

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf723a-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 MCLR

The PIC16(L)F722A/723A has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a Reset does not drive the MCLR pin low.

Voltages applied to the pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 3-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the RE3/MCLR pin becomes an external Reset input. In this mode, the RE3/MCLR pin has a weak pull up to VDD. In-Circuit Serial Programming is not affected by selecting the internal $\overline{\text{MCLR}}$ option.

FIGURE 3-2: RECOMMENDED MCLR CIRCUIT

3.2 Power-on Reset (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. A maximum rise time for VDD is required. See **Section 23.0 "Electrical Specifications"** for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 3.5** "**Brown-Out Reset (BOR)**").

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note *AN607, Power-up Trouble Shooting* (DS00607).

3.3 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the WDT oscillator. For more information, see **Section 7.3** "Internal Clock Modes". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip and vary due to:

- VDD variation
- Temperature variation
- · Process variation

See DC parameters for details (Section 23.0 "Electrical Specifications").

Note: The Power-up Timer is enabled by the PWRTE bit in the Configuration Word.

3.4 Watchdog Timer (WDT)

The WDT has the following features:

- Shares an 8-bit prescaler with Timer0
- Time-out period is from 17 ms to 2.2 seconds, nominal
- Enabled by a Configuration bit

WDT is cleared under certain conditions described in Table 3-1.

3.4.1 WDT OSCILLATOR

The WDT derives its time base from 31 kHz internal oscillator.

Note: When the Oscillator Start-up Timer (OST) is invoked, the WDT is held in Reset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled).

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: first, PWRT time out is invoked after POR has expired, then OST is activated after the PWRT time out has expired. The total time out will vary based on oscillator configuration and \overrightarrow{PWRTE} bit status. For example, in EC mode with \overrightarrow{PWRTE} bit = 1 (\overrightarrow{PWRT} disabled), there will be no time-out at all. Figure 3-4, Figure 3-5 and Figure 3-6 depict time-out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC16(L)F722A/723A device operating in parallel.

Table 3-3 shows the Reset conditions for some special registers.

3.7 Power Control (PCON) Register

The Power Control (PCON) register has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is \overrightarrow{BOR} (Brown-out Reset). \overrightarrow{BOR} is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overrightarrow{BOR} = 0$, indicating that a brown-out has occurred. The \overrightarrow{BOR} Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.5 "Brown-Out Reset (BOR)".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from		
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep	
XT, HS, LP ⁽¹⁾	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc	
RC, EC, INTOSC	TPWRT	—	TPWRT	_	—	

TABLE 3-2: TIME OUT IN VARIOUS SITUATIONS

Note 1: LP mode with T1OSC disabled.

TABLE 3-3: RESET BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

								-	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—	—	CHS3	CHS2	CHS1	CHS0	GO/ DONE	ADON	85
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	53
APFCON	—	—	—	—	—	—	SSSEL	CCP2SEL	42
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	115
CPSCON0	CPSON	—	—	—	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	112
CPSCON1	—	—	—	—	—	CPSCH2	CPSCH1	CPSCH0	113
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	36
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	53
OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	19
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	52
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	104
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	52
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	52

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

8.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Word 1 and Configuration Word 2 registers, code protection and device ID.

8.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 register at 2007h and Configuration Word 2 register at 2008h. These registers are only accessible during programming.

REGISTER 8-1: CONFIG1: CONFIGURATION WORD REGISTER 1

		R/P-1	R/P-1	U-1 ⁽⁴⁾	R/P-1	R/P-1	R/P-1					
		DEBUG	PLLEN	_	BORV	BOREN1	BOREN0					
		bit 13			•	·	bit 8					
U-1 ⁽⁴⁾	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1					
—	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0					
bit 7						·	bit 0					
Legend:		P = Programma	able bit									
R = Readable b	bit	W = Writable bi	t	U = Unimplem	ented bit, read as	· 'O'						
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	wn					
bit 13	DEBUG: In-C	Circuit Debugger M	ode bit									
	1 = In-circuit	debugger disabled	, RB6/ICSPCL	(and RB7/ICSP	DAT are general	purpose I/O pins	r					
bit 12		COLL Enabled	+			u to the debugger	I					
DIT 12	0 = INTOSC	frequency is 500 kl	- Hz									
	1 = INTOSC	frequency is 16 MH	łz (32x)									
bit 11	Unimplemen	nted: Read as '1'										
bit 10	BORV: Brown	n-out Reset Voltage	e selection bit									
	0 = Brown-out	0 = Brown-out Reset Voltage (VBOR) set to 2.5 V nominal										
hit 0.9			t Soloction hits	1)								
bit 9-0	0x = BOR dis	sabled (preconditio	ned state)	-								
	10 = BOR en	abled during opera	ed during operation and disabled in Sleep									
	11 = BOR en	abled										
bit 7	Unimplemen	nted: Read as '1'										
bit 6	CP: Code Pro	otection bit ⁽²⁾	action is disable	d								
	0 = Program	memory code prote	ection is enable	ed .								
bit 5	MCLRE: RE3	3/MCLR Pin Function	on Select bit ⁽³⁾									
	1 = RE3/MCL	<u>R</u> pin function is N	ICLR									
	0 = RE3/MCL	_R pin function is d	igital input, MCI	LR internally tied	to VDD							
bit 4	PWRTE: Pov	ver-up Timer Enabl	e bit									
	0 = PWRT er	nabled										
bit 3	WDTE: Watc	hdog Timer Enable	bit									
	1 = WDT ena	abled										
	0 = WDT disa	abled										
Note 1: Ena	abling Brown-ou	ut Reset does not a	utomatically en	able Power-up 1	īmer.							
2: The	e entire program	n memory will be er	ased when the	code protection	is turned off.							
3: Wh	ien MCLR is ass	serted in INTOSC of	or RC mode, the	e internal clock c	scillator is disable	əd.						

4: MPLAB[®] X IDE masks unimplemented Configuration bits to '0'.

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0
l egend:							

-		
R = Readable bit W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'							
bit 5-2	CHS<3:0>: Analog Channel Select bits							
	0000 = AN0							
	0001 = AN1							
	0010 = AN2							
	0011 = AN3							
	0100 = AN4							
	0101 = Reserved							
	0110 = Reserved							
	0111 = Reserved							
	1000 = AN8							
	1001 = AN9							
	1010 = AN10							
	1011 = AN11							
	1100 = AN12							
	1101 = AN13							
	1110 = Reserved							
	1111 = Fixed Voltage Reference (FVREF)							
bit 1	GO/DONE: A/D Conversion Status bit							
	1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.							
	0 = A/D conversion completed/not in progress							
bit 0	ADON: ADC Enable bit							
	1 = ADC is enabled							
	0 = ADC is disabled and consumes no operating current							

15.1 Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an event occurs on pin CCPx. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value (refer to Figure 15-1).

15.1.1 CCPx PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode or when Timer1 is clocked at Fosc, the capture operation may not work.

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in operating mode.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Capture mode. In order for Capture mode to recognize the trigger event on the CCPx pin, Timer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

15.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler (refer to Example 15-1).

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCP1CON	;Set Bank bits to point
		;to CCP1CON
CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	G;Load the W reg with
		; the new prescaler
		; move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

15.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

If Timer1 is clocked by Fosc/4, then Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

If Timer1 is clocked by an external clock source, then Capture mode will operate as defined in **Section 15.1** "**Capture Mode**".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCREG	AUSART R	eceive Data	a Register						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous reception.

REGISTER 1	7-2: SSPS1	TAT: SYNC SI	ERIAL POR	T STATUS R	EGISTER (S	PI MODE)	
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7 bit 6	SMP: SPI Dat <u>SPI Master m</u> 1 = Input data 0 = Input data <u>SPI Slave mo</u> SMP must be CKE : SPI Clo <u>SPI mode, CH</u> 1 = Data stab <u>SPI mode, CH</u> 1 = Data stab 0 = Data stab	ta Input Sample <u>ode:</u> a sampled at er a sampled at minde: cleared when the Edge Select $\underline{\langle P = 0:}$ le on rising edg $\underline{\langle P = 1:}$ le on falling edg le on rising edg	e Phase bit ad of data out iddle of data SPI is used in t bit ge of SCK ge of SCK ge of SCK ge of SCK	put time output time n Slave mode			
bit 5	D/A: Data/Ad Used in I ² C m	dress bit node only.					
bit 4	P: Stop bit Used in I ² C m	node only.					
bit 3	S: Start bit Used in I ² C m	node only.					
bit 2	R/W: Read/W Used in I ² C m	Information	n bit				
bit 1	UA: Update A Used in I ² C m	Address bit node only.					
bit 0	BF : Buffer Fu 1 = Receive c 0 = Receive r	Il Status bit complete, SSPE not complete, S	BUF is full SPBUF is en	npty			

© 2010-2016 Microchip Technology Inc.

REGISTER 18-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	_	PMA12	PMA11	PMA10	PMA9	PMA8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PMA<12:8>:** Program Memory Read Address bits

REGISTER 18-5: PMADRL: PROGRAM MEMORY ADDRESS LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMA7 | PMA6 | PMA5 | PMA4 | PMA3 | PMA2 | PMA1 | PMA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMA<7:0>:** Program Memory Read Address bits

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY READ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	Reserved		—	—	—	—	—	RD	168
PMADRH	—	_	_	Program I	Memory Re	ad Address	s Register I	High Byte	169
PMADRL	Program Memory Read Address Register Low Byte					169			
PMDATH	—		Program I	Memory Re	ad Data Re	egister Higł	n Byte		168
PMDATL	Program Memory Read Data Register Low Byte				168				

Legend: x = unknown, u = unchanged, – = unimplemented, read as '0'. Shaded cells are not used by the Program Memory Read.

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

21.2 Ir	nstruction	Descriptions
---------	------------	--------------

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W		
Syntax:	[<i>label</i>] ANDLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .AND. (k) \rightarrow (W)		
Status Affected:	Z		
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg ister.		

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .OR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

PIC16LF722A/723A		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
PIC16F722A/723A			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC16LF722A/723A	1.8 1.8 2.3 2.5		3.6 3.6 3.6 3.6	V V V V	Fosc \leq 16 MHz: HFINTOSC, EC Fosc \leq 4 MHz Fosc \leq 20 MHz, EC Fosc \leq 20 MHz, HS		
D001		PIC16F722A/723A	1.8 1.8 2.3 2.5		5.5 5.5 5.5 5.5	V V V V	$\begin{array}{l} \mbox{Fosc} \leq 16 \mbox{ MHz: HFINTOSC, EC} \\ \mbox{Fosc} \leq 4 \mbox{ MHz} \\ \mbox{Fosc} \leq 20 \mbox{ MHz, EC} \\ \mbox{Fosc} \leq 20 \mbox{ MHz, HS} \end{array}$		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
		PIC16LF722A/723A	1.5	_	_	V	Device in Sleep mode		
D002*		PIC16F722A/723A	1.7	_	_	V	Device in Sleep mode		
-	VPOR*	Power-on Reset Release Voltage	_	1.6	—	V			
	VPORR*	Power-on Reset Rearm Voltage							
		PIC16LF722A/723A		0.8	-	V	Device in Sleep mode		
		PIC16F722A/723A		1.7	—	V	Device in Sleep mode		
D003	VFVR	Fixed Voltage Reference Voltage, Initial Accuracy	-5.5 -5.5 -5.5		5.5 5.5 5.5	% % %	$ \begin{array}{l} {\sf VFVR} = 1.024{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 2.048{\sf V}, {\sf VDD} \geq 2.5{\sf V} \\ {\sf VFVR} = 4.096{\sf V}, {\sf VDD} \geq 4.75{\sf V}; \\ {\sf -40} \leq {\sf TA} \leq 85^{\circ}{\sf C} \\ \end{array} $		
			-6 -6 -6		6 6 6	% % %	$\label{eq:VFVR} \begin{split} &V{\sf FVR} = 1.024V, V{\sf DD} \ge 2.5V \\ &V{\sf FVR} = 2.048V, V{\sf DD} \ge 2.5V \\ &V{\sf FVR} = 4.096V, V{\sf DD} \ge 4.75V; \\ &-40 \le TA \le 125^\circ C \end{split}$		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 3.2 "Power-on Reset (POR)" for details.		

23.1 DC Characteristics: PIC16(L)F722A/723A-I/E (Industrial, Extended)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode
			DC	—	4	MHz	XT Oscillator mode
			DC	—	20	MHz	HS Oscillator mode
			DC	—	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	_	20	MHz	HS Oscillator mode, $VDD \ge 2.7V$
			DC	_	4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μs	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	_	∞	ns	HS Oscillator mode
			50	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	—	μs	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode, $VDD \ge 2.7V$
			250	—	—	ns	RC Oscillator mode
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	_		μs	LP oscillator
TosL	TosL	External CLKIN Low	100	_	—	ns	XT oscillator
			20	-	—	ns	HS oscillator
OS05*	TosR,	R, External CLKIN Rise, External CLKIN Fall	0	—	×	ns	LP oscillator
	TosF		0	-	∞	ns	XT oscillator
			0	—	×	ns	HS oscillator

TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 24-18: PIC16LF722A/723A IDD vs. VDD, LP MODE

FIGURE 24-38: PIC16LF722A/723A CAP SENSE MEDIUM POWER IPD vs. VDD

