

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf723at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

TABLE 1-1:	PIC16F722A/723A	PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/SS/VCAP	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	A/D Channel 0 input.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F722A/723A only).
RA1/AN1	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
RA2/AN2	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN	_	A/D Channel 2 input.
RA3/AN3/VREF	RA3	TTL	CMOS	General purpose I/O.
	AN3	AN	_	A/D Channel 3 input.
	VREF	AN	_	A/D Voltage Reference input.
RA4/CPS6/T0CKI	RA4	TTL	CMOS	General purpose I/O.
	CPS6	AN	_	Capacitive sensing input 6.
	TOCKI	ST	_	Timer0 clock input.
RA5/AN4/CPS7/SS/VCAP	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	_	A/D Channel 4 input.
	CPS7	AN	_	Capacitive sensing input 7.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F722A/723A only).
RA6/OSC2/CLKOUT/Vcap	RA6	TTL	CMOS	General purpose I/O.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
		_	CMOS	Eosc/4 output
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F722A/723A only)
RA7/OSC1/CLKIN	RA7	TTI	CMOS	
	OSC1	XTAI	_	Crystal/Resonator (LP_XT_HS modes)
	CLKIN	CMOS	_	External clock input (EC mode)
		ST	_	RC oscillator connection (RC mode)
RB0/AN12/CPS0/INT	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individu- ally enabled pull up.
	AN12	AN	_	A/D Channel 12 input.
	CPS0	AN	_	Capacitive sensing input 0.
	INT	ST	_	External interrupt.
RB1/AN10/CPS1	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.
	AN10	AN	_	A/D Channel 10 input.
	CPS1	AN	_	Capacitive sensing input 1.
RB2/AN8/CPS2	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.
	AN8	AN	_	A/D Channel 8 input.
	CPS2	AN	_	Capacitive sensing input 2.
RB3/AN9/CPS3/CCP2	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.
	AN9	AN	_	A/D Channel 9 input.
	CPS3	AN	_	Capacitive sensing input 3.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RB4/AN11/CPS4	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull up.
	AN11	AN	_	A/D Channel 11 input.
	CPS4	AN		Capacitive sensing input 4.
Legend: AN = Analog input or ou TTL = TTL compatible in HV = High Voltage	itput CMO put ST XTAL	S = CM = Sch = Cry	IOS compannitt Triggerstal levels	tible input or output $OD = Open Drain$ er input with CMOS levels $I^2C = Schmitt Trigger input with I^2C$

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Page
Bank 0											
00h ⁽²⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	memory (no	t a physical r	egister)	xxxx xxxx	22,30
01h	TMR0	Timer0 Mod	lule Register							XXXX XXXX	91,30
02h ⁽²⁾	PCL	Program Co	Program Counter (PC) Least Significant Byte								
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18,30
04h ⁽²⁾	FSR	Indirect Dat	a Memory A	ddress Point	er					XXXX XXXX	22,30
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	43,30
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	52,30
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	62,30
09h	PORTE	_	_	_	_	RE3	_	_	_	xxxx	69,30
0Ah ^(1, 2)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the	Program Cou	unter	0 0000	21,30
0Bh ⁽²⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	36,30
0Ch	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	39,30
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	40,30
0Eh	TMR1L	Holding Reg	gister for the	Least Signif	icant Byte of	the 16-bit TM	IR1 Register			XXXX XXXX	99,30
0Fh	TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of t	he 16-bit TM	R1 Register			XXXX XXXX	99,30
10h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	103,30
11h	TMR2	Timer2 Mod	lule Register							0000 0000	106,30
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	107,30
13h	SSPBUF	Synchronou	is Serial Por	t Receive Bu	uffer/Transmit	Register				XXXX XXXX	147,30
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	164,30
15h	CCPR1L	Capture/Co	mpare/PWM	Register (L	.SB)					XXXX XXXX	116,30
16h	CCPR1H	Capture/Co	mpare/PWM	Register (N	ISB)					xxxx xxxx	116,30
17h	CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	115,30
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	134,30
19h	TXREG	USART Tra	nsmit Data F	Register						0000 0000	133,30
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	131,30
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register 2	(LSB)					XXXX XXXX	116,30
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register 2	(MSB)					xxxx xxxx	116,30
1Dh	CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	115,30
1Eh	ADRES	A/D Result	Register							XXXX XXXX	86,30
1Fh	ADCON0	_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	85,30

	DIC16/LIE722A/723A SPECIAL EUNCTION PEO	
IADLE Z-I:	PICIO(L)F/22A//23A SPECIAL FUNCTION REC	JOIER JUNINART

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Accessible only when SSPM<3:0> = 1001.

4: Accessible only when SSPM<3:0> \neq 1001.

5: This bit is always '1' as RE3 is input-only.

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in Figure 2-5 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-5 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note *AN556, Implementing a Table Read* (DS00556).

2.3.2 STACK

All devices have an 8-level x 13-bit wide hardware stack (refer to Figures 2-1 and 2-2). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth PUSH overwrites the value that was stored from the first PUSH. The tenth PUSH overwrites the second PUSH (and so on).

- **Note 1:** There are no Status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Program Memory Paging

All devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is POPed off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the RETURN instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH register are								
	unchanged after a RETURN or RETFIE								
	instruction is executed. The user must								
	rewrite the contents of the PCLATH								
	register for any subsequent subroutine								
	calls or GOTO instructions.								

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG 500	h					
	PAGESEL	SUB_P1	;Select page 1				
			;(800h-FFFh)				
	CALL	SUB1_P1	;Call subroutine in				
	:		;page 1 (800h-FFFh)				
	:						
	ORG	900h	;page 1 (800h-FFFh)				
SUB1_P1							
	:		;called subroutine				
			;page 1 (800h-FFFh)				
	:						
	RETURN		;return to				
			;Call subroutine				
			;in page 0				
			;(000h-7FFh)				

4.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- · PC is loaded with the interrupt vector 0004h

The ISR determines the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated

interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

4.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three instruction cycles. For asynchronous interrupts, the latency is three to four instruction cycles, depending on when the interrupt occurs. See Figure 4-2 for timing details.

Note 1: INTF flag is sampled here (every Q1).

- 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
- 3: CLKOUT is available only in INTOSC and RC Oscillator modes.
- 4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 "Electrical Specifications".
- 5: INTF is enabled to be set any time during the Q4-Q1 cycles.

6.5.1 RE3/MCLR/VPP

Figure 6-21 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose input
- Master Clear Reset with weak pull up
- Programming voltage reference input

FIGURE 6-21: BLOCK DIAGRAM OF RE3

7.5 Oscillator Tuning

The INTOSC is factory-calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 7-2).

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 7-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— — TUN5 TUN4		TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0

PIC16(L)F722A/723A

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Refer to Section 9.3 "A/D Acquisition Requirements".

EXAMPLE 9-1: A/D CONVERSION

;This code block configures the ADC ;for polling, Vdd reference, Frc clock ;and ANO input. ;

;Conversion start & polling for completion ; are included.

,		
BANKSEL	ADCON1	;
MOVLW	B'01110000'	;ADC Frc clock,
		;VDD reference
MOVWF	ADCON1	;
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RA0 to input
BANKSEL	ANSELA	;
BSF	ANSELA,0	;Set RA0 to analog
BANKSEL	ADCON0	;
MOVLW	B'0000001'	;AN0, On
MOVWF	ADCON0	;
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRES	;
MOVF	ADRES,W	;Read result
MOVWF	RESULT	;store in GPR space

15.3 PWM Mode

The PWM mode generates a Pulse-Width Modulated signal on the CCPx pin. The duty cycle, period and resolution are determined by the following registers:

- PR2
- T2CON
- CCPRxL
- CCPxCON

In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCPx pin.

Figure 15-3 shows a simplified block diagram of PWM operation.

Figure 15-4 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up the CCP module for PWM operation, refer to **Section 15.3.8** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

The PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle).

FIGURE 15-4: CCP PWM OUTPUT

15.3.1 CCPX PIN CONFIGURATION

In PWM mode, the CCPx pin is multiplexed with the PORT data latch. The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Either RC1 or RB3 can be selected as the CCP2 pin. Refer to **Section 6.1** "Alternate Pin Function" for more information.

Note:	Clearing	the	CCPxCON	register	will
	relinquish	CCP	x control of t	he CCPx	pin.

	SYNC = 0, BRGH = 0												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.0000 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_		_	_	_	_			—		_	_	
1200	1221	1.73	255	1200	0.00	239	1201	0.08	207	1200	0.00	143	
2400	2404	0.16	129	2400	0.00	119	2403	0.16	103	2400	0.00	71	
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17	
10417	10417	0.00	29	10286	-1.26	27	10416	-0.01	23	10165	-2.42	16	
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8	
57.6k	—	_	_	57.60k	0.00	7	—	—	—	57.60k	0.00	2	
115.2k	—	—	—	—	—	—	—	—	—	—	—	—	

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51		
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12		
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—		
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	—	—		
10417	10417	0.00	11	10417	0.00	5	—	_	_	_	_	_		
19.2k	_	_	—	—	_	_	19.20k	0.00	2	—	—	—		
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—		
115.2k	—	_	_	—	_	—	_	_	_	—	_	_		

						SYNC = 0,	BRGH = :	1				
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	= 16.00	00 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	—	_	_		_	_			—
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	—	—	—	—	—	—	—	—	—	_	_	_
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.8k	2.12	16	57.60k	0.00	11
115.2k	113.64k	-1.36	10	115.2k	0.00	9	_	_	_	115.2k	0.00	5

17.2.5 RECEPTION

When the R/\overline{W} bit of the received address byte is clear, the master will write data to the slave. If an address match occurs, the received address is loaded into the SSPBUF register. An address byte overflow will occur if that loaded address is not read from the SSPBUF before the next complete byte is received.

An SSP interrupt is generated for each data transfer byte. The BF, R/\overline{W} and D/\overline{A} bits of the SSPSTAT register are used to determine the status of the last received byte.

FIGURE 17-10: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

R/V	$\overline{V} = 0$	
Receiving Address	ACK Receiving Data ACK Receiving Data ACK / D7\D6\D5\D4\D3\D2\D1\D0\ /D7\D6\D5\D4\D3\D2\D1\D0\ /D7\D6\D5\D4\D3\D2\D1\D0\ \	
SSPIF	Cleared in software	Bus Master sends Stop
BF	 SSPBUF register is read 	condition
SSPOV		
	Bit SSPOV is set because the SSPBUF register is still full.	
	ACK is not sent.	

Mnemonic,		Description	Cycles		14-Bit	Opcode	Status	Notoo	
Opera	inds	Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE REGIST		RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS					1
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 21-2: PIC16(L)F722A/723A INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16(L)F722A/723A

SUBWF	Subtract W from f					
Syntax:	[label] Sl	JBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	Status Affected: C, DC, Z					
Description:	Subtract (2's complement method W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.					
	C = 0	W > f				
	C = 1	$W \le f$				

DC = 0

DC = 1

W<3:0> > f<3:0>

W<3:0> ≤ f<3:0>

XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

23.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F722A/723A	-0.3V to +6.5V
Voltage on VCAP pin with respect to Vss, PIC16F722A/723A	-0.3V to +4.0V
Voltage on VDD with respect to Vss, PIC16LF722A/723A	-0.3V to +4.0V
Voltage on MCLR with respect to Vss	-0.3V to +9.0V
Voltage on all other pins with respect to Vss	-0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	95 mA
Maximum current into VDD pin	70 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports (2), -40°C \leq TA \leq +85°C for industrial	200 mA
Maximum current sunk by all ports (2), -40°C \leq TA \leq +125°C for extended	90 mA
Maximum current sourced by all ports(2), $40^{\circ}C \le TA \le +85^{\circ}C$ for industrial	140 mA
Maximum current sourced by all ports^(2), -40°C \leq TA \leq +125°C for extended	65 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $-\sum$	VOH) X IOH} + Σ (VOI X IOL).
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause per device. This is a stress rating only and functional operation of the device at those or any other	ermanent damage to the

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

23.7 AC Characteristics: PIC16F722A/723A-I/E

FIGURE 23-3: CLOCK TIMING

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700		_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	—		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	_	ns	After this period, the first	
		Hold time	400 kHz mode	600	—	_		clock pulse is generated	
SP92*	TSU:STO	Stop condition	100 kHz mode	4700	—	_	ns		
		Setup time	400 kHz mode	600		_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600	_				

TABLE 23-12: I²C BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions	
CS01	ISRC	Current Source	High	—	-5.8	-6	μΑ		
			Medium	—	-1.1	-3.2	μΑ	-40, -85°C	
			Low	—	-0.2	-0.9	μΑ		
CS02	Isnk	Current Sink	High	—	6.6	6	μΑ		
			Medium	_	1.3	3.2	μΑ	-40, -85°C	
			Low	—	0.24	0.9	μΑ		
CS03	VCHYST	Cap Hysteresis	High	—	525		mV		
			Medium	—	375		mV	VCTH-VCTL	
			Low	_	280		mV		

TABLE 23-14: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 23-22: CAP SENSE OSCILLATOR

FIGURE 24-36: PIC16LF722A/723A CAP SENSE HIGH POWER IPD vs. VDD

25.1 Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN (63) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC [®] designator (€3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (April 2010)

Original release of this data sheet.

Revision B (January 2012)

Updated the data sheet to new format; Updated Figure 9-1 and Register 9-1; Updated the Packaging Information section; Updated the Product Identification System section; Other minor corrections.

Revision C (03/2016)

Updated Table 2-1, Table 6-1 and Table 6-3; Updated Register 14-2; Other minor corrections.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{B}}$ devices to the <code>PIC16F722A/723A</code> family of devices.

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

Note: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the oscillator mode may be required.

B.1 PIC16F77 to PIC16F722A/723A

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F77	PIC16F722A/ 723A
Max. Operating Speed	20 MHz	20 MHz
Max. Program Memory (Words)	8K	4K
Max. SRAM (Bytes)	368	192
A/D Resolution	8-bit	8-bit
Timers (8/16-bit)	2/1	2/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	0	0
USART	Y	Y
Extended WDT	N	N
Software Control Option of WDT/BOR	N	N
INTOSC Frequencies	None	500 kHz - 16 MHz
Clock Switching	Ν	N