4096	256	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F722	(4)	2048	128	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F722A	(3)	2048	128	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F723	(4)	4096	192	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F723A	(3)	4096	192	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F724	(4)	4096	192	0	36	14	16	2/1	1	1	2	I	Y
PIC16(L)F726	(4)	8192	368	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F727	(4)	8192	368	0	36	14	16	2/1	1	1	2	I	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS41418 PIC16(L)F707 Data Sheet, 40/44-Pin Flash, 8-bit Microcontrollers
- 2: DS41430 PIC16(L)F720/721 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers
- 3: DS41417 PIC16(L)F722A/723A Data Sheet, 28-Pin Flash, 8-bit Microcontrollers
- 4: DS41341 PIC16(L)F72X Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F722A/723A devices are covered by this data sheet. They are available in 28-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F722A/723A devices. Table 1-1 shows the pinout descriptions.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page	
Bank 1												
80h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (no	t a physical r	egister)	xxxx xxxx	22,30	
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19,30	
82h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signifie	cant Byte					0000 0000	21,30	
83h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30	
84h ⁽²⁾	FSR	Indirect Data	a Memory A	ddress Point	ter					xxxx xxxx	22,30	
85h	TRISA	TRISA7	TRISA6	TRISA5	1111 1111	43,30						
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	52,30	
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	62,30	
89h	TRISE	_			_	TRISE3 ⁽⁵⁾	_	_	_	1111	69,30	
8Ah ^(1, 2)	PCLATH	_								0 0000	21,30	
8Bh ⁽²⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	x000 000x	36,30	
8Ch	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	37,31	
8Dh	PIE2	—	-	-	—	—	_	—	CCP2IE	0	38,31	
8Eh	PCON	_		-	_	_	_	POR	BOR	dd	20,31	
8Fh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	104,31	
90h	OSCCON	—	-	IRCF1	IRCF0	ICSL	ICSS	—	_	10 qq	73,31	
91h	OSCTUNE	—		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	74,31	
92h	PR2	Timer2 Peri	od Register							1111 1111	106,31	
93h	SSPADD(4)	Synchronou	s Serial Port	t (I ² C mode)	Address Reg	ister				0000 0000	155,31	
93h	SSPMSK ⁽³⁾	Synchronou	s Serial Port	t (I ² C mode)	Address Mas	k Register				1111 1111	166,31	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	153,31	
95h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	52,31	
96h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	53,31	
97h		Unimpleme	nted							_		
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	133,31	
99h	SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	135,31	
9Ah	_	Unimpleme	nted							—	—	
9Bh	—	Unimpleme	nted							_	_	
9Ch	APFCON	_	— — — — — — SSSEL CCP2SEL									
9Dh	FVRCON	FVRRDY	FVREN	—	_	_	_	ADFVR1	ADFVR0	q000	90,31	
9Eh	—	Unimpleme	nted							_	—	
9Fh	ADCON1	_	ADCS2	ADCS1	ADCS0	_	_	ADREF1	ADREF0	000000	86,31	

TABLE 2-1:PIC16(L)F722A/723A SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0> = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0				
bit 7 bit 0											
Legend:											
Legend: R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					

REGISTER 6-5: PORTB: PORTB REGISTER

bit 7-0 RB<7:0>: PORTB I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 6-6: TRISB: PORTB TRI-STATE REGISTER

R/W-1	R/W-1 R/W-1		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TRISB7	TRISB7 TRISB6 TRISB5 ⁻		TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
bit 7							bit 0

Legend:					
R = Readable bit	it W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0

—

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WPUB7	WPUB7 WPUB6 WPUB5		WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **WPUB<7:0>**: Weak Pull-up Register bits

1 = Pull up enabled

0 = Pull up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

IADLE 0-3.	SOMMARY OF REGISTERS ASSOCIATED WITH ORTD											
Name	ne Bit 7 Bit 6 Bit 5		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
ADCON0			CHS3	CHS2	CHS1	CHS0	GO/ DONE	ADON	85			
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53			
APFCON	_	—	—	—	_	—	SSSEL	CCP2SEL	42			
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115			
CPSCON0	CPSON	_	—	—	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	112			
CPSCON1	_	—	—	—	_	CPSCH2	CPSCH1	CPSCH0	113			
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	36			
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	53			
OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	19			
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52			
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	104			
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52			
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	52			

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

6.4.1 RC0/T1OSO/T1CKI

Figure 6-13 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Timer1 oscillator output
- Timer1 clock input

6.4.2 RC1/T1OSI/CCP2

Figure 6-14 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Timer1 oscillator input
- Capture 2 input, Compare 2 output, and PWM2 output

Note: CCP2 pin location may be selected as RB3 or RC1.

6.4.3 RC2/CCP1

Figure 6-15 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Capture 1 input, Compare 1 output, and PWM1 output

6.4.4 RC3/SCK/SCL

Figure 6-16 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI clock
- I²C clock

6.4.5 RC4/SDI/SDA

Figure 6-17 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI data input
- I²C data I/O

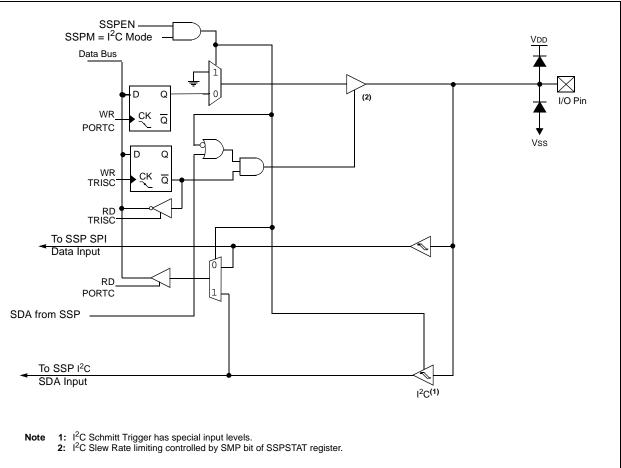
6.4.6 RC5/SDO

Figure 6-18 shows the diagram for this pin. This pin is configurable to function as one of the following:

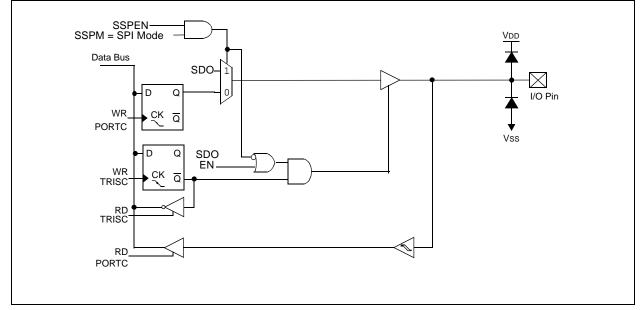
- General purpose I/O
- SPI data output

6.4.7 RC6/TX/CK

Figure 6-19 shows the diagram for this pin. This pin is configurable to function as one of the following:


- General purpose I/O
- Asynchronous serial output
- Synchronous clock I/O

6.4.8 RC7/RX/DT


Figure 6-20 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- · Asynchronous serial input
- Synchronous serial data I/O

FIGURE 6-17: BLOCK DIAGRAM OF RC4

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Refer to Section 9.3 "A/D Acquisition Requirements".

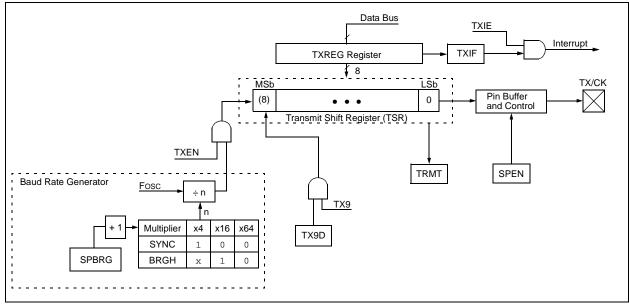
EXAMPLE 9-1: A/D CONVERSION

;This code block configures the ADC ;for polling, Vdd reference, Frc clock ;and ANO input. ;

;Conversion start & polling for completion ; are included.

;		
BANKSEL	ADCON1	;
MOVLW	B'01110000'	;ADC Frc clock,
		;VDD reference
MOVWF	ADCON1	;
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RA0 to input
BANKSEL	ANSELA	;
BSF	ANSELA,0	;Set RA0 to analog
BANKSEL	ADCON0	;
MOVLW	B'0000001'	;AN0, On
MOVWF	ADCON0	;
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRES	;
MOVF	ADRES,W	;Read result
MOVWF	RESULT	;store in GPR space

16.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (AUSART)


The Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The AUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The AUSART module includes the following capabilities:

- Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Sleep operation

Block diagrams of the AUSART transmitter and receiver are shown in Figure 16-1 and Figure 16-2.

FIGURE 16-1: AUSART TRANSMIT BLOCK DIAGRAM

16.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit of the PIR1 register will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE bit of the PIE1 register was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

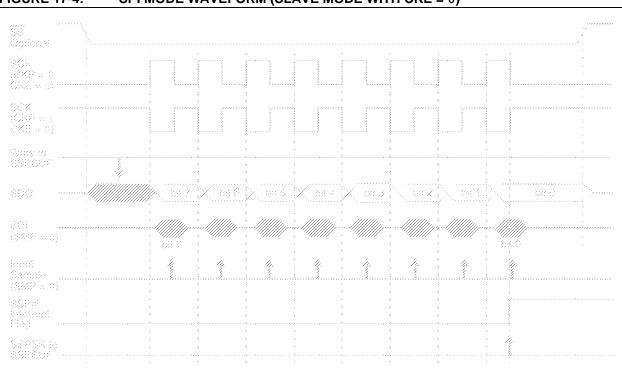
16.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit of the PIR1 register will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 16-5: ASYNCHRONOUS RECEPTION Start Start Star bit 7/8/ Stop Stop RX/DT pin bit ΄bit 0 🗙 bit 1 (bit 7/8/ bit 7/8/ Stop bit bit bit 0 bit bit Rcv Shift Reg → Rcv Buffer Reg Word 2 RCREG Word 1 RCREG Read Rcv Buffer Reg RCREG RCIF (Interrupt Flag) OFRR bit CREN This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, Note: causing the OERR (overrun) bit to be set.

		SYNC = 0, BRGH = 0											
BAUD	Fosc	; = 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	= 16.000	00 MHz	Fosc	= 11.059	92 MHz	
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	va		Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300		_	_		_	_	—	—	—		_	_	
1200	1221	1.73	255	1200	0.00	239	1201	0.08	207	1200	0.00	143	
2400	2404	0.16	129	2400	0.00	119	2403	0.16	103	2400	0.00	71	
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17	
10417	10417	0.00	29	10286	-1.26	27	10416	-0.01	23	10165	-2.42	16	
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8	
57.6k	—	—	_	57.60k	0.00	7	—	—	_	57.60k	0.00	2	
115.2k	—	_	—	_	_	—	_	—	—	—	—	—	


TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

						SYNC = 0,	BRGH = 0)				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	_
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	_	_
10417	10417	0.00	11	10417	0.00	5	—	_	_	—	_	_
19.2k	—	_	_	—	_	_	19.20k	0.00	2	—	_	_
57.6k	—	_	—	—	—	—	57.60k	0.00	0	—	_	—
115.2k		—	—		_	—		_	—		—	—

						SYNC = 0,	BRGH = 2	L				
BAUD	Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 16.0000 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		_			_	_	—	—	—	—	_
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	—	_	_	_	_	_	_	_	—	—	—	_
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.8k	2.12	16	57.60k	0.00	11
115.2k	113.64k	-1.36	10	115.2k	0.00	9	—	_	_	115.2k	0.00	5

				_		SYNC = 0,	BRGH = 1	1				
BAUD	Fosc = 8.000 MHz		Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		—	_	_	_		_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	—	_	_	—	—	115.2k	0.00	1	_	—	_

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

FIGURE 17-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

SS SCK (CKP = 0 $\dot{C}KE = 1)$ SCK (CKP = 1 CKE = 1) Write to SSPBUF bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 SDO bit '7 bit 3 ï SDI (SMP = 0)I bit 0 bit 7 Input Sample (SMP = 0)SSPIF Interrupt Flag SSPSR to SSPBUF 1 . i

FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

REGISTER 17-5:	SSPMSK: SSP MASK REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	MSK<7:1>: Mask bits
	1 - The received add

1 = The received address bit n is compared to SSPADD <n> to detect I</n>	
0 = The received address bit n is not used to detect I ² C address match	۱

bit 0 MSK<0>: Mask bit for I²C Slave Mode, 10-bit Address

I²C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):

1 = The received address bit '0' is compared to SSPADD<0> to detect I^2C address match

0 = The received address bit '0' is not used to detect I²C address match

All other SSP modes: this bit has no effect.

REGISTER 17-6: SSPADD: SSP I²C ADDRESS REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD7 | ADD6 | ADD5 | ADD4 | ADD3 | ADD2 | ADD1 | ADD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADD<7:0>: Address bits Received address

TABLE 17-7: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	36
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
SSPBUF	SPBUF Synchronous Serial Port Receive Buffer/Transmit Register								147
SSPADD	Synchronous	Serial Por	t (I ² C mode	e) Address F	Register				155
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	164
SSPMSK ⁽²⁾	SSPMSK ⁽²⁾ Synchronous Serial Port (I ² C mode) Address Mask Register								166
SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF	165
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

2: Accessible only when SSPM < 3:0 > = 1001.

21.0 INSTRUCTION SET SUMMARY

The PIC16(L)F722A/723A instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 21-1, while the various opcode fields are summarized in Table 21-1.

Table 21-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

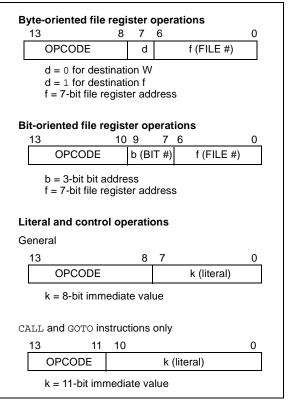
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

21.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTB instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended consequence of clearing the condition that set the RBIF flag.

TABLE 21-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 21-1: GENERAL FORMAT FOR INSTRUCTIONS

© 2010-2016 Microchip Technology Inc.

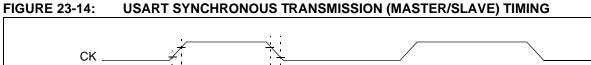
22.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

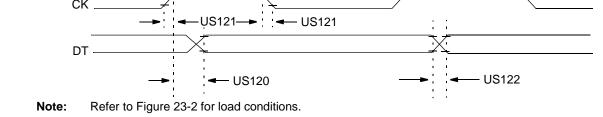
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

22.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

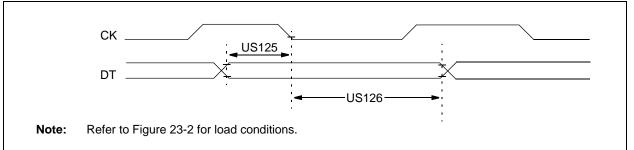


TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

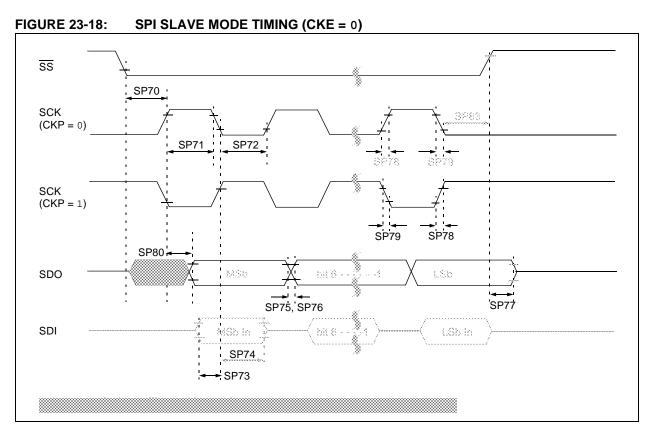

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions				
US120	TCKH2DTV	SYNC XMIT (Master and Slave) Clock high to data-out valid	3.0-5.5V	_	80	ns					
			1.8-5.5V		100	ns					
US121	TCKRF	Clock out rise time and fall time (Master mode)	3.0-5.5V	—	45	ns					
			1.8-5.5V	—	50	ns					
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns					
			1.8-5.5V	—	50	ns					

FIGURE 23-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

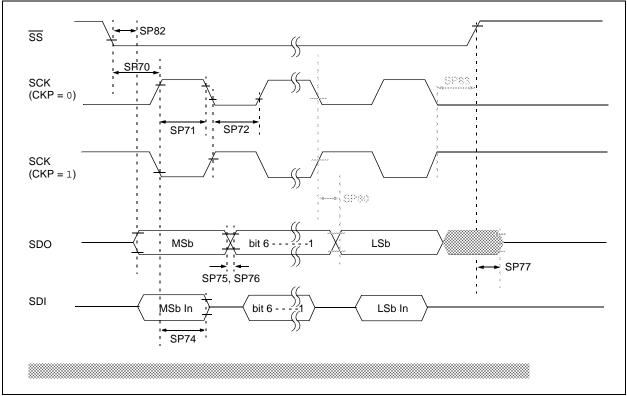
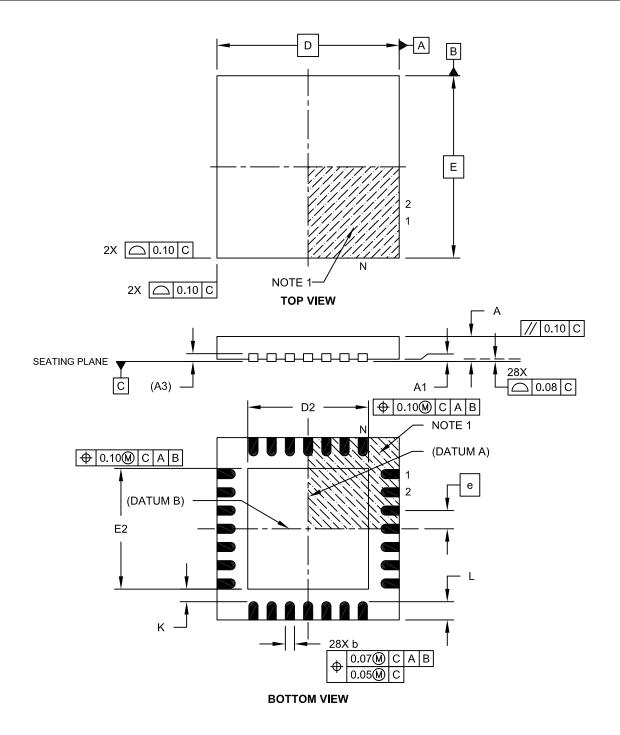


TABLE 23-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions				
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns					
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns					



28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2