

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf723a-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F72X Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Flash Memory (bytes)	ا/O's ⁽²⁾	8-bit ADC (ch)	CapSense (ch)	Timers (8/16-bit)	AUSART	SSP (I ² C/SPI)	CCP	Debug ⁽¹⁾	ХLР
PIC16(L)F707	(1)	8192	363	0	36	14	32	4/2	1	1	2	Ι	Y
PIC16(L)F720	(2)	2048	128	128	18	12	_	2/1	1	1	1	I	Y
PIC16(L)F721	(2)	4096	256	128	18	12		2/1	1	1	1	Ι	Y
PIC16(L)F722	(4)	2048	128	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F722A	(3)	2048	128	0	25	11	8	2/1	1	1	2	Ι	Y
PIC16(L)F723	(4)	4096	192	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F723A	(3)	4096	192	0	25	11	8	2/1	1	1	2	Ι	Y
PIC16(L)F724	(4)	4096	192	0	36	14	16	2/1	1	1	2	Ι	Y
PIC16(L)F726	(4)	8192	368	0	25	11	8	2/1	1	1	2	I	Y
PIC16(L)F727	(4)	8192	368	0	36	14	16	2/1	1	1	2	Ι	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, Requires Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS41418 PIC16(L)F707 Data Sheet, 40/44-Pin Flash, 8-bit Microcontrollers
- 2: DS41430 PIC16(L)F720/721 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers
- 3: DS41417 PIC16(L)F722A/723A Data Sheet, 28-Pin Flash, 8-bit Microcontrollers
- 4: DS41341 PIC16(L)F72X Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers

TABLE 1-1: PIC16F722A/723A PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description				
RB5/AN13/CPS5/T1G	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.				
	AN13	AN	_	A/D Channel 13 input.				
	CPS5	AN	_	Capacitive sensing input 5.				
	T1G	ST	_	Timer1 gate input.				
RB6/ICSPCLK/ICDCLK	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.				
	ICSPCLK	ST	—	Serial Programming Clock.				
	ICDCLK	ST	—	In-Circuit Debug Clock.				
RB7/ICSPDAT/ICDDAT	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.				
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.				
	ICDDAT	ST	—	In-Circuit Data I/O.				
RC0/T1OSO/T1CKI	RC0	ST	CMOS	General purpose I/O.				
	T1OSO	XTAL	XTAL	Timer1 oscillator connection.				
	T1CKI	ST	—	Timer1 clock input.				
RC1/T1OSI/CCP2	RC1	ST	CMOS	General purpose I/O.				
	T1OSI	XTAL	XTAL	Timer1 oscillator connection.				
	CCP2	ST	CMOS	Capture/Compare/PWM2.				
RC2/CCP1	RC2	ST	CMOS	General purpose I/O.				
	CCP1	ST	CMOS	Capture/Compare/PWM1.				
RC3/SCK/SCL	RC3	ST	CMOS	General purpose I/O.				
	SCK	ST	CMOS	SPI clock.				
	SCL	l ² C	OD	I ² C clock.				
RC4/SDI/SDA	RC4	ST	CMOS	General purpose I/O.				
	SDI	ST	_	SPI data input.				
	SDA	I ² C	OD	I ² C data input/output.				
RC5/SDO	RC5	ST	CMOS	General purpose I/O.				
	SDO	—	CMOS	SPI data output.				
RC6/TX/CK	RC6	ST	CMOS	General purpose I/O.				
	ТΧ	_	CMOS	USART asynchronous transmit.				
	СК	ST	CMOS	USART synchronous clock.				
RC7/RX/DT	RC7	ST	CMOS	General purpose I/O.				
	RX	ST	-	USART asynchronous input.				
	DT	ST	CMOS	USART synchronous data.				
RE3/MCLR/VPP	RE3	TTL	—	General purpose input.				
	MCLR	ST	—	Master Clear with internal pull up.				
	Vpp	HV	—	Programming voltage.				
VDD	Vdd	Power		Positive supply.				
Vss	Vss	Power	—	Ground reference.				
Legend: AN = Analog input or out TTL = TTL compatible inp HV = High Voltage	put CMO out ST XTAI	S = CM = Sch = Crv	OS compa mitt Trigge	atible input or outputOD= Open Drainer input with CMOS levels I^2C = Schmitt Trigger input with I^2C				

Note: The PIC16F722A/723A devices have an internal low dropout voltage regulator. An external capacitor must be connected to one of the available VCAP pins to stabilize the regulator. For more information, see **Section 5.0 "Low Dropout (LDO) Voltage Regulator**". The PIC16LF722A/723A devices do not have the voltage regulator and therefore no external capacitor is required.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page	
Bank 0												
00h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	memory (no	t a physical r	egister)	xxxx xxxx	22,30	
01h	TMR0	Timer0 Mod	lule Register							XXXX XXXX	91,30	
02h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Signific	cant Byte					0000 0000	21,30	
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30	
04h ⁽²⁾	FSR	Indirect Dat	a Memory A	ddress Point	er					XXXX XXXX	22,30	
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	43,30	
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	52,30	
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	62,30	
09h	PORTE	_	_	_	_	RE3	_	_	_	xxxx	69,30	
0Ah ^(1, 2)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the	Program Cou	unter	0 0000	21,30	
0Bh ⁽²⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30	
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	39,30	
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	40,30	
0Eh	TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								99,30	
0Fh	TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1 Register			XXXX XXXX	99,30	
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	103,30	
11h	TMR2	Timer2 Mod	lule Register							0000 0000	106,30	
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	107,30	
13h	SSPBUF	Synchronou	is Serial Por	t Receive Bu	uffer/Transmit	Register				XXXX XXXX	147,30	
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	164,30	
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	.SB)					XXXX XXXX	116,30	
16h	CCPR1H	Capture/Co	mpare/PWM	Register (N	ISB)					xxxx xxxx	116,30	
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	115,30	
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	134,30	
19h	TXREG	USART Tra	nsmit Data F	Register						0000 0000	133,30	
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	131,30	
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register 2	(LSB)					XXXX XXXX	116,30	
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register 2	(MSB)					xxxx xxxx	116,30	
1Dh	CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	115,30	
1Eh	ADRES	A/D Result	Register							xxxx xxxx	86,30	
1Fh	ADCON0	_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	85,30	

	DIC16/LIE722A/723A SPECIAL EUNCTION PEO	
IADLE Z-I:	PICIO(L)F/22A//23A SPECIAL FUNCTION REC	JOIER JUNINART

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0> = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

2.2.2.2 **OPTION** register

The OPTION register, shown in Register 2-2, is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler
- External RB0/INT interrupt
- Timer0
- Weak pull ups on PORTB

Note: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to '1'. Refer to Section 12.3 "Timer1 Prescaler".

bit 0

REGISTER 2-	2: OPTIO	N_REG: OP	TION REGIS	TER			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							b

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit									
	1 = PORTB pull ups are disabled									
	0 = PORTB pull ups are enabled by individual bits in the WPUB register									
bit 6	INTEDG: Interrupt Edge Select bit									
	1 = Interrupt on rising edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pin									
bit 5	TOCS: Timer0 Clock Source Select bit									
	1 = Transition on RA4/T0CKI pin0 = Internal instruction cycle clock (Fosc/4)									
bit 4	T0SE: Timer0 Source Edge Select bit									
	1 = Increment on high-to-low transition on RA4/T0CKI pin									
	0 = Increment on low-to-high transition on RA4/T0CKI pin									
bit 3	PSA: Prescaler Assignment bit									
	1 = Prescaler is assigned to the WDT									
	0 = Prescaler is assigned to the Timer0 module									
bit 2-0	PS<2:0>: Prescaler Rate Select bits									
	Bit Value Timer0 Rate WDT Rate									
	000 1:2 1:1									
	101 1:64 1:32									
	110 1:128 1:64									
	111 1:256 1:128									

6.0 I/O PORTS

There are as many as thirty-five general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

6.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 6-1. For this device family, the following functions can be moved between different pins:

- SS (Slave Select)
- CCP2

REGISTER 6-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SSSEL	CCP2SEL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'.
bit 1	SSSEL: SS Input Pin Selection bit
	0 = <u>SS</u> function is on RA5/AN4/CPS7/SS/VCAP 1 = <u>SS</u> function is on RA0/AN0/SS/VCAP
bit 0	CCP2SEL: CCP2 Input/Output Pin Selection bit
	0 = CCP2 function is on RC1/T1OSI/CCP2 1 = CCP2 function is on RB3/CCP2

12.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

12.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured
- TMR1GIE bit of the T1GCON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

12.9 CCP Capture/Compare Time Base

The CCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 15.0 "Capture/ Compare/PWM (CCP) Module".

12.10 CCP Special Event Trigger

When the CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized to the Fosc/4 to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 9.2.5 "Special Event Trigger".

FIGURE 12-3: TIMER1 INCREMENTING EDGE

	-		_						
U-0	R/W	V-0	R/W-0	R/W-0	R/W-0	R/W-	0 R.	/W-0	R/W-0
	TOUT	PS3	TOUTPS2	TOUTPS1	TOUTPSO) TMR20	ON T2C	CKPS1	T2CKPS0
bit 7									bit 0
Legend:									
R = Reada	able bit	V	V = Writable	bit	U = Unimpl	emented bit	, read as '0	,	
-n = Value	at POR	'1	l' = Bit is set		'0' = Bit is c	leared	x = B	it is unknov	wn
bit 7 bit 6-3	Unimp TOUTP 0000 = 0010 = 0010 = 0100 = 0101 = 0110 = 1000 = 1011 = 1010 = 1101 = 1100 =	lemente PS<3:0>: = 1:1 Po: = 1:2 Po: = 1:3 Po: = 1:4 Po: = 1:5 Po: = 1:6 Po: = 1:7 Po: = 1:7 Po: = 1:10 Po: = 1:10 Po: = 1:12	d: Read as ' Timer2 Out stscaler stscaler stscaler stscaler stscaler stscaler stscaler stscaler stscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler ostscaler	^{0'} out Postscaler	Select bits				
bit 2	TMR2C 1 = Tin 0 = Tin	DN: Time ner2 is O ner2 is O	er2 On bit On Off						
bit 1-0	T2CKP $00 = F$ $01 = F$ $1x = F$	PS<1:0>: Prescaler Prescaler Prescaler	Timer2 Cloc r is 1 r is 4 r is 16	k Prescale Se			2		
TABLE 1	3-1: SUM	IWARY		1EKS ASSO			2		Deviation
Manua	D:1 7			D:/ 4	D:/ 0		D:4 4		Register

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	36
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	37
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39
PR2	Timer2 Module Period Register							106	
TMR2	Holding Register for the 8-bit TMR2 Register						106		
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	107

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

15.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

The timer resources used by the module are shown in Table 15-1.

Additional information on CCP modules is available in the Application Note *AN594, Using the CCP Modules* (DS00594).

TABLE 15-1: CCP MODE – TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Same TMR1 time base
Capture	Compare	Same TMR1 time base ^(1, 2)
Compare	Compare	Same TMR1 time base ^(1, 2)
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges will be aligned.
PWM	Capture	None
PWM	Compare	None

TABLE 15-2: INTERACTION OF TWO CCP MODULES

Note 1: If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on the CCP2 pin.

2: If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1, affecting the value captured on the CCP1 pin.

Note:	CCPRx	and	CCPx	throughout	this
	documer	nt refer	to CCP	R1 or CCPR2	and
	CCP1 or CCP2, respectively.				

						SYNC = 0,	BRGH =	1		_			
BALID	Fosc = 8.000 MHz			Fos	c = 4.000) MHz	Foso	Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_				_		_	300	0.16	207	
1200		—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	—	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	—	
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—	—	
115.2k	—	—	—	—	—	—	115.2k	0.00	1	—	—	—	

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

17.2.5 RECEPTION

When the R/\overline{W} bit of the received address byte is clear, the master will write data to the slave. If an address match occurs, the received address is loaded into the SSPBUF register. An address byte overflow will occur if that loaded address is not read from the SSPBUF before the next complete byte is received.

An SSP interrupt is generated for each data transfer byte. The BF, R/\overline{W} and D/\overline{A} bits of the SSPSTAT register are used to determine the status of the last received byte.

FIGURE 17-10: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

R/V	$\overline{V} = 0$	
Receiving Address	ACK Receiving Data ACK Receiving Data ACK / D7\D6\D5\D4\D3\D2\D1\D0\ /D7\D6\D5\D4\D3\D2\D1\D0\ /D7\D6\D5\D4\D3\D2\D1\D0\ \	
SSPIF	Cleared in software	Bus Master sends Stop
BF	 SSPBUF register is read 	condition
SSPOV		
	Bit SSPOV is set because the SSPBUF register is still full.	
	ACK is not sent.	

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION F
	Before Instruction
	OPTION = 0xFF
	W = 0x4F
	After Instruction
	OPTION = 0x4F
	VV = 0x4F

MOVLW	Move literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
Example:	MOVLW 0x5A					
	After Instruction W = 0x5A					

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RETFIE	Return from Interrupt	RET
Syntax:	[label] RETFIE	Syn
Operands:	None	Оре
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$	Оре
Status Affected:	None	Stat
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.	Des
Words:	1	Сус
Cycles:	2	<u>Exa</u>
Example:	RETFIE	
	After Interrupt PC = TOS GIE = 1	TAB

RETLW	Return with literal in W				
Syntax:	[<i>label</i>] RETLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$				
Status Affected:	None				
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	CALL TABLE;W contains table				
TABLE	<pre>;offset value ;W now has table value ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>				
RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS \rightarrow PC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion.				

22.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

22.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

22.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

22.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 23-7: PIC16F722A/723A A/D CONVERTER (ADC) CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	_	—	8	bit		
AD02	EIL	Integral Error	_	—	±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error			±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	—	—	±2.2	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	—	_	±1.5	LSb	VREF = 3.0V	
AD06	Vref	Reference Voltage ⁽³⁾	1.8	_	Vdd	V		
AD07	VAIN	Full-Scale Range	Vss		Vref	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	50	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

- 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
- **3:** When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 23-8: PIC16F722A/723A A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.0	9.0 6.0	μs μs	Tosc-based ADCS<1:0> = 11 (ADRC mode)	
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	10.5	_	TAD	Set GO/DONE bit to conversion complete	
AD132*	TACQ	Acquisition Time	_	1.0		μS		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700		_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	—		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	_	ns	After this period, the first	
		Hold time	400 kHz mode	600	—	_		clock pulse is generated	
SP92*	TSU:STO	Stop condition	100 kHz mode	4700	—		ns		
		Setup time	400 kHz mode	600		_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600	_				

TABLE 23-12: I²C BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

FIGURE 24-12: PIC16LF722A/723A TYPICAL IDD vs. Fosc OVER VDD, HS MODE

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units			MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX				
Number of Pins	Ν	28						
Pitch	е	0.65 BSC						
Overall Height	А	-	-	2.00				
Molded Package Thickness	A2	1.65	1.75	1.85				
Standoff	A1	0.05	-	-				
Overall Width	E	7.40	7.80	8.20				
Molded Package Width	E1	5.00 5.30		5.60				
Overall Length	D	9.90	10.20	10.50				
Foot Length	L	0.55	0.75	0.95				
Footprint	L1	1.25 REF						
Lead Thickness	С	0.09	-	0.25				
Foot Angle	φ	0°	4°	8°				
Lead Width	b	0.22	_	0.38				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B