

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	56KB (56K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1a11c0agn2b000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Watch Counter

The Watch Counter wakes up the microcontroller from the low power consumption mode. The clock source can be selected from the main clock, the sub clock, the built-in high-speed CR clock or the built-in low-speed CR clock.

Interval timer: up to 64 s (sub clock: 32.768 kHz)

External Interrupt Controller Unit

■Up to 8 external interrupt input pins

Non-maskable interrupt (NMI) input pin: 1

Watchdog Timer (2 channels)

The watchdog timer generates an interrupt or a reset when the counter reaches a time-out value.

This series consists of two different watchdogs, "hardware" watchdog and "software" watchdog.

The "hardware" watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the "hardware" watchdog is active in any low-power consumption modes except RTC mode and STOP mode.

Clock and Reset

■Clocks

A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL).

□ Main clock	: 4 MHz to 40MHz
□ Sub clock	: 32.768 kHz
Built-in high-speed CR clock	: 4 MHz
□ Built-in low-speed CR clock	: 100 kHz
Main PLL clock	

Resets

- □ Reset request from the INITX pin
- Power on reset
- □ Software reset
- □ Watchdog timer reset
- □ Low-voltage detection reset
- □ Clock supervisor reset

Clock Supervisor (CSV)

The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator.

- If an external clock failure (clock stop) is detected, a reset is asserted.
- If an external frequency anomaly is detected, an interrupt or a reset is asserted.

Low-voltage Detector (LVD)

This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset.

- LVD1: error reporting via an interrupt
- LVD2: auto-reset operation

Low Power Consumption Mode

This series has four low power consumption modes.

- ■SLEEP
- ■TIMER
- ■RTC
- ■STOP

Peripheral Clock Gating

The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used.

Debug

- Serial Wire Debug Port (SW-DP)
- Micro Trace Buffer (MTB)

Unique ID

A 41-bit unique value of the device has been set.

Power Supply

Wide voltage range: VCC = 2.7 V to 5.5 V

2. Packages

Product name Package	S6E1A11B0A S6E1A12B0A	S6E1A11C0A S6E1A12C0A
LQFP: FPT-32P-M30 (0.80 mm pitch)	0	-
QFN: LCC-32P-M73 (0.50 mm pitch)	0	-
LQFP: FPT-48P-M49 (0.50 mm pitch)	-	0
QFN: LCC-48P-M74 (0.50 mm pitch)	-	0
LQFP: FPT-52P-M02 (0.65 mm pitch)	-	0

O: Supported

Note:

• See "14. Package Dimensions" for detailed information on each package.

Note:

• The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

4. Pin Descriptions

List of Pin Functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel.

Use the extended port function register (EPFR) to select the pin.

Pin no.						
LQFP-52	LQFP-48 QFN-48	LQFP-32 QFN-32	Pin name	I/O circuit type	Pin state type	
1	1	-	VCC	-		
			P50			
			INT00_0			
2	2	-	AIN0_2	l*	J	
			SIN3_1			
			IC01_0			
			P51			
2	2		INT01_0	1*		
3	5	-	BIN0_2		5	
			SOT3_1			
			P52			
4			INT02_0	1*		
4	4	-	ZIN0_2		J	
			SCK3_1			
			P39			
6	5	-	DTTI0X_0	E	1	
			ADTG_2			
			P3A			
			RTO00_0			
			TIOA0_1			
7	6	1	AIN0_3	E		
1	0		SUBOUT_2	1	5	
			RTCCO_2			
			INT03_0			
			SCK0_2			
			P3B			
			RTO01_0			
			TIOA1_1			
8	7	2	BIN0_3	F	J	
			SOT0_2			
			INT04_0			
			SCS31_2			

7. Handling Devices

Power Supply Pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each POWER pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS, between AVCC and AVSS and between AVRH and AVRL near this device.

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/µs at a momentary fluctuation such as switching the power supply.

Crystal Oscillator Circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Sub Crystal Oscillator

This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.

■Surface mount type

	Size: Load capacitance: Load capacitance:	More than 3.2 mm × 1.5 mm Approximately 6 pF to 7 pF When the Standard setting (CCS/CCB=11001110) Approximately 4 pF to 7 pF
■Lead ty	pe	When the low power setting (CCS/CCB=00000100)
	Load capacitance:	Approximately 6 pF to 7 pF When the Standard setting (CCS/CCB=11001110)
	Load capacitance:	Approximately 4 pF to 7 pF When the low power setting (CCS/CCB=00000100)

Notes on Power-on

Turn power on/off in the following order or at the same time.

Turning on : VBAT \rightarrow VCC VCC \rightarrow AVCC \rightarrow AVRH Turning off : VCC \rightarrow VBAT AVRH \rightarrow AVCC \rightarrow VCC

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

Differences in Features among the Products with Different Memory Sizes and between Flash Products and MASK Products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

Pull-Up Function of 5V Tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O.

tus type	Function group	State upon power-on reset or low-voltage detection	e upon ver-on set or voltage ection		te in Run node or EP mode STOP mode			
^{>} in stat	i unotion group	Power supply unstable	Power supply stable		Power supply stable	Power supply stable		
-		-	INITX = 0 INITX = 1		INITX = 1	INITX = 1		
		-	-	-	-	SPL = 0	SPL = 1	
	External interrupt enabled selected						Maintain previous state	
	Resource other than the above selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at	
	GPIO selected						"0"	

*1:Oscillation stops in Sub timer mode, Low-speed CR timer mode, STOP mode, RTC mode.

*2:Oscillation stops in STOP mode.

12.3 DC Characteristics

12.3.1 Current Rating

Symbol		• • • •		Value			
(Pin name)		Conditions	Frequency	Typ* ¹	Max* ²	Unit	Remarks
		4MHz external clock input, PLL	4MHz	0.7	1.5		
Symbol (Pin name) Run mode, code executed from Flash Icc (VCC) Run mode, code executed from RAM Run mode, code executed from Flash Run mode, code executed from Flash Run mode, code executed from Flash Run mode, code executed from Flash		ON*°	8MHz	1.3	2.3		
	NOP code executed	20MHz	2.8	4.0	mA	*3	
		All peripheral clock stopped by CKENx	40MHz	5.7	7.3		
Run mode, code executed from Flash	4MHz external clock input, PLL	4MHz	0.6	1.4			
	ON*°	8MHz	1.2	2.1		*0	
	Benchmark code executed	20MHz	2.6	3.7	mA	*3	
		PCLK1 stopped	40MHz	4.8	6.3		
		4MHz crystal oscillation, PLL ON*8	4MHz	1.0	2.9		
		NOP code executed	8MHz	1.7	3.6		
		Built-in high speed CR stopped	20MHz	3.4	5.6	mA	*3
		All peripheral clock stopped by	40MHz	5.7	8.2		
		4MHz external clock input PLI		0.5	12		
		ON* ⁸		0.0	1.2		
Run mode,	NOP code executed		0.9	1.0		*2	
	from PAM	Built-in high speed CR stopped		2.0	2.9	MA	"3
(VCC)		All peripheral clock stopped by CKENx	40MHz	3.7	4.8		
Run mode, code executed from Flash	Run mode, code executed from Flash	4MHz external clock input, PLL ON NOP code executed Built-in high speed CR stopped PCLK1 stopped	40MHz	2.8	3.7	mA	*3,*6,*7
		Built-in high speed CR* ⁵ NOP code executed All peripheral clock stopped by CKENx	4MHz	0.8	1.5	mA	*3
	Run mode, code executed from Flash	32kHz crystal oscillation NOP code executed All peripheral clock stopped by CKENx	32kHz	65	900	μA	*3
		Built-in low speed CR NOP code executed All peripheral clock stopped by CKENx	100kHz	73	920	μA	*3
		4MHz external clock input, PLL	4MHz	0.4	1.2		
		ON*°	8MHz	0.7	1.6	mA	*3
		All peripheral clock stopped by	20MHz	1.5	2.4		-
		CKEINX	40MHz	2.7	3.7		
Iccs	SLEEP operation	All peripheral clock stopped by CKENx	4MHz	0.5	1.2	mA	*3
lccs (VCC) SI		32kHz crystal oscillation All peripheral clock stopped by CKENx	32kHz	63	880	μA	*3
		Built-in low speed CR All peripheral clock stopped by CKENx	100kHz	66	890	μA	*3

12.4.9 CSIO Timing

Synchronous serial (SPI = 0, SCINV = 0)

			$(V_{CC} = AV_{CC})$	= 2.7 V to 5.5	5 V, V _{SS} =	$AV_{SS} = 0 V,$	Ta = - 40°0	C to + 10	
Parameter	Symbol	Pin	Conditions	V _{cc} < 4	4.5 V	V _{cc} ≥ 4.5 V		Unit	
	• • • • • •	name		Min	Max	Min	Max	•	
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns	
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKx, SOTx	Internal shift	- 30	+ 30	- 20	+ 20	ns	
$SIN \to SCK \uparrow setup \ time$	t _{IVSHI}	SCKx, SINx	clock operation	50	-	30	-	ns	
$SCK \uparrow \to SIN \text{ hold time}$	t _{shixi}	SCKx, SINx		0	-	0	-	ns	
Serial clock "L" pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns	
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns	
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx, SOTx	External shift	-	50	-	30	ns	
$SIN \to SCK \uparrow setup \ time$	t _{IVSHE}	SCKx, SINx	operation	10	-	10	-	ns	
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns	
SCK falling time	tF	SCKx		-	5	-	5	ns	
SCK rising time	tR	SCKx		-	5	-	5	ns	

Notes:

- The above AC characteristics are for CLK synchronous mode.
- t_{CYCP} represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ".
- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCLKx_0 and SOTx_1.
- External load capacitance $C_L = 30 \text{ pF}$

Synchronous serial (SPI = 0, SCINV = 1)

$(V_{CC} = AV_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_S$	$_{\rm S} = 0$ V, Ta = - 40°C to + 105°C)
--	---

Paramotor	Symbol Pin Conditions V _{CC} < 4.5V		4.5V	V _{cc} ≥	Unit			
Farameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \uparrow \to SOT \text{ delay time}$	t _{SHOVI}	SCKx, SOTx	Internal shift	- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLI}	SCKx, SINx	clock operation	50	-	30	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXI}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT \text{ delay time}$	t _{SHOVE}	SCKx, SOTx	External shift	-	50	-	30	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLE}	SCKx, SINx	clock operation	10	-	10	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

Notes:

• The above AC characteristics are for CLK synchronous mode.

• t_{CYCP} represents the APB bus clock cycle time.

- For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". • The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCLKx_0 and SOTx_1.
- External load capacitance C_L = 30 pF

When using synchronous serial chip select (SPI = 1, SCINV = 1, MS=0, CSLVL=0)

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions	V _{cc} <	4.5V	V _{cc} ≥	Unit	
Falameter	Symbol	Conditions	Min	Max	Min	Max	Onit
SCS↑→SCK↑ setup time	t _{CSSI}	Internal shift	(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↓→SCS↓ hold time	t _{CSHI}	clock	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}	operation	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	(*3)-50 +5t _{CYCP}	(*3)+50 +5t _{CYCP}	ns
SCS↑→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
$SCK\downarrow \rightarrow SCS\downarrow$ hold time	t _{CSHE}	External shift	0	-	0	-	ns
SCS deselect time	t _{CSDE}	clock	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↑→SOT delay time	t _{DSE}	operation	-	40	-	40	ns
SCS↓→SOT delay time	t _{DEE}		0	-	0	-	ns

(*1): CSSU bit value × serial chip select timing operating clock cycle [ns]

(*2): CSHD bit value x serial chip select timing operating clock cycle [ns]

(*3): CSDS bit value x serial chip select timing operating clock cycle [ns]

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
- About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ".
- About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family PERIPHERAL MANUAL".
- When the external load capacitance $C_L = 30 pF$.

12.4.12 I²C Timing

		(,		,			
Parameter	Symbol	Conditions	Standar	Standard-mode		node	Unit	Pomarks
Falameter	Symbol	Conditions	Min	Max	Min	Max	Onit	itemai ka
SCL clock frequency	F _{SCL}		0	100	0	400	kHz	
(Repeated) START condition								
hold time	t _{HDSTA}		4.0	-	0.6	-	μs	
$SDA\downarrow \to SCL\downarrow$								
SCL clock "L" width	t _{LOW}		4.7	-	1.3	-	μs	
SCL clock "H" width	t _{HIGH}		4.0	-	0.6	-	μs	
(Repeated) START setup								
time	t _{SUSTA}		4.7	-	0.6	-	μs	
$SCL\uparrow o SDA\downarrow$		C _L = 30 pF,						
Data hold time	tupper	$R = (Vp/I_{OL})^{*}$	0	3 15*2	0	0 0* ³	118	
$SCL \downarrow \to SDA \downarrow \uparrow$	HDDAT		0	0.40	0	0.3	μο	
Data setup time	tourset		250	_	100		ne	
$SDA\downarrow\uparrow\toSCL\uparrow$	SUDAT		200		100	_	113	
STOP condition setup time	touero		4.0	-	0.6		115	
$SCL\uparrow\toSDA\uparrow$	50510		4.0		0.0		μυ	
Bus free time between								
"STOP condition" and	t _{BUF}		4.7	-	1.3	-	μs	
"START condition"								
Noise filter	t _{SP}	-	$2 t_{CYCP}^{*4}$	-	2 t _{CYCP} * ⁴	-	ns	

*1: R represents the pull-up resistance of the SCL and SDA lines, and CL the load capacitance of the SCL and SDA lines. Vp represents the power supply voltage of the pull-up resistance, and IoL the VoL guaranteed current.

*2: The maximum t_{HDDAT} must satisfy at least the condition that the period during which the device is holding the SCL signal at "L" (t_{LOW}) does not extend.

*3: A Fast-mode I²C bus device can be used in a Standard-mode I²C bus system, provided that the condition of "t_{SUDAT} ≥ 250 ns" is fulfilled.

*4: t_{CYCP} represents the APB bus clock cycle time.
For the number of the APB bus to which the l²C is connected, see "8. Block Diagram".
To use Standard-mode, set the APB bus clock at 2MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.

12.6 Low-voltage Detection Characteristics

12.6.1 Low-voltage Detection Reset

 $(Ta = -40^{\circ}C to + 105^{\circ}C)$

Baramatar	Symbol	Conditions	Value			Unit	Domoriko
Parameter			Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	SVHR ^{*1} =	2.25	2.45	2.65	V	When voltage drops
Released voltage	VDH	00000	2.30	2.50	2.70	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH	00001	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH	00010	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH	00011	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH	00100	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH	00101	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	3.31	3.60	3.89	V	When voltage drops
Released voltage	VDH	00110	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	3.40	3.70	4.00	V	When voltage drops
Released voltage	VDH	00111	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	3.68	4.00	4.32	V	When voltage drops
Released voltage	VDH	01000	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	3.77	4.10	4.43	V	When voltage drops
Released voltage	VDH	01001	Same as S	VHR = 0000	0 value	V	When voltage rises
Detected voltage	VDL	SVHR ^{*1} =	3.86	4.20	4.54	V	When voltage drops
Released voltage	VDH	01010	Same as S	VHR = 0000	0 value	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160x t _{CYCP} *2	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

*1: SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is reset to SVHR = 00000 by low voltage detection reset.

*2: t_{CYCP} indicates the APB1 bus clock cycle time.

Document History

Document Title: S6E1A11B0A/C0A, S6E1A12B0A/C0A 32-Bit ARM[®] Cortex[®] - FM0+ based Microcontroller Document Number: 002-05091

Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	-	AKIH	07/16/2014	Migrated to Cypress and assigned document number 002-05091. No change to document contents or format.	
*A	5131394	AKIH	02/10/2016	Updated to Cypress format.	