

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722a-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.4.1 RC0/T1OSO/T1CKI

Figure 6-13 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Timer1 oscillator output
- Timer1 clock input

6.4.2 RC1/T1OSI/CCP2

Figure 6-14 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Timer1 oscillator input
- Capture 2 input, Compare 2 output, and PWM2 output

Note: CCP2 pin location may be selected as RB3 or RC1.

6.4.3 RC2/CCP1

Figure 6-15 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Capture 1 input, Compare 1 output, and PWM1 output

6.4.4 RC3/SCK/SCL

Figure 6-16 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI clock
- I²C clock

6.4.5 RC4/SDI/SDA

Figure 6-17 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI data input
- I²C data I/O

6.4.6 RC5/SDO

Figure 6-18 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- SPI data output

6.4.7 RC6/TX/CK

Figure 6-19 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- Asynchronous serial output
- Synchronous clock I/O

6.4.8 RC7/RX/DT

Figure 6-20 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose I/O
- · Asynchronous serial input
- Synchronous serial data I/O

	TABLE 6-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
--	------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	—	—	—	—	—	SSSEL	CCP2SEL	42
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	115
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	62
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	134
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	152
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	153
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	103
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	133
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

6.5 **PORTE and TRISE Registers**

PORTE⁽¹⁾ is an 1-bit wide, input-only port. RE3 is inputonly and its TRIS bit will always read as '1'.

Reading the PORTE register (Register 6-12) reads the status of the pins. RE3 reads '0' when MCLRE = 1.

REGISTER 6-12: PORTE: PORTE REGISTER

U-0	U-0	U-0	U-0	R-x	U-0	U-0	U-0
—	—	—	—	RE3	—	—	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	0 = Port pin is < VIL
	1 = Port pin is > VIH
bit 3	RE3: PORTE I/O Pin bits ⁽¹⁾
bit 7-4	Unimplemented: Read as '0'

REGISTER 6-13: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	R-1	U-0	U-0	U-0
_	—	_	—	TRISE3	_	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-4	Unimplemented: Read as '0'
bit 3	TRISE3: RE3 Port Tri-state Control bit
	This bit is always '1' as RE3 is an input-only
bit 2-0	Unimplemented: Read as '0'

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	—	—	-	—	RE3	—	—	—	69
TRISE	—	—		—	TRISE3 ⁽¹⁾	—	—	—	69

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE

Note 1: This bit is always '1' as RE3 is input-only.

FIGURE 12-6:	TIMER1 GATE SINGLE-PULSE MODE	
TMR1GE		
T1GPOL		
T1GSPM		
T1GGO <u>/</u> DONE	← Set by software ←	Cleared by hardware on falling edge of T1GVAL
T1G_IN	rising edge of T1G	
T1CKI		
T1GVAL		
TIMER1	N N + 1	N + 2
TMR1GIF	Cleared by software	- Set by hardware on falling edge of T1GVAL

12.12 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 12-2, is used to control Timer1 gate.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0	
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	
bit 7		L		I		•	bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function								
bit 6	TIGPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active law (Timer1 counts when gate is high)							
bit 5	T1GTM: Time	er1 Gate Toggle	Mode bit	0	,			
	1 = Timer1 G 0 = Timer1 G Timer1 gate fl	ate Toggle mo ate Toggle mo lip-flop toggles	de is enabled. de is disabled a on every rising	and toggle flip 1 edge.	flop is cleared			
bit 4	T1GSPM: Tin	ner1 Gate Sing	le Pulse Mode	bit				
	1 = Timer1 G 0 = Timer1 G	ate Single-Pul	se mode is ena se mode is disa	abled and is co abled	ontrolling Timer	1 gate		
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit			
	 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started This bit is automatically cleared when T1GSPM is cleared 							
bit 2	T1GVAL: Tim	er1 Gate Curre	ent State bit					
	Indicates the Unaffected by	current state of Timer1 Gate I	the Timer1 ga Enable (TMR10	ite that could b GE).	be provided to T	rmr1H:TMR1L		
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits				
	T1GSS<1:0>: Timer1 Gate Source Select bits 00 = Timer1 gate pin 01 = Timer0 Overflow output 10 = TMR2 Match PR2 output 11 = Watchdog Timer scaler overflow Watchdog Timer oscillator is turned on if TMR1GE = 1, regardless of the state of TMR1ON							

REGISTER 12-2: T1GCON: TIMER1 GATE CONTROL REGISTER

	-		_						
U-0	R/W	V-0	R/W-0	R/W-0	R/W-0	R/W-	0 R.	/W-0	R/W-0
	TOUT	PS3	TOUTPS2	TOUTPS1	TOUTPSO) TMR20	ON T2C	CKPS1	T2CKPS0
bit 7									bit 0
Legend:									
R = Reada	able bit	V	V = Writable	bit	U = Unimpl	emented bit	, read as '0	,	
-n = Value	at POR	'1	l' = Bit is set		'0' = Bit is c	leared	x = B	it is unknov	wn
bit 7 bit 6-3	Unimp TOUTP 0000 = 0010 = 0010 = 0100 = 0101 = 0110 = 1000 = 1011 = 1010 = 1101 = 1100 =	lemente PS<3:0>: = 1:1 Po: = 1:2 Po: = 1:3 Po: = 1:4 Po: = 1:5 Po: = 1:6 Po: = 1:7 Po: = 1:7 Po: = 1:10 Po: = 1:10 Po: = 1:12	d: Read as ' Timer2 Out stscaler stscaler stscaler stscaler stscaler stscaler stscaler stscaler stscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler	^{0'} out Postscaler	Select bits				
bit 2	TMR2C 1 = Tin 0 = Tin	DN: Time ner2 is O ner2 is O	er2 On bit On Off						
bit 1-0	T2CKP $00 = F$ $01 = F$ $1x = F$	PS<1:0>: Prescaler Prescaler Prescaler	Timer2 Cloc r is 1 r is 4 r is 16	k Prescale Se			2		
TABLE 1	3-1: SUM	IWARY		1EKS ASSO			2		Deviation
Manua	D:1 7			D:/ 4	D:/ 0		D:4 4		Register

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	36
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PR2	Timer2 Mod	dule Period F	Register						106
TMR2	Holding Register for the 8-bit TMR2 Register								106
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

14.0 CAPACITIVE SENSING MODULE

The capacitive sensing module allows for an interaction with an end user without a mechanical interface. In a typical application, the capacitive sensing module is attached to a pad on a printed circuit board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the capacitive sensing module. The capacitive sensing module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple timer resources
- Software control
- · Operation during Sleep

FIGURE 14-1: CAPACITIVE SENSING BLOCK DIAGRAM

14.6 Operation During Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts. One way to acquire the Timer1 counts while in Sleep is to have Timer1 gated with the overflow of the Watchdog Timer. This can be accomplished using the following steps:

- 1. Configure the Watchdog Time-out overflow as the Timer1's gate source T1GSS<1:0> = 11.
- 2. Set Timer1 gate to toggle mode by setting the T1GTM bit of the T1GCON register.
- 3. Set the TMR1GE bit of the T1GCON register.
- 4. Set TMR1ON bit of the T1CON register.
- 5. Enable capacitive sensing module with the appropriate current settings and pin selection.
- 6. Clear Timer1.
- 7. Put the part to Sleep.
- 8. On the first WDT overflow, the capacitive sensing oscillator will begin to increment Timer1. Then put the part to Sleep.
- 9. On the second WDT overflow Timer1 will stop incrementing. Then run the software routine to determine if a frequency change has occurred.

Refer to Section 12.0 "Timer1 Module with Gate Control" for additional information.

- Note 1: When using the WDT to set the interval on Timer1, any other source that wakes the part up early will cause the WDT overflow to be delayed, affecting the value captured by Timer1.
 - 2: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

16.1.1.4 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

16.1.1.5 Transmitting 9-Bit Characters

The AUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the AUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. Refer to **Section 16.1.2.7** "**Address Detection**" for more information on the Address mode.

16.1.1.6 Asynchronous Transmission Setup:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (Refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 7. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 16-3: ASYNCHRONOUS TRANSMISSION

16.3.1.4 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the AUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit of the PIR1 register is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are un-read characters in the receive FIFO.

16.3.1.5 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/ CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

16.3.1.6 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register.

16.3.1.7 Receiving 9-bit Characters

The AUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set, the AUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

Address detection in Synchronous modes is not supported, therefore the ADDEN bit of the RCSTA register must be cleared.

16.3.1.8 Synchronous Master Reception Setup:

- 1. Initialize the SPBRG register for the appropriate baud rate. Set or clear the BRGH bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCIF of the PIR1 register will be set when reception of a character is complete. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit, which resets the AUSART.

FIGURE 17-2: SPI MODE BLOCK DIAGRAM

REGISTER 18-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	_	PMA12	PMA11	PMA10	PMA9	PMA8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PMA<12:8>:** Program Memory Read Address bits

REGISTER 18-5: PMADRL: PROGRAM MEMORY ADDRESS LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMA7 | PMA6 | PMA5 | PMA4 | PMA3 | PMA2 | PMA1 | PMA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMA<7:0>:** Program Memory Read Address bits

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY READ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	Reserved		—	—	—	—	—	RD	168
PMADRH	—	_	_	Program I	Memory Re	ad Address	s Register I	High Byte	169
PMADRL	ORL Program Memory Read Address Register Low Byte								169
PMDATH	—		Program I	rogram Memory Read Data Register High Byte					
PMDATL	ATL Program Memory Read Data Register Low Byte							168	

Legend: x = unknown, u = unchanged, – = unimplemented, read as '0'. Shaded cells are not used by the Program Memory Read.

23.5 Thermal Considerations

Standar Operatir	d Operating	Conditions (unless otherwise stated) re $-40^{\circ}C \le TA \le +125^{\circ}C$			
Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60.0	°C/W	28-pin SPDIP package
			69.7	°C/W	28-pin SOIC package
			71.0	°C/W	28-pin SSOP package
			52.5	°C/W	28-pin UQFN 4x4mm package
			30.0	°C/W	28-pin QFN 6x6mm package
TH02	θJC	Thermal Resistance Junction to Case	29.0	°C/W	28-pin SPDIP package
			18.9	°C/W	28-pin SOIC package
			24.0	°C/W	28-pin SSOP package
			16.7	°C/W	28-pin UQFN 4x4mm package
			5.0	°C/W	28-pin QFN 6x6mm package
TH03	TJMAX	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	—	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	PDER	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

23.6 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	case letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	t0	ТОСКІ
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 23-2: LOAD CONDITIONS

25.1 Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN (63) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC [®] designator (€3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

25.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		.100 BSC				
Top to Seating Plane	Α	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	_	-			
Shoulder to Shoulder Width	Е	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	-	.430			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

^{© 2010-2016} Microchip Technology Inc.

NOTES: