

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf722at-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time out is invoked after POR has expired, then OST is activated after the PWRT time out has expired. The total time out will vary based on oscillator configuration and \overrightarrow{PWRTE} bit status. For example, in EC mode with \overrightarrow{PWRTE} bit = 1 (\overrightarrow{PWRT} disabled), there will be no time-out at all. Figure 3-4, Figure 3-5 and Figure 3-6 depict time-out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC16(L)F722A/723A device operating in parallel.

Table 3-3 shows the Reset conditions for some special registers.

3.7 Power Control (PCON) Register

The Power Control (PCON) register has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is \overrightarrow{BOR} (Brown-out Reset). \overrightarrow{BOR} is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overrightarrow{BOR} = 0$, indicating that a brown-out has occurred. The \overrightarrow{BOR} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.5 "Brown-Out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP ⁽¹⁾	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT		TPWRT	_	—

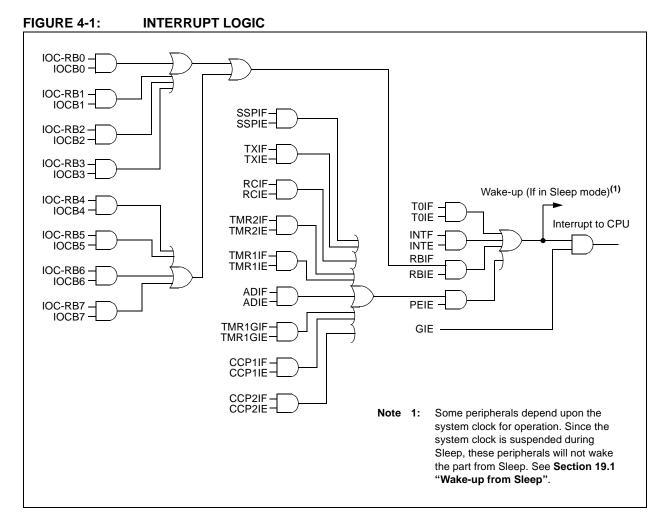
TABLE 3-2: TIME OUT IN VARIOUS SITUATIONS

Note 1: LP mode with T1OSC disabled.

TABLE 3-3: RESET BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown


4.0 INTERRUPTS

The PIC16(L)F722A/723A device family features an interruptible core, allowing certain events to preempt normal program flow. An Interrupt Service Routine (ISR) is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

The PIC16(L)F722A/723A device family has 12 interrupt sources, differentiated by corresponding interrupt enable and flag bits:

- Timer0 Overflow Interrupt
- External Edge Detect on INT Pin Interrupt
- PORTB Change Interrupt
- Timer1 Gate Interrupt
- A/D Conversion Complete Interrupt
- AUSART Receive Interrupt
- AUSART Transmit Interrupt
- SSP Event Interrupt
- CCP1 Event Interrupt
- Timer2 Match with PR2 Interrupt
- Timer1 Overflow Interrupt
- CCP2 Event Interrupt

A block diagram of the interrupt logic is shown in Figure 4-1.

4.5.5 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 4-5.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear prior
	to enabling an interrupt.

REGISTER 4-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	-	—	—	_	CCP2IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture Mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare Mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

TABLE 4-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	36
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	19
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIE2	_	_	-	—	_	_	_	CCP2IE	38
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PIR2	_	_	_	_	_	_	_	CCP2IF	40

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM.

PIC16(L)F722A/723A

FIGURE 12-7:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GTM	
T1GG <u>O/</u> DONE	← Set by software Cleared by hardware on falling edge of T1GVAL Counting enabled on riging edge of T1C
T1G_IN	rising edge of T1G
Т1СКІ	
T1GVAL	
TIMER1	N N + 1 N + 2 N + 3 N + 4
TMR1GIF	Set by hardware on Cleared by software falling edge of T1GVAL

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R/W-0
CPSON	_	—	_	CPSRNG1	CPSRNG0	CPSOUT	TOXCS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	1 = Capacitiv	acitive Sensing e sensing mod	ule is operat	ing			
	•	•		ff and consumes	s no operating c	urrent	
bit 6-4	Unimplement	ted: Read as '0)'				
bit 3-2	00 = Oscillato 01 = Oscillato 10 = Oscillato	or is Off. or is in low rang or is in medium	e. Charge/di range. Char	illator Range bit ischarge current ge/discharge cu discharge currer	t is nominally 0. Irrent is nomina	lly 1.2 μΑ.	
bit 1	1 = Oscillator	Ų	rrent (Currer	Status bit ht flowing out the flowing into the	· /		
bit 0	If TOCS = 1 The TOXCS b 1 = Timer0 C 0 = Timer0 C If TOCS = 0	lock Source is lock Source is	h clock exter the capacitiv the T0CKI pi	rnal to the core/ e sensing oscill	ator):

REGISTER 14-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

LOISTER							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit (
Legend:	1.5						
R = Readable		W = Writable		•	nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	Unimplemen	ted: Read as '	0'				
	Capture mode Unused Compare mod Unused <u>PWM mode:</u> These bits are	<u>de:</u>	of the PWM c	luty cycle. The	eight MSbs are	e found in CCP	RxL.
bit 3-0	0000 = Captu 0001 = Unus 0010 = Comp 0011 = Unus 0100 = Captu 0101 = Captu 0110 = Captu 0111 = Captu 1000 = Comp 1001 = Comp 1010 = Comp 1011 = Comp	ed (reserved) pare mode, tog ed (reserved) ure mode, even ure mode, even ure mode, even pare mode, even pare mode, set pare mode, cle pare mode, gen coare mode, gen pare mode, trig A/D conversion	WM Off (reset gle output on y falling edge y rising edge y 4th rising ed y 16th rising ed output on ma ar output on ma herate softward ted)	ts CCP module match (CCPxIF dge tch (CCPxIF bit atch (CCPxIF bit e interrupt on m vent (CCPxIF b the ADC modu	of the PIRx of the PIRx re bit of the PIRx hatch (CCPxIF	egister is set) register is set) bit is set of the register is set.	PIRx registe

REGISTER 15-1: CCPxCON: CCPx CONTROL REGISTER

Note 1: A/D conversion start feature is available only on CCP2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/ DONE	ADON	85
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53
APFCON	_	_	_	_	_	—	SSSEL	CCP2SEL	42
CCP1CON			DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	115
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115
CCPRxL	Capture/Co	mpare/PWN	I Register >	Low Byte					116
CCPRxH	Capture/Co	mpare/PWN	I Register >	K High Byte					116
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	36
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIE2	_	_	_	_	_		_	CCP2IE	38
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PIR2	_	_	_	_	_		_	CCP2IF	40
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC		TMR1ON	103
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	104
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						99		
TMR1H	Holding Re	gister for the	Most Signi	ificant Byte	of the 16-bit	TMR1 Reg	gister		99
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62

TABLE 15-4:	SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

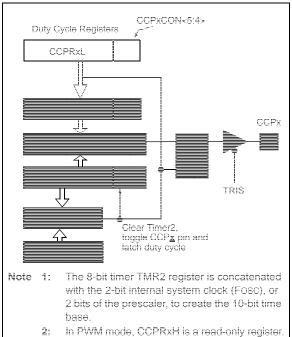

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

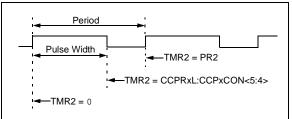
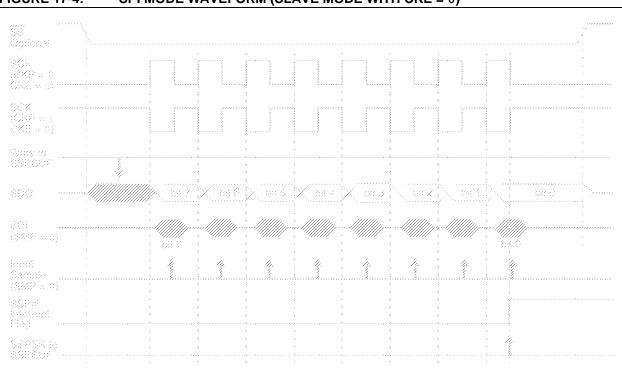

For a step-by-step procedure on how to set up the CCP module for PWM operation, refer to **Section 15.3.8** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT


15.3.1 CCPX PIN CONFIGURATION

In PWM mode, the CCPx pin is multiplexed with the PORT data latch. The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note:	Clearing	the	CCPxCON	register	will				
	relinquish CCPx control of the CCPx pin.								

PIC16(L)F722A/723A

FIGURE 17-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

SS SCK (CKP = 0 $\dot{C}KE = 1)$ SCK (CKP = 1 CKE = 1) Write to SSPBUF bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 SDO bit '7 bit 3 ï SDI (SMP = 0)I bit 0 bit 7 Input Sample (SMP = 0)SSPIF Interrupt Flag SSPSR to SSPBUF 1 . i

FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	44
APFCON	—	—	_	_	—	_	SSSEL	CCP2SEL	42
INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	36
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PR2	Timer2 Period Register								106
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register							147	
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	152
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	153
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	43
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	62
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

18.0 PROGRAM MEMORY READ

The Flash program memory is readable during normal operation over the full VDD range of the device. To read data from program memory, five Special Function Registers (SFRs) are used:

- PMCON1
- PMDATL
- PMDATH
- PMADRL
- PMADRH

The value written to the PMADRH:PMADRL register pair determines which program memory location is read. The read operation will be initiated by setting the RD bit of the PMCON1 register. The program memory Flash controller takes two instructions to complete the read. As a consequence, after the RD bit has been set, the next two instructions will be ignored. To avoid conflict with program execution, it is recommended that the two instructions following the setting of the RD bit are NOP. When the read completes, the result is placed in the PMDATLH:PMDATL register pair. Refer to Example 18-1 for sample code.

Note: Code-protect does not effect the CPU from performing a read operation on the program memory. For more information, refer to **Section 8.2 "Code Protection"**

EXAMPLE 18-1: PROGRAM MEMORY READ

BANKSEL PMADRL ; MOVE MS PROG ADDR, W; MOVWF PMADRH ;MS Byte of Program Address to read MOVF LS_PROG_ADDR, W; MOVWF PMADRL ;LS Byte of Program Address to read BANKSEL PMCON1 ; BSF PMCON1, RD; Initiate Read Required NOP NOP ;Any instructions here are ignored as program ;memory is read in second cycle after BSF BANKSEL PMDATL ; MOVF PMDATL, W;W = LS Byte of Program Memory Read MOVWF LOWPMBYTE; MOVF PMDATH, W;W = MS Byte of Program Memory Read MOVWF HIGHPMBYTE;

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DC CH	IARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
$ \begin{array}{ c $		Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
D030 D030A with TTL buffer 0.8 V 4.5V ≤ VDD ≤ 5.5V D031 with Schmitt Trigger buffer with I ² C levels 0.15 VDD V 1.8V ≤ VDD ≤ 4.5V D032 MCLR, OSC1 (RC mode) ⁽¹⁾ 0.2 VDD V 2.0V ≤ VDD ≤ 5.5V D033A OSC1 (HS mode) 0.3 VDD V D040 OSC1 (HS mode) 0.3 VDD V D040 VH Input High Voltage V 4.5V ≤ VDD ≤ 5.5V D040 with TTL buffer 2.0 V 4.5V ≤ VDD ≤ 5.5V D041 with Schmitt Trigger buffer with I ² C levels 0.8 VDD V 1.8V ≤ VDD ≤ 5.5V D042 OSC1 (HS mode) 0.7 VDD V 2.0V ≤ VDD ≤ 5.5V D043B OSC1 (HC mode) 0.9 VDD V 1.8V ≤ VDD ≤ 5.5V D043B IncLaR(3) ± 5 ± 1000 n	١	VIL	Input Low Voltage								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I/O PORT:								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D030A			—		0.15 Vdd	V	$1.8V \le V \text{DD} \le 4.5V$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D031		with Schmitt Trigger buffer	—		0.2 Vdd	V	$2.0V \le V \text{DD} \le 5.5 \text{V}$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			with I ² C levels	—		0.3 Vdd	V				
Virit Input High Voltage V 4.5V \leq VDD \leq 5.5V D040 with TTL buffer 2.0 V 4.5V \leq VDD \leq 5.5V D041 with TTL buffer 2.0 V 4.5V \leq VDD \leq 5.5V D041 with Schmitt Trigger buffer 0.8 VDD V 1.8V \leq VDD \leq 5.5V D042 MCLR 0.8 VDD V 2.0V \leq VDD \leq 5.5V D043A OSC1 (HS mode) 0.7 VDD V 2.0V \leq VDD \leq 5.5V D043B OSC1 (HS mode) 0.9 VDD V 2.0V \leq VDD, Pin at high impediance, 85°C D043B OSC1 (HS mode) 0.9 VDD - - V (Note 1) D043B IIL Input Leakage Current ⁽²⁾ - \pm 50 \pm 1000 nA VSS \leq VPIN \leq VDD, 85°C D060 IPUR PORTB Weak Pull-up Current - \pm 50 \pm 1000 nA VDS \leq 5.0V, VPIN $=$ VSS D	D032		MCLR, OSC1 (RC mode) ⁽¹⁾		_	0.2 Vdd	V				
D040 I/O ports: with TTL buffer V 4.5V ≤ VbD ≤ 5.5V D041 with TTL buffer 0.25 VbD + V $1.8V \le VbD \le 5.5V$ D041 with Schmitt Trigger buffer with I ² C levels 0.8 VbD V $1.8V \le VbD \le 5.5V$ D042 MCLR 0.8 VbD V $2.0V \le VbD \le 5.5V$ D043 OSC1 (HS mode) 0.7 VbD V $0.0V \le VbD \le 5.5V$ D0438 OSC1 (RC mode) 0.7 VbD V $0.0V \le VbD \le 5.5V$ D0438 IIL Input Leakage Current(2) 0.7 VbD - V $0.0V \le 5.5V$ D060 IIL Input Leakage Current(2) 0.9 VbD - - V $(Note 1)$ D060 IVCR ⁽³⁾ - ± 5 ± 1000 nA $VSS \le VPIN \le VbD, Pin at higt impedance, 85°C D060 IVCR(3) - \pm 5 \pm 1000 nA VSS \le VPIN \le VbD, $	D033A		OSC1 (HS mode)		_	0.3 Vdd	V				
D040 with TTL buffer 2.0 $ V$ $4.5V \le VDD \le 5.5V$ D041 with Schmitt Trigger buffer with 1 ² C levels $0.25 VDD +$ $ V$ $1.8V \le VDD \le 5.5V$ D042 MCLR $0.8 VDD$ $ V$ $2.0V \le VDD \le 5.5V$ D043 OSC1 (HS mode) $0.7 VDD$ $ V$ D043B OSC1 (RC mode) $0.9 VDD$ $ V$ D043B OSC1 (RC mode) $0.9 VDD$ $ V$ (Note 1) D040 Input Leakage Current(²) $ \pm 5$ ± 1000 nA VSS $\le VPIN \le VDD$, Pin at high impedance, $8^{SC}C$ D061 IPUR IPUR PORTB Weak Pull-up Current $ \pm 50$ ± 200 nA VSS $\le VPIN \le VDD, 8^{SC}C$ D070* IPUR PORTB Weak Pull-up Current $ 0.6$ V IoL = $8 mA, VDD = 5V$ D080 VoL Output Low Voltage ⁽⁴⁾ $VDD - 0.7$ $ -$ <td< td=""><td>\</td><td>Vih</td><td>Input High Voltage</td><td></td><td></td><td></td><td></td><td></td></td<>	\	Vih	Input High Voltage								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I/O ports:		_	_					
D041 with Schmitt Trigger buffer with $ ^2$ C levels 0.8 D042 MCLR 0.8 VDD V 2.0V \leq VDD \leq 5.5V D043A OSC1 (HS mode) 0.7 VDD V D043B OSC1 (RC mode) 0.7 VDD V D043B OSC1 (RC mode) 0.9 VDD V D043B ILL Input Leakage Current(2) V D060 MCLR(3) \pm 50 \pm 1000 nA VSS \leq VPIN \leq VDD, Pin at high impedance, 85°C D061 MCLR(3) \pm 50 \pm 200 nA VSS \leq VPIN \leq VDD, 85°C D070* IPUR PORTB Weak Pull-up Current VDD $=$ 3.3V, VPIN $=$ VSS D080 Vol Output Low Voltage ⁽⁴⁾ D090 VOH Output High Voltage ⁽⁴⁾	D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D040A				—	-	V	$1.8V \leq V\text{DD} \leq 4.5V$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D041		with Schmitt Trigger buffer	0.8 VDD		—	V	$2.0V \le V \text{DD} \le 5.5 V$			
D043A D043BOSC1 (HS mode) OSC1 (RC mode) $0.7 \ VDD$ $ V$ D043BOSC1 (RC mode) $0.9 \ VDD$ $ V$ (Note 1)D060IIL II/O portsInput Leakage Current(2) V V V (Note 1)D061Input Leakage Current(2) $ \pm 5$ ± 125 nA V (SS $\leq V$ PIN $\leq V$ DD, Pin at high impedance, 85°CD061MCLR(3) $ \pm 5$ ± 1000 nA V SS $\leq V$ PIN $\leq V$ DD, 85°CD070*PORTB Weak Pull-up Current 25 100 200 A V SS $\leq V$ PIN $\leq V$ DD, 85°CD070*Vol.Output Low Voltage(4) 25 100 200 μA V DD $= 3.3V, V$ PIN $= V$ SSD080Vol.Output Low Voltage(4) $ 0.6$ V $IOL = 8 \ mA, VDD = 5V$ $IOL = 6 \ mA, VDD = 3.3V$ $IOL = 1.8 \ mA, VDD = 1.8V$ D090VOHOutput High Voltage(4) V $IOH = 3.5 \ mA, VDD = 5V$ $IOL = 3 \ mA, VDD = 3.3V$ $IOH = 1 \ mA, VDD = 1.8V$ D101*COSC2OSC2 pin $ 15$ pF $In XT, HS \ and LP \ modes \ wheexternal clock is used to driveOSC1D101*CioAll I/O pins 50pF$			with I ² C levels	0.7 VDD	_	—	V				
D043BOSC1 (RC mode) 0.9 VDD $ V$ (Note 1)D060IILInput Leakage Current ⁽²⁾ D060 VO ports $ \pm 5$ ± 125 nAVSS \leq VPIN \leq VDD, Pin at high impedance, 85°CD061MCLR ⁽³⁾ $ \pm 5$ ± 1000 nA125°CD061MCLR ⁽³⁾ $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, 85°CD070*PORTB Weak Pull-up Current 255 140 300 μ AVDD = 3.3V, VPIN $=$ VSSD070*Vol.Output Low Voltage ⁽⁴⁾ VDD 200 μ AVDD = 5.0V, VPIN $=$ VSSD080Vol.Output Low Voltage ⁽⁴⁾ $ 0.6$ V IOL = 8 mA, VDD $= 5V$ D080VOHOutput High Voltage ⁽⁴⁾ $ 0.6$ V IOL = 8 mA, VDD $= 5V$ D090VOHOutput High Voltage ⁽⁴⁾ $ 0.6$ V IOL = 8 mA, VDD $= 5V$ D101*COSC2OSC2 pin $ V$ IOH $= 3.5$ mA, VDD $= 5V$ D101*CioAll I/O pins $ 15$ pFIn XT, HS and LP modes whe external clock is used to drive OSC1D101A*CioAll I/O pins $ 50$ pF	D042		MCLR	0.8 VDD	_	—	V				
IIL D060Input Leakage Current ⁽²⁾ Input Leakage Current ⁽²⁾ D061I/O ports $ \pm 5$ ± 125 nAVSS \leq VPIN \leq VDD, Pin at high impedance, 85°CD061MCLR ⁽³⁾ $ \pm 5$ ± 1000 nA125°CD061MCLR ⁽³⁾ $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, 85°CD070*PORTB Weak Pull-up CurrentVDD 25 100200 μ AVDD = 3.3V, VPIN $=$ VSSD070*VolOutput Low Voltage ⁽⁴⁾ VDD 25 140300 μ AVDD = 5.0V, VPIN $=$ VSSD080VolOutput Low Voltage ⁽⁴⁾ $ 0.6$ VIOL = 8 mA, VDD = 5VD080I/O ports $ 0.6$ VIOL = 6 mA, VDD = 3.3VD090VOHOutput High Voltage ⁽⁴⁾ $VDD - 0.7$ $ -$ VIOH = 3.5 mA, VDD = 5VD091I/O portsVDD - 0.7 $ -$ VIOH = 3.5 mA, VDD = 5VD101*COSC2OSC2 pin $ -$ 15pFIn XT, HS and LP modes whe external clock is used to drive OSC1D1014*CioAll I/O pins $ -$ 50pF	D043A		OSC1 (HS mode)	0.7 VDD	_	—	V				
D060 VO ports $ \pm 5$ ± 125 nA $VSS \le VPIN \le VDD$, Pin at high impedance, 85°C 125°CD061 $MCLR^{(3)}$ $ \pm 5$ ± 1000 nA $VSS \le VPIN \le VDD$, 85°CD070* $PORTB$ Weak Pull-up Current ± 50 ± 200 nA $VSS \le VPIN \le VDD$, 85°CD070* $PORTB$ Weak Pull-up Current 25 100 200 μA $VDD = 3.3V, VPIN = VSS$ D070* VOL $Output Low Voltage^{(4)}$ VDD 250 μA $VDD = 5.0V, VPIN = VSS$ D080 VOL $Output Low Voltage^{(4)}$ $ 0.6$ V $IOL = 8$ mA, VDD = 5VD080 I/O ports $ 0.6$ V $IOL = 8$ mA, VDD = 5VD080 I/O ports $ 0.6$ V $IOL = 8$ mA, VDD = 5VD090 I/O ports $ 0.6$ V $IOL = 8$ mA, VDD = 5VD090 I/O ports $VDD - 0.7$ $ V$ $IOH = 3.5$ mA, VDD = 5VD101* $COSC2$ $COSC2$ $OSC2$ pin $ 15$ pF In XT, HS and LP modes whe external clock is used to drive OSC1D101A*CioAll I/O pins $ 50$ pF	D043B			0.9 Vdd		—	V	(Note 1)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	lı∟	Input Leakage Current ⁽²⁾	•		•		·			
D061 $\overline{\text{MCLR}^{(3)}}$ $ \pm 50$ ± 200 nA $\text{VSS} \leq \text{VPIN} \leq \text{VDD}, 85^{\circ}\text{C}$ D070*IPUR PORTB Weak Pull-up Current 25 100200 μA $\text{VDD} = 3.3\text{V}, \text{VPIN} = \text{VSS}$ D070* VOL Output Low Voltage ⁽⁴⁾ 25 140300 μA $\text{VDD} = 5.0\text{V}, \text{VPIN} = \text{VSS}$ D080 VOL Output Low Voltage ⁽⁴⁾ $ 0.6$ V $IOL = 8 \text{ mA}, \text{VDD} = 5V$ D080 VOH Output High Voltage ⁽⁴⁾ $ 0.6$ V $IOL = 6 \text{ mA}, \text{VDD} = 3.3V$ D090 VOH Output High Voltage ⁽⁴⁾ $VDD - 0.7$ $ V$ $IOH = 3.5 \text{ mA}, \text{VDD} = 5V$ D090 VOH Output High Voltage ⁽⁴⁾ $VDD - 0.7$ $ V$ $IOH = 3.5 \text{ mA}, \text{VDD} = 5V$ D101* $COSC2$ $OSC2 \text{ pin}$ $ 15$ pF $In XT, HS \text{ and } LP modes whe external clock is used to drive OSC1D101A*CIOAll I/O pins 50pF$	D060		I/O ports	—	± 5		nA				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							nA				
D070*25100200VDD = 3.3V, VPIN = VSSD080VOLOutput Low Voltage(4) 300 μA VDD = 5.0V, VPIN = VSSD080VOLI/O ports $ 0.6$ VIOL = 8 mA, VDD = 5VD090VOHOutput High Voltage(4) $ 0.6$ VIOL = 6 mA, VDD = 3.3VD090VOHOutput High Voltage(4) $ 0.6$ VIOH = 3.5 mA, VDD = 5VD090VOHOutput High Voltage(4) $VD - 0.7$ $ V$ IOH = 3.5 mA, VDD = 5VD090VOHOutput High Voltage(5)VDD - 0.7 $ V$ IOH = 3.5 mA, VDD = 5VD101*COSC2OSC2 pin $ -$ 15pFIn XT, HS and LP modes whe external clock is used to drive OSC1D101A*CIOAll I/O pins $ -$ 50pF	D061			—	± 50	± 200	nA	$VSS \le VPIN \le VDD, 85^{\circ}C$			
$\frac{1}{10000000000000000000000000000000000$	1	IPUR	PORTB Weak Pull-up Current								
VOL D080Output Low Voltage(4)I/O portsI/O portsVOH D090Output High Voltage(4)VOH I/O portsOutput High Voltage(4)I/O portsVDD - 0.7I/O portsVDD - 0.7I/O portsVDD - 0.7IOL = 3 mA, VDD = 3.3V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8VD101*COSC2OSC2 pinD101A*CioAll I/O pinsD101A*CioAll I/O pinsD101A*All I/O pinsD101A*CioD101A*All I/O pinsD101A*CioD101A*All I/O pinsD101A*CioD101A*Ci	D070*						.				
D080I/O ports0.6VIOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8VD090VOHOutput High Voltage ⁽⁴⁾ VIOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 5V IOH = 3 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8VD101*COSC2OSC2 pin15pFIn XT, HS and LP modes whe external clock is used to drive OSC1D101A*CioAll I/O pins50pF			A (4)	25	140	300	μA	VDD = 5.0V, VPIN = VSS			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VOL		I			l				
VOH Output High Voltage ⁽⁴⁾ D090 I/O ports VDD - 0.7 - V IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V D101* COSC2 OSC2 pin - - 15 pF In XT, HS and LP modes whe external clock is used to drive OSC1 D101A* Cio All I/O pins - - 50 pF	D080		I/O ports	—	—	0.6	V	IOL = 6 mA, VDD = 3.3 V			
$\frac{V \text{DD} - 0.7}{\text{DT} - \frac{1}{10000000000000000000000000000000000$	Vон D090	Voн	Output High Voltage ⁽⁴⁾								
D101* COSC2 DSC2 pin 15 pF In XT, HS and LP modes where the external clock is used to drive OSC1 OSC1 OSC1 OSC1 OSC1 OSC1 OSC1 OSC1			I/O ports	Vdd - 0.7		_	V	IOH = 3 mA, VDD = 3.3V			
D101* COSC2 OSC2 pin — — 15 pF In XT, HS and LP modes whe external clock is used to drive OSC1 D101A* CIO All I/O pins — — 50 pF											
	D101* (COSC2		-		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
Program Flash Memory	D101A*	Сю	All I/O pins	_	—	50	pF				
			Program Flash Memory	11				1			

23.4 DC Characteristics: PIC16(L)F722A/723A-I/E

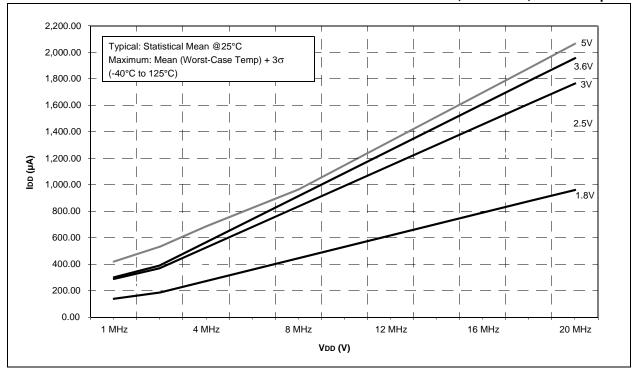
Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

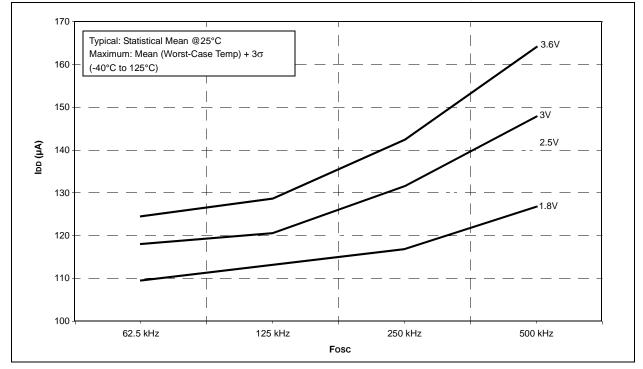
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.


3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.


24.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25 °C. "Maximum" or "minimum" represents (mean + 3 σ) or (mean - 3 σ) respectively, where σ is a standard deviation, over the whole temperature range.

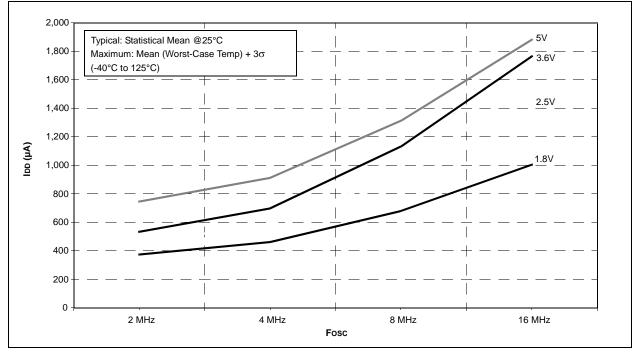


FIGURE 24-1: PIC16F722A/723A MAXIMUM IDD vs. Fosc OVER VDD, EC MODE, VCAP = 0.1µF

FIGURE 24-20: PIC16LF722A/723A MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE

FIGURE 24-21: PIC16F722A/723A MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP = 0.1µF

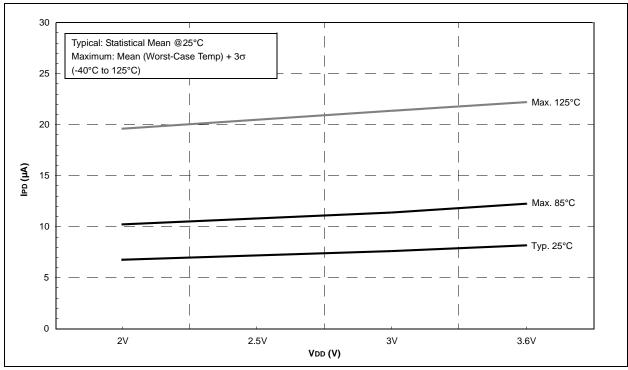
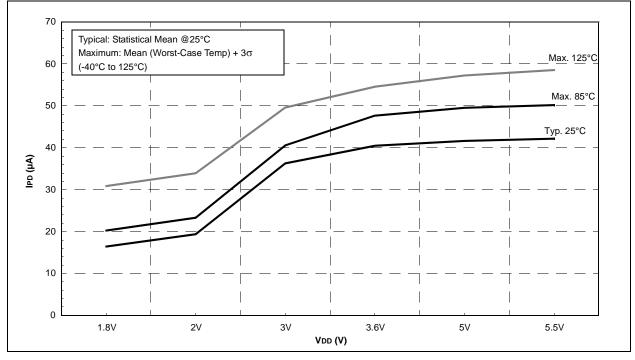
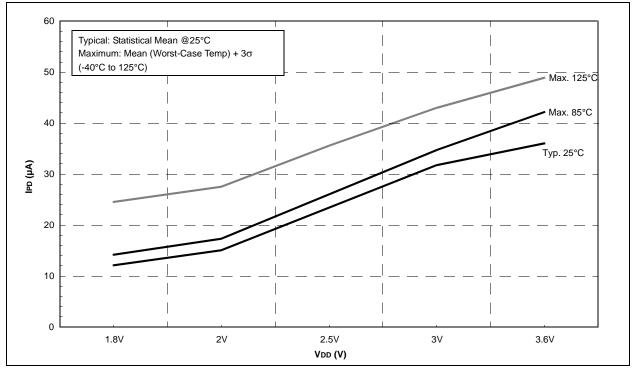
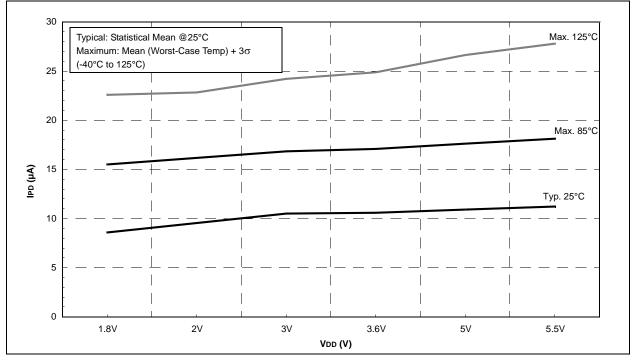




FIGURE 24-34: PIC16LF722A/723A BOR IPD vs. VDD



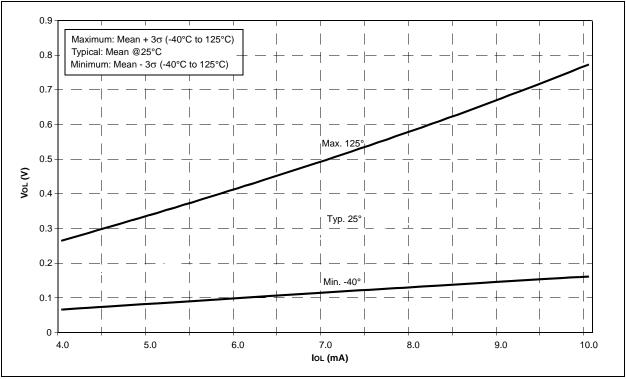
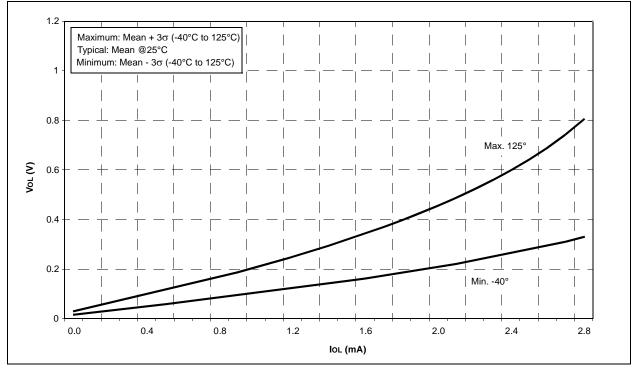
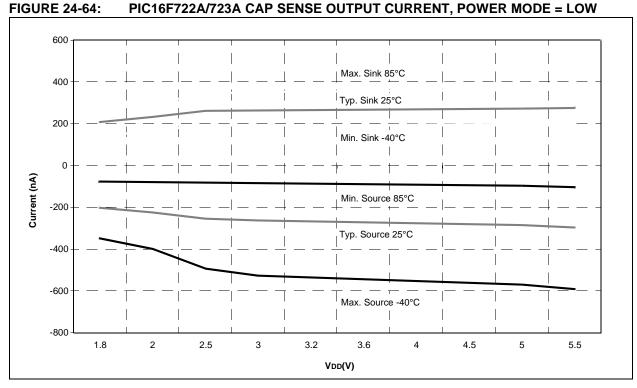
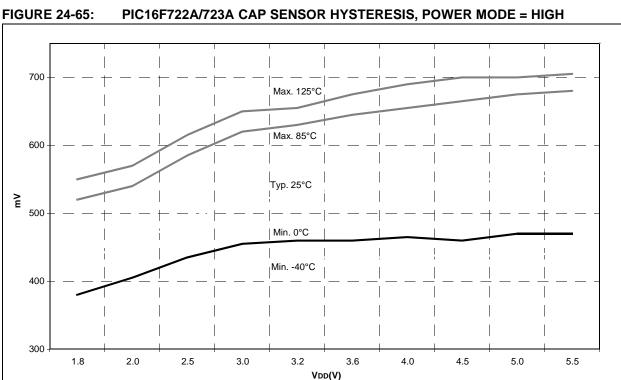
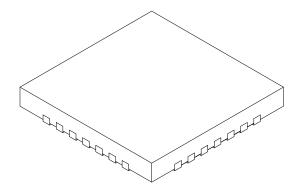


FIGURE 24-36: PIC16LF722A/723A CAP SENSE HIGH POWER IPD vs. VDD








PIC16(L)F722A/723A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

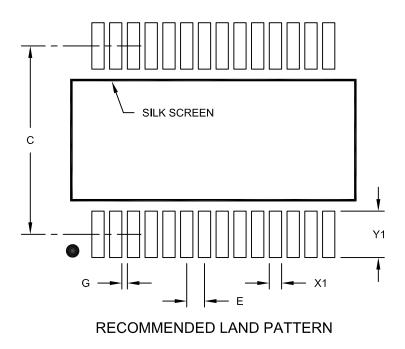
	Units	1	MILLIMETER	S	
Dimens	Dimension Limits		NOM	MAX	
Number of Pins	N	28			
Pitch	е	0.40 BSC			
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.55	2.65	2.75	
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.55	2.65	2.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch		0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A