

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf723at-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F722A/723A

Pin Diagrams - 28-PIN SPDIP/SOIC/SSOP/QFN/UQFN (PIC16(L)F722A/723A)

FIGURE 2-3:

PIC16(L)F722A SPECIAL FUNCTION REGISTERS

Indirect addr.(*)	00h	Indirect addr. ^(*)	80h	Indirect addr. ^(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	ANSELA	185h
PORTB	06h	TRISB	86h		106h	ANSELB	186h
PORTC	07h	TRISC	87h		107h		187h
	08h		88h	CPSCON0	108h		188h
PORTE	09h	TRISE	89h	CPSCON1	109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh	Reserved	18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	T1GCON	8Fh	PMADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCCON	90h		110h		190h
TMR2	11h	OSCTUNE	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD/SSPMSK	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h		97h		117h		197h
RCSTA	18h	TXSTA	98h		118h		198h
TXREG	19h	SPBRG	99h		119h		199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch	APFCON	9Ch		11Ch		19Ch
CCP2CON	1Dh	FVRCON	9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose		General Purpose Register 32 Bytes	BFh				
Register			C0h				
96 Bytes			EFh		16Fh		1EFh
-			F0h		170h		1F0h
		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh	
	7Fh		FFh		17Fh		1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
		nted data memory loc cal register.	ations, I	read as '0'.			

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/ DONE	ADON	85
ADCON1	_	ADCS2	ADCS1	ADCS0	—	—	ADREF1	ADREF0	86
ANSELA	_	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	44
APFCON	—	—	_	_	—	—	SSSEL	CCP2SEL	42
CPSCON0	CPSON	—	_	_	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	112
CPSCON1	_	—		_	_	CPSCH2	CPSCH1	CPSCH0	113
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	19
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	43
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	152
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	43

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2 ⁽¹⁾	13:8	_	_	_	_	_	—	_	—	70
	7:0	_	_	VCAPEN1	VCAPEN0	WDTE	_	_	—	78

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F722A/723A only.

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
bit 7							bit 0
Legend:							
Legend: R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	

REGISTER 6-5: PORTB: PORTB REGISTER

bit 7-0 RB<7:0>: PORTB I/O Pin bits

1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 6-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

—

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 6-7: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

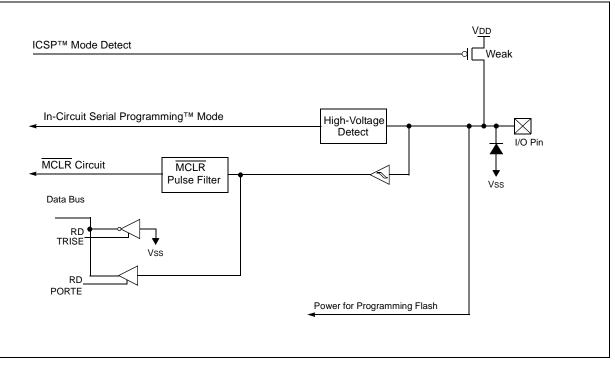
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **WPUB<7:0>**: Weak Pull-up Register bits

1 = Pull up enabled

0 = Pull up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull ups to be enabled.


2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

6.5.1 RE3/MCLR/VPP

Figure 6-21 shows the diagram for this pin. This pin is configurable to function as one of the following:

- General purpose input
- Master Clear Reset with weak pull up
- Programming voltage reference input

FIGURE 6-21: BLOCK DIAGRAM OF RE3

7.5 Oscillator Tuning

The INTOSC is factory-calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 7-2).

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 7-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0

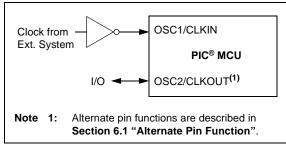
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0

7.6 External Clock Modes

7.6.1 OSCILLATOR START-UP TIMER (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations on the OSC1 pin before the device is released from Reset. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

7.6.2 EC MODE

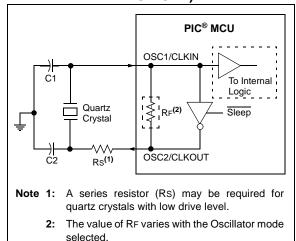
The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 7-2 shows the pin connections for EC mode.

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 7-2: EXTERNAL CLOCK (EC) MODE OPERATION

7.6.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 7-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.


LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 7-3 and Figure 7-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 7-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.

- **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
- **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PIC[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949)

15.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

The timer resources used by the module are shown in Table 15-1.

Additional information on CCP modules is available in the Application Note *AN594, Using the CCP Modules* (DS00594).

TABLE 15-1: CCP MODE – TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

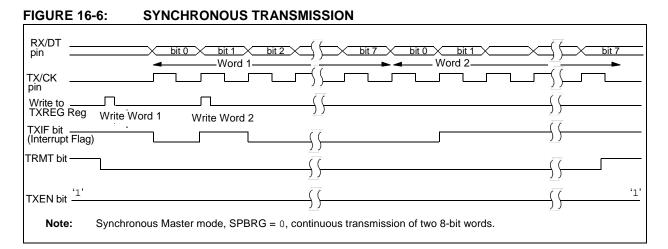
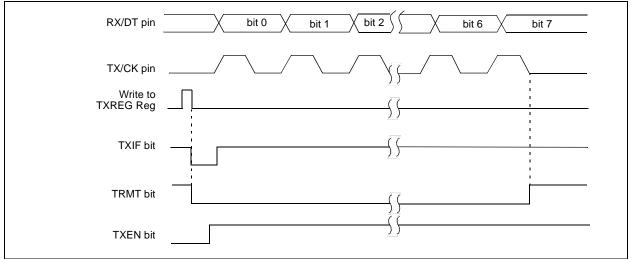

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Same TMR1 time base
Capture	Compare	Same TMR1 time base ^(1, 2)
Compare	Compare	Same TMR1 time base ^(1, 2)
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges will be aligned.
PWM	Capture	None
PWM	Compare	None

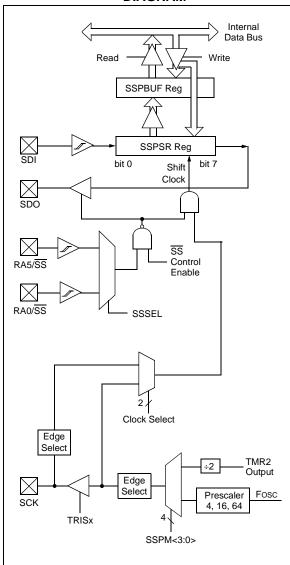
TABLE 15-2: INTERACTION OF TWO CCP MODULES


Note 1: If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on the CCP2 pin.

2: If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1, affecting the value captured on the CCP1 pin.

Note:	CCPRx	and	CCPx	throughout	this
	documer	nt refer	to CCP	R1 or CCPR2	and
	CCP1 or	CCP2	, respec	tively.	

FIGURE 16-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)


TABLE 16-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
TXREG	AUSART T	ransmit Dat	a Register						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master transmission.

PIC16(L)F722A/723A

FIGURE 17-2: SPI MODE BLOCK DIAGRAM

17.1.1 MASTER MODE

In Master mode, data transfer can be initiated at any time because the master controls the SCK line. Master mode determines when the slave (Figure 17-1, Processor 2) transmits data via control of the SCK line.

17.1.1.1 Master Mode Operation

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR register shifts the data in and out of the device, MSb first. The SSPBUF register holds the data that is written out of the master until the received data is ready. Once the eight bits of data have been received, the byte is moved to the SSPBUF register. The Buffer Full Status bit, BF of the SSPSTAT register, and the SSP Interrupt Flag bit, SSPIF of the PIR1 register, are then set.

Any write to the SSPBUF register during transmission/ reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data is written to the SSPBUF. The BF bit of the SSPSTAT register is set when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. The SSP interrupt may be used to determine when the transmission/reception is complete and the SSPBUF must be read and/or written. If interrupts are not used, then software polling can be done to ensure that a write collision does not occur. Example 17-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

Note: The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register.

17.1.1.2 Enabling Master I/O

To enable the serial port, the SSPEN bit of the SSPCON register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON register and then set the SSPEN bit. If a Master mode of operation is selected in the SSPM bits of the SSPCON register, the SDI, SDO and SCK pins will be assigned as serial port pins.

For these pins to function as serial port pins, they must have their corresponding data direction bits set or cleared in the associated TRIS register as follows:

- SDI configured as input
- SDO configured as output
- SCK configured as output

17.1.1.3 Master Mode Setup

In Master mode, the data is transmitted/received as soon as the SSPBUF register is loaded with a byte value. If the master is only going to receive, SDO output could be disabled (programmed and used as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate.

When initializing SPI Master mode operation, several options need to be specified. This is accomplished by programming the appropriate control bits in the SSPCON and SSPSTAT registers. These control bits allow the following to be specified:

- SCK as clock output
- Idle state of SCK (CKP bit)
- Data input sample phase (SMP bit)
- Output data on rising/falling edge of SCK (CKE bit)
- · Clock bit rate

In Master mode, the SPI clock rate (bit rate) is user selectable to be one of the following:

- Fosc/4 (or TCY)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 TCY)
- (Timer2 output)/2

This allows a maximum data rate of 5 Mbps (at Fosc = 20 MHz).

Figure 17-3 shows the waveforms for Master mode. The clock polarity is selected by appropriately programming the CKP bit of the SSPCON register. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The sample time of the input data is shown based on the state of the SMP bit and can occur at the middle or end of the data output time. The time when the SSPBUF is loaded with the received data is shown.

17.1.1.4 Sleep in Master Mode

In Master mode, all module clocks are halted and the transmission/reception will remain in their current state, paused, until the device wakes from Sleep. After the device wakes up from Sleep, the module will continue to transmit/receive data.

REGISTER 18-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
Reserved	—	—I	—	—	—	—	RD
bit 7							bit 0

Legend:		S = Setable bit, cleared in ha	ardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Reserved: Read as '1'. Maintain this bit set.
bit 7 Reserved: Read as '1'. Maintain this bit set.

bit 6-1 Unimplemented: Read as '0'

bit 0 RD: Read Control bit

 1 = Initiates an program memory read (The RD is cleared in hardware; the RD bit can only be set (not cleared) in software).

0 = Does not initiate a program memory read

REGISTER 18-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
bit 7							bit 0
l egend.							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMD<13:8>:** The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

REGISTER 18-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7 | PMD6 | PMD5 | PMD4 | PMD3 | PMD2 | PMD1 | PMD0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **PMD<7:0>:** The value of the program memory word pointed to by PMADRH and PMADRL after a Program Memory Read command.

23.3 DC Characteristics: PIC16(L)F722A/723A-I/E (Power-Down)

PIC16LF722A/723A PIC16F722A/723A				rd Operation ng temper		-40°C ≤	TA ≤ +85°	nerwise stated) C for industrial 5°C for extended
				perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units		Conditions
	Power-down Base Current	(Ipp)(2)					VDD	Note
D020	Fower-down base current	(IPD)(/	0.02	0.7	3.9	μA	1.8	WDT, BOR, FVR, and T1OSC
0020			0.02	1.0	4.3	μΑ	3.0	disabled, all Peripherals Inactive
D020			4.3	10.2	17	μΑ	1.8	WDT, BOR, FVR, and T1OSC
2020			5	10.5	18	μΑ	3.0	disabled, all Peripherals Inactive
			5.5	11.8	21	μA	5.0	
D021		_	0.5	1.7	4.1	μA	1.8	LPWDT Current (Note 1)
		_	0.8	2.5	4.8	μA	3.0	
D021		_	6	13.5	16.4	μA	1.8	LPWDT Current (Note 1)
			6.5	14.5	16.8	μA	3.0	
			7.5	16	18.7	μA	5.0	
D021A		_	8.5	14	19	μΑ	1.8	FVR current (Note 1. Note 3)
		_	8.5	14	20	μA	3.0	
D021A		_	23	44	48	μA	1.8	FVR current (Note 1, Note 3,
			25	45	55	μΑ	3.0	Note 5)
			26	60	70	μA	5.0	
D022		_	—	_	_	μΑ	1.8	BOR Current (Note 1, Note 3)
		—	7.5	12	22	μΑ	3.0	
D022		—	—	—	—	μA	1.8	BOR Current (Note 1, Note 3, Note 5)
			23	42	49	μA	3.0	
		—	25	46	50	μA	5.0	
D026		_	0.6	2		μA	1.8	T1OSC Current (Note 1)
		_	1.8	3.0	_	μΑ	3.0	
D026			4.5	11.1	_	μΑ	1.8	T1OSC Current (Note 1)
			6	12.5	—	μΑ	3.0	-
		—	7	13.5	—	μA	5.0	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.

4: A/D oscillator source is FRC.

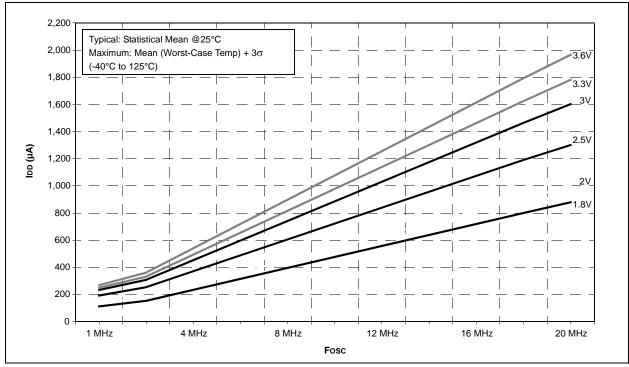
5: 0.1 μF capacitor on VCAP (RA0).

	DC CI	HARACTERISTICS		•	$-40^{\circ}C \le TA$	≤ +85°C	otherwise stated) c for industrial C for extended
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			—		0.15 Vdd	V	$1.8V \le V\text{DD} \le 4.5V$
D031		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C levels	—		0.3 Vdd	V	
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	—	_	0.2 Vdd	V	
D033A		OSC1 (HS mode)		_	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O ports:		_			
D040		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	-	V	$1.8V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer	0.8 Vdd	_	—	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C levels	0.7 Vdd	_	—	V	
D042		MCLR	0.8 Vdd		_	V	
D043A		OSC1 (HS mode)	0.7 Vdd		_	V	
D043B		OSC1 (RC mode)	0.9 Vdd		_	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
				± 5	± 1000	nA	125°C
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le Vpin \le Vdd, 85^{\circ}C$
	IPUR	PORTB Weak Pull-up Current			_	_	
D070*			25	100	200		VDD = 3.3V, VPIN = VSS
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁴⁾	г – т		1	1	
D080		I/O ports	_	_	0.6	v	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V
	Voh	Output High Voltage ⁽⁴⁾					
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins		1	1	I , -
Ì	1	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when
D101*	COSC2	0002 pm					external clock is used to drive OSC1
D101* D101A*	COSC2	All I/O pins	_	_	50	pF	

23.4 DC Characteristics: PIC16(L)F722A/723A-I/E

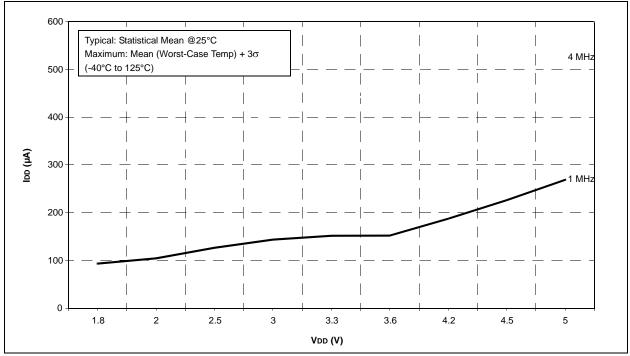
Legend: TBD = To Be Determined

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.


2: Negative current is defined as current sourced by the pin.


3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

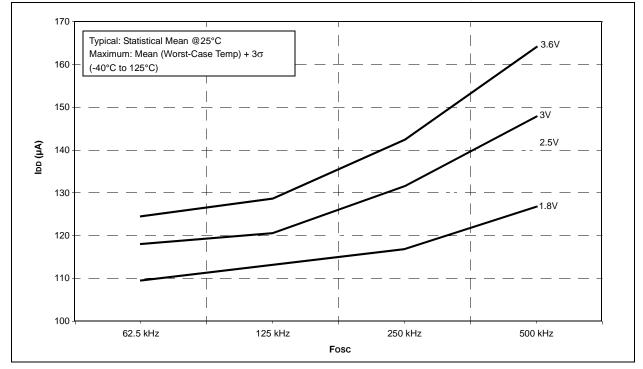

4: Including OSC2 in CLKOUT mode.

FIGURE 24-4: PIC16LF722A/723A TYPICAL IDD vs. Fosc OVER VDD, EC MODE

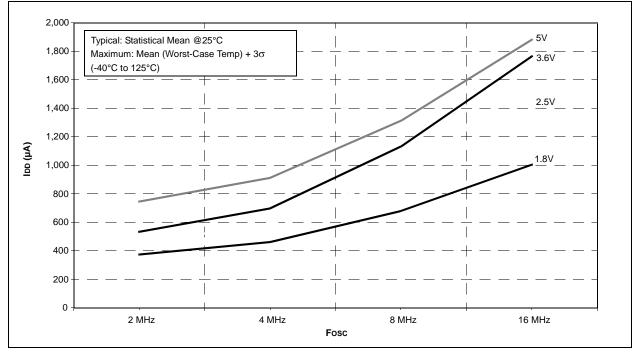
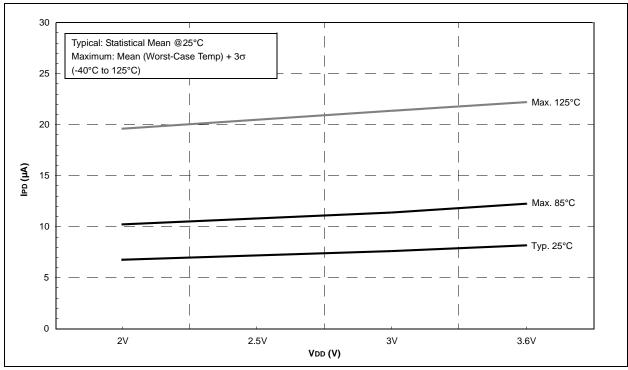
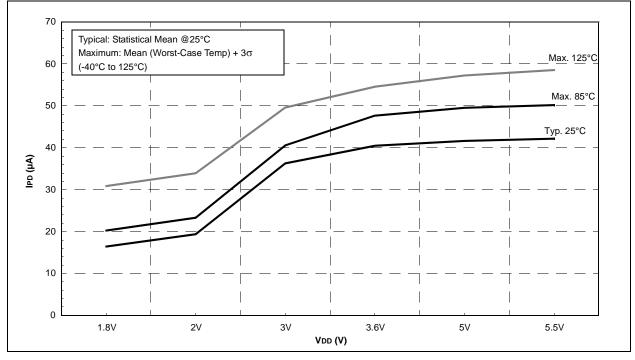
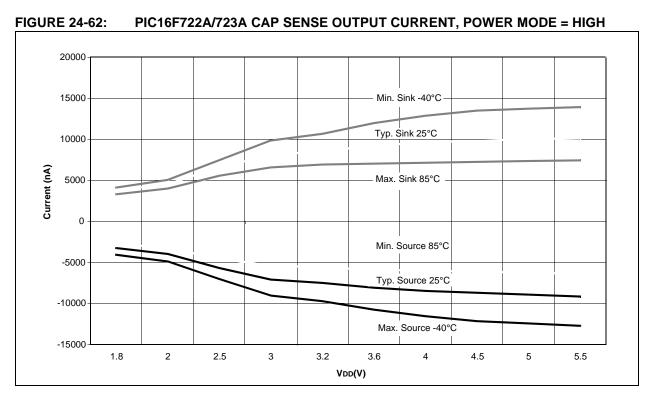
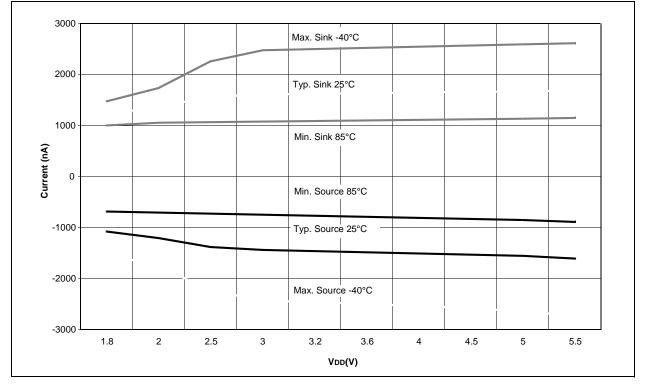
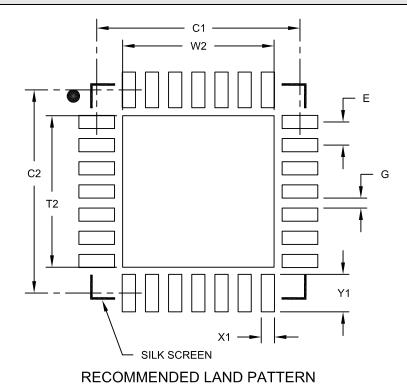


FIGURE 24-20: PIC16LF722A/723A MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE

FIGURE 24-21: PIC16F722A/723A MAXIMUM IDD vs. Fosc OVER VDD, INTOSC MODE, VCAP = 0.1µF


FIGURE 24-34: PIC16LF722A/723A BOR IPD vs. VDD



28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device Tap	[X] ⁽¹⁾ X XXX I I I De and Reel Temperature Package Pattern Option Range	Examples: a) PIC16F722A-E/SP 301 = Extended Temp., SPDIP package, QTP pattern #301
Device:	PIC16F722A, PIC16LF722A PIC16F723A, PIC16LF723A	 b) PIC16F722A-I/SO = Industrial Temp., SOIC package
Tape and Reel Option:	Blank= Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	I = -40° C to+85°C (Industrial) E = -40° C to+125°C (Extended)	
Package:	MV = UQFN ML = QFN SO = SOIC SP = SPDIP SS = SSOP	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	and Reel option.