

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf723a-i-mv

Email: info@E-XFL.COM

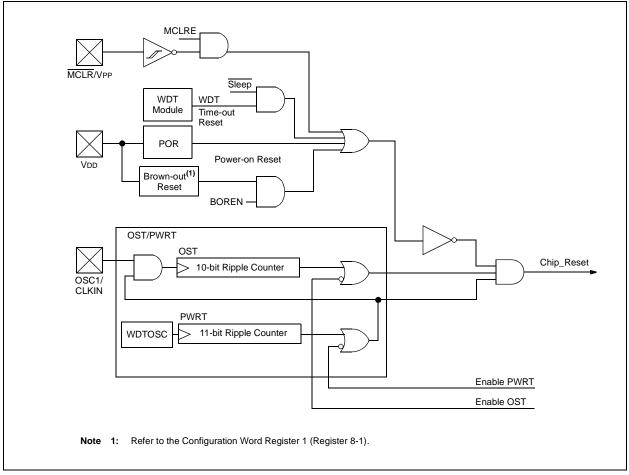
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 RESETS

The PIC16(L)F722A/723A differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- Power-on Reset (POR)
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 3-3. These bits are used in software to determine the nature of the Reset.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 23.0** "**Electrical Specifications**" for pulse width specifications.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time out is invoked after POR has expired, then OST is activated after the PWRT time out has expired. The total time out will vary based on oscillator configuration and \overrightarrow{PWRTE} bit status. For example, in EC mode with \overrightarrow{PWRTE} bit = 1 (\overrightarrow{PWRT} disabled), there will be no time-out at all. Figure 3-4, Figure 3-5 and Figure 3-6 depict time-out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC16(L)F722A/723A device operating in parallel.

Table 3-3 shows the Reset conditions for some special registers.

3.7 Power Control (PCON) Register

The Power Control (PCON) register has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is \overrightarrow{BOR} (Brown-out Reset). \overrightarrow{BOR} is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overrightarrow{BOR} = 0$, indicating that a brown-out has occurred. The \overrightarrow{BOR} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.5 "Brown-Out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP ⁽¹⁾	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
RC, EC, INTOSC	TPWRT		TPWRT	_	—

TABLE 3-2: TIME OUT IN VARIOUS SITUATIONS

Note 1: LP mode with T1OSC disabled.

TABLE 3-3: RESET BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

IADLE 5-4.	INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)									
Register	Address	Power-on Reset/ Brown-out Reset ⁽¹⁾	MCLR Reset/ WDT Reset	Wake-up from Sleep through Interrupt/Time out						
PIE1	8Ch	0000 0000	0000 0000	սսսս սսսս						
PIE2	8Dh	0	0	u						
PCON	8Eh	dd	uu ^(1,5)	uu						
T1GCON	8Fh	0000 0x00	uuuu uxuu	uuuu uxuu						
OSCCON	90h	10 qq	10 qq	uu qq						
OSCTUNE	91h	00 0000	uu uuuu	uu uuuu						
PR2	92h	1111 1111	1111 1111	uuuu uuuu						
SSPADD	93h	0000 0000	0000 0000	uuuu uuuu						
SSPMSK	93h	1111 1111	1111 1111	uuuu uuuu						
SSPSTAT	94h	0000 0000	0000 0000	uuuu uuuu						
WPUB	95h	1111 1111	1111 1111	uuuu uuuu						
IOCB	96h	0000 0000	0000 0000	uuuu uuuu						
TXSTA	98h	0000 -010	0000 -010	uuuu -uuu						
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu						
APFCON	9Ch	00	00							
FVRCON	9Dh	d00000	d00000	uuuuuu						
ADCON1	9Fh	-00000	-00000	-uuuuu						
CPSCON0	108h	0 0000	0 0000	u uuuu						
CPSCON1	109h	0000	0000	uuuu						
PMDATL	10Ch	xxxx xxxx	XXXX XXXX	uuuu uuuu						
PMADRL	10Dh	xxxx xxxx	XXXX XXXX	սսսս սսսս						
PMDATH	10Eh	xx xxxx	xx xxxx	uu uuuu						
PMADRH	10Fh	x xxxx	x xxxx	u uuuu						
ANSELA	185h	11 1111	11 1111	uu uuuu						
ANSELB	186h	11 1111	11 1111	uu uuuu						
PMCON1	18Ch	10	10	uu						

TABLE 3-4:	INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)	
IADLL J-4.	INTIALIZATION CONDITION FOR REGISTERS (CONTINUED)	

 $\label{eq:logend:loge$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 3-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6.4 PORTC and TRISC Registers

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 6-11). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-3 shows how to initialize PORTC.

Reading the PORTC register (Register 6-10) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISC register (Register 6-11) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-3: INITIALIZING PORTC

BANKSEL PORTC	;
CLRF PORTC	;Init PORTC
BANKSEL TRISC	i
MOVLW B'000011	00' ;Set RC<3:2> as inputs
MOVWF TRISC	;and set RC<7:4,1:0>
	;as outputs

The location of the CCP2 function is controlled by the CCP2SEL bit in the APFCON register (refer to Register 6-1).

REGISTER 6-10: PORTC: PORTC REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
RC7	RC6	C6 RC5 RC4 RC3 RC2		RC1	RC0		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits

1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 6-11: TRISC: PORTC TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

14.5 Software Control

The software portion of the capacitive sensing module is required to determine the change in frequency of the capacitive sensing oscillator. This is accomplished by the following:

- Setting a fixed-time base to acquire counts on Timer0 or Timer1
- Establishing the nominal frequency for the capacitive sensing oscillator
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load
- Set the frequency threshold

14.5.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin
- At the start of the fixed-time base, clear the timer resource
- At the end of the fixed-time base, save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time base. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed-time base.

14.5.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the reduced frequency of the capacitive sensing oscillator:

- Add a typical capacitive load on the selected CPSx pin
- Use the same fixed-time base as the nominal frequency measurement
- At the start of the fixed-time base, clear the timer resource
- At the end of the fixed-time base, save the value in the timer resource

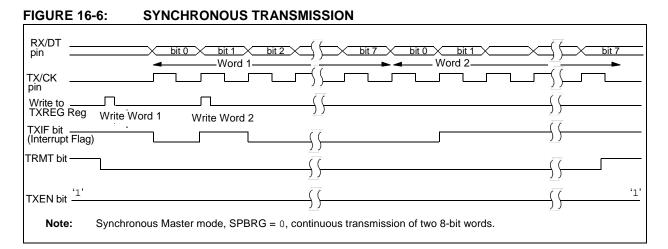
The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixedtime base. This frequency should be less than the value obtained during the nominal frequency measurement.

14.5.3 FREQUENCY THRESHOLD

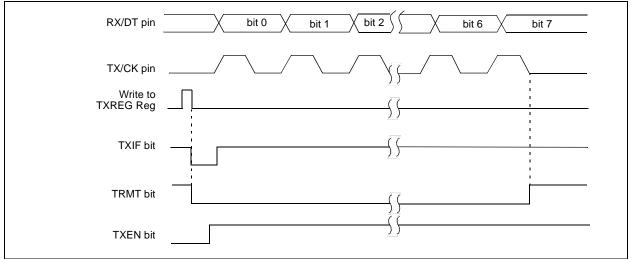
The frequency threshold should be placed midway between the value of nominal frequency and the reduced frequency of the capacitive sensing oscillator. Refer to Application Note *AN1103, Software Handling for Capacitive Sensing* (DS01103) for more detailed information the software required for capacitive sensing module.

Note: For more information on general capacitive sensing refer to Application Notes:

- •AN1101, Introduction to Capacitive Sensing (DS01101)
- •AN1102, Layout and Physical Design Guidelines for Capacitive Sensing (DS01102)


14.6 Operation During Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts. One way to acquire the Timer1 counts while in Sleep is to have Timer1 gated with the overflow of the Watchdog Timer. This can be accomplished using the following steps:


- 1. Configure the Watchdog Time-out overflow as the Timer1's gate source T1GSS<1:0> = 11.
- 2. Set Timer1 gate to toggle mode by setting the T1GTM bit of the T1GCON register.
- 3. Set the TMR1GE bit of the T1GCON register.
- 4. Set TMR1ON bit of the T1CON register.
- 5. Enable capacitive sensing module with the appropriate current settings and pin selection.
- 6. Clear Timer1.
- 7. Put the part to Sleep.
- 8. On the first WDT overflow, the capacitive sensing oscillator will begin to increment Timer1. Then put the part to Sleep.
- 9. On the second WDT overflow Timer1 will stop incrementing. Then run the software routine to determine if a frequency change has occurred.

Refer to Section 12.0 "Timer1 Module with Gate Control" for additional information.

- Note 1: When using the WDT to set the interval on Timer1, any other source that wakes the part up early will cause the WDT overflow to be delayed, affecting the value captured by Timer1.
 - 2: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

FIGURE 16-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 16-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	REG AUSART Transmit Data Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master transmission.

16.3.1.4 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the AUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit of the PIR1 register is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are un-read characters in the receive FIFO.

16.3.1.5 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/ CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

16.3.1.6 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register.

16.3.1.7 Receiving 9-bit Characters

The AUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set, the AUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

Address detection in Synchronous modes is not supported, therefore the ADDEN bit of the RCSTA register must be cleared.

16.3.1.8 Synchronous Master Reception Setup:

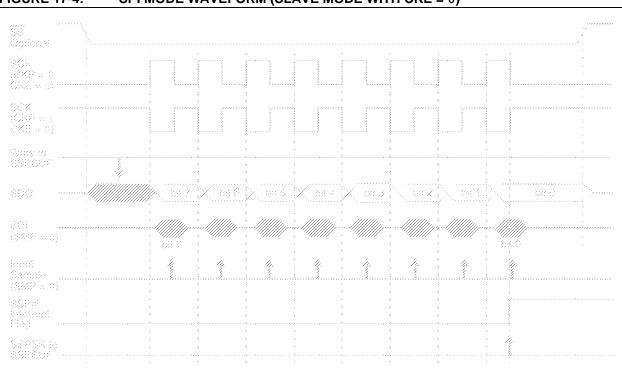

- 1. Initialize the SPBRG register for the appropriate baud rate. Set or clear the BRGH bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. Verify address detection is disabled by clearing the ADDEN bit of the RCSTA register.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCIF of the PIR1 register will be set when reception of a character is complete. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit, which resets the AUSART.

FIGURE 16-8:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)	
RX/DT pin	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin		
Write to bit SREN		
SREN bit	l	
CREN bit <u>'</u> 0'		ʻ0'
RCIF bit (Interrupt)		
Read RCREG		
Note: Timing d	iagram demonstrates Synchronous Master mode with bit SREN = 1 and bit BRGH = 0 .	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART R	eceive Data	a Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

FIGURE 17-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

SS SCK (CKP = 0 $\dot{C}KE = 1)$ SCK (CKP = 1 CKE = 1) Write to SSPBUF bit 6 bit 5 bit 4 bit 2 bit 1 bit 0 SDO bit '7 bit 3 ï SDI (SMP = 0)I bit 0 bit 7 Input Sample (SMP = 0)SSPIF Interrupt Flag SSPSR to SSPBUF 1 . i

FIGURE 17-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

REGISTER 18-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
Reserved	—	—I	—	—	—	—	RD
bit 7							bit 0

Legend:		S = Setable bit, cleared in hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7 Reserved: Read as '1'. Maintain this bit set.
bit 7 Reserved: Read as '1'. Maintain this bit set.

bit 6-1 Unimplemented: Read as '0'

bit 0 RD: Read Control bit

 1 = Initiates an program memory read (The RD is cleared in hardware; the RD bit can only be set (not cleared) in software).

0 = Does not initiate a program memory read

REGISTER 18-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
bit 7							bit 0
l egend.							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

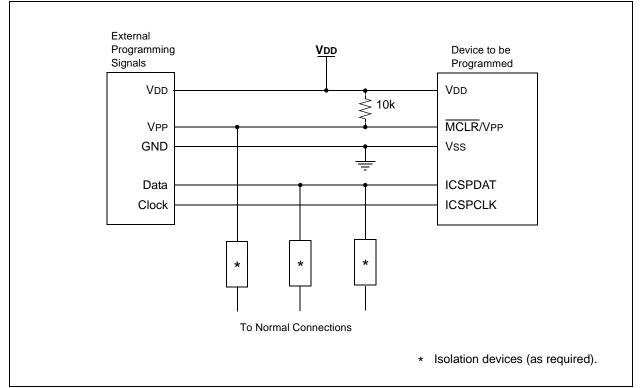
bit 5-0 **PMD<13:8>:** The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

REGISTER 18-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7 | PMD6 | PMD5 | PMD4 | PMD3 | PMD2 | PMD1 | PMD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMD<7:0>:** The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.


20.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

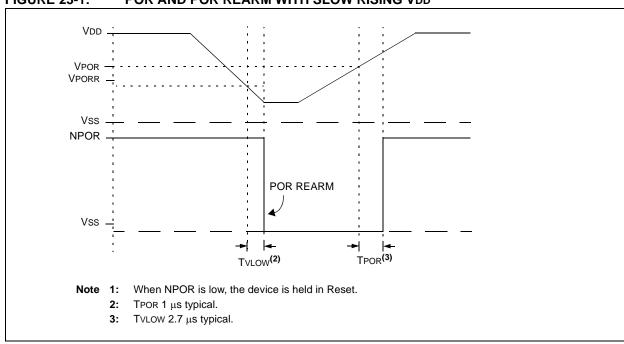
ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

The device is placed into Program/Verify mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP from 0v to VPP. In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ISCPCLK pin is the clock input. For more information on ICSPTM refer to the "PIC16(L)F72X Memory Programming Specification" (DS41332).

Note: The ICD 2 produces a VPP voltage greater than the maximum VPP specification of the PIC16(L)F722A/723A. When using this programmer, an external circuit, such as the AC164112 MPLAB ICD 2 VPP voltage limiter, is required to keep the VPP voltage within the device specifications.

FIGURE 20-1: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING


PIC16LF	722A/723	A	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$						
PIC16F722A/723A				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC16LF722A/723A	1.8 1.8 2.3 2.5		3.6 3.6 3.6 3.6	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D001		PIC16F722A/723A	1.8 1.8 2.3 2.5		5.5 5.5 5.5 5.5	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
		PIC16LF722A/723A	1.5		—	V	Device in Sleep mode		
D002*		PIC16F722A/723A	1.7	—	_	V	Device in Sleep mode		
	VPOR*	Power-on Reset Release Voltage		1.6	_	V			
	VPORR*	Power-on Reset Rearm Voltage							
		PIC16LF722A/723A		0.8	—	V	Device in Sleep mode		
		PIC16F722A/723A	_	1.7		V	Device in Sleep mode		
D003	Vfvr	Fixed Voltage Reference Voltage, Initial Accuracy	-5.5 -5.5 -5.5	 	5.5 5.5 5.5	% % %	$ \begin{array}{l} {\sf VFVR} = 1.024{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 85^{\circ}{\sf C} \end{array} $		
			-6 -6 -6		6 6 6	% % %	$ \begin{array}{l} V{\sf FVR} = 1.024{\sf V}, \ {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, \ {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, \ {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 125^{\circ}{\sf C} \end{array} $		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		—	V/ms	See Section 3.2 "Power-on Reset (POR)" for details.		

23.1 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

FIGURE 23-1: POR AND POR REARM WITH SLOW RISING VDD

23.3 DC Characteristics: PIC16(L)F722A/723A-I/E (Power-Down) (Continued)

PIC16LF722A/723A				r d Opera t ng temper		-40°C ≤	TA ≤ +85°	n erwise stated) ²C for industrial 5°C for extended	
PIC16F722A/723A				rd Operating temper		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions	
No.				+85°C	+125°C		VDD	Note	
	Power-down Base Current	(IPD) ⁽²⁾		-			-		
D027			0.06	0.7	5.0	μΑ	1.8	A/D Current (Note 1, Note 4), no	
		—	0.08	1.0	5.5	μΑ	3.0	conversion in progress	
D027			6	10.7	18	μΑ	1.8	A/D Current (Note 1, Note 4), no	
			7	10.6	20	μΑ	3.0	conversion in progress	
		—	7.2	11.9	22	μΑ	5.0		
D027A			250	400	—	μΑ	1.8	A/D Current (Note 1, Note 4),	
		—	250	400	—	μΑ	3.0	conversion in progress	
D027A			280	430	—	μΑ	1.8	A/D Current (Note 1, Note 4,	
			280	430	—	μΑ	3.0	Note 5), conversion in progress	
		—	280	430	—	μΑ	5.0		
D028		—	2.2	3.2	14.4	μA	1.8	Cap Sense Low Power	
		—	3.3	4.4	15.6	μA	3.0	Oscillator mode	
D028		_	6.5	13	21	μΑ	1.8	Cap Sense Low Power	
		—	8	14	23	μΑ	3.0	Oscillator mode	
		—	8	14	25	μΑ	5.0		
D028A			4.2	6	17	μA	1.8	Cap Sense Medium Power	
		—	6	7	18	μA	3.0	Oscillator mode	
D028A			8.5	15.5	23	μA	1.8	Cap Sense Medium Power	
		_	11	17	24	μΑ	3.0	Oscillator mode	
		_	11	18	27	μA	5.0		
D028B		_	12	14	25	μA	1.8	Cap Sense High Power	
			32	35	44	μA	3.0	Oscillator mode	
D028B		_	16	20	31	μA	1.8	Cap Sense High Power	
		_	36	41	50	μA	3.0	Oscillator mode	
			42	49	58	μΑ	5.0]	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.

4: A/D oscillator source is FRC.

5: 0.1 μ F capacitor on VCAP (RA0).

	DC CI	HARACTERISTICS		•	$-40^{\circ}C \le TA$	≤ +85°C	otherwise stated) c for industrial C for extended
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			—		0.15 Vdd	V	$1.8V \le V\text{DD} \le 4.5V$
D031		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C levels	—		0.3 Vdd	V	
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	—	_	0.2 Vdd	V	
D033A		OSC1 (HS mode)		_	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O ports:		_			
D040		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	-	V	$1.8V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer	0.8 Vdd	_	—	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C levels	0.7 Vdd	_	—	V	
D042		MCLR	0.8 Vdd		_	V	
D043A		OSC1 (HS mode)	0.7 Vdd		_	V	
D043B		OSC1 (RC mode)	0.9 Vdd		_	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
				± 5	± 1000	nA	125°C
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$VSS \le VPIN \le VDD, 85^{\circ}C$
	IPUR	PORTB Weak Pull-up Current			_	_	
D070*			25	100	200		VDD = 3.3V, VPIN = VSS
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁴⁾	г – т		1	1	
D080		I/O ports	_	_	0.6	v	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V
	Voн	Output High Voltage ⁽⁴⁾					
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins		1	1	I , -
Ì	1	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when
D101*	COSC2	0002 pm					external clock is used to drive OSC1
D101* D101A*	COSC2	All I/O pins	_	_	50	pF	

23.4 DC Characteristics: PIC16(L)F722A/723A-I/E

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

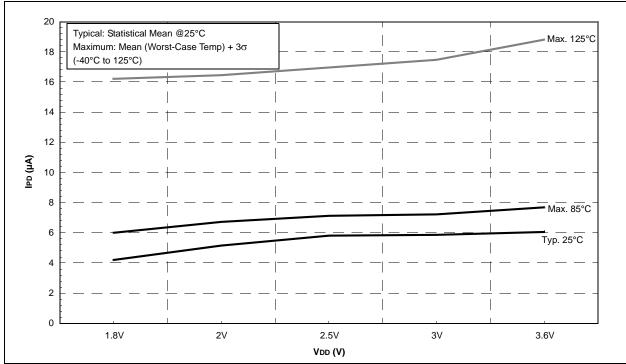
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

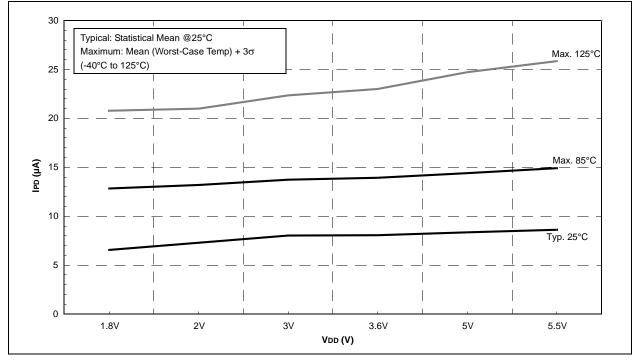
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.


23.5 Thermal Considerations

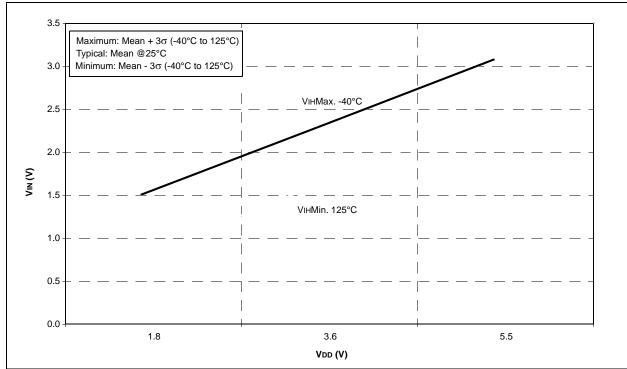
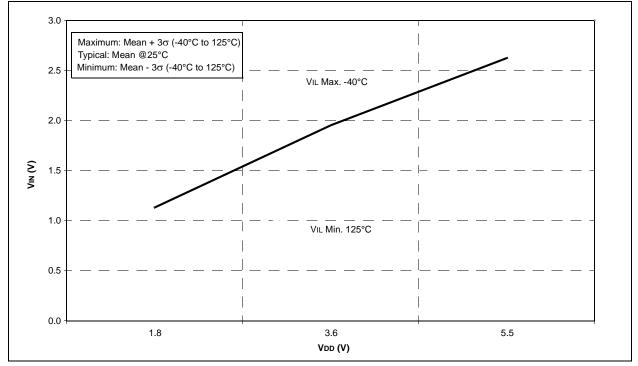
		Conditions (unless otherwise stated) re $-40^{\circ}C \le TA \le +125^{\circ}C$			
Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60.0	°C/W	28-pin SPDIP package
			69.7	°C/W	28-pin SOIC package
			71.0	°C/W	28-pin SSOP package
			52.5	°C/W	28-pin UQFN 4x4mm package
			30.0	°C/W	28-pin QFN 6x6mm package
TH02	θJC	Thermal Resistance Junction to Case	29.0	°C/W	28-pin SPDIP package
			18.9	°C/W	28-pin SOIC package
			24.0	°C/W	28-pin SSOP package
			16.7	°C/W	28-pin UQFN 4x4mm package
			5.0	°C/W	28-pin QFN 6x6mm package
TH03	Тјмах	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	—	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾

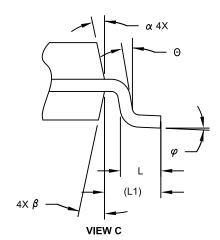
Note 1: IDD is current to run the chip alone without driving any load on the output pins.

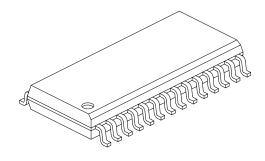

2: TA = Ambient Temperature

3: T_J = Junction Temperature

FIGURE 24-38: PIC16LF722A/723A CAP SENSE MEDIUM POWER IPD vs. VDD


FIGURE 24-50: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE


FIGURE 24-51: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2