

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f405rgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 8- to 14-bit parallel camera interface up to 54 Mbytes/s
- 96-bit unique ID
- RTC: subsecond accuracy, hardware calendar
- True random number generator
- CRC calculation unit

Table 1. Device summary

Reference	Part number
STM32F405xx	STM32F405RG, STM32F405VG, STM32F405ZG, STM32F405OG, STM32F405OE
STM32F407xx	STM32F407VG, STM32F407IG, STM32F407ZG, STM32F407VE, STM32F407ZE, STM32F407IE

		5.3.12	Memory characteristics	108
		5.3.13	EMC characteristics	110
		5.3.14	Absolute maximum ratings (electrical sensitivity)	112
		5.3.15	I/O current injection characteristics	113
		5.3.16	I/O port characteristics	114
		5.3.17	NRST pin characteristics	118
		5.3.18	TIM timer characteristics	119
		5.3.19	Communications interfaces	121
		5.3.20	CAN (controller area network) interface	133
		5.3.21	12-bit ADC characteristics	133
		5.3.22	Temperature sensor characteristics	138
		5.3.23	V _{BAT} monitoring characteristics	139
		5.3.24	Embedded reference voltage	139
		5.3.25	DAC electrical characteristics	139
		5.3.26	FSMC characteristics	142
		5.3.27	Camera interface (DCMI) timing specifications	161
		5.3.28	SD/SDIO MMC card host interface (SDIO) characteristics	162
		5.3.29	RTC characteristics	163
6	Pack	kage info	ormation	. 164
	6.1	WLCS	P90 package information	. 164
	6.2	LQFP6	4 package information	. 167
	6.3	LQPF1	00 package information	. 170
	6.4	LQFP1	44 package information	. 173
	6.5	UFBGA	A176+25 package information	. 177
	6.6	LQFP1	76 package information	. 180
	6.7	Therma	al characteristics	. 184
7	Part	number	ing	. 185
Append	ix A	Applicat	ion block diagrams	. 186
••	A.1	USB O	TG full speed (ES) interface solutions	. 186
	Α2	USB O	TG high speed (HS) interface solutions	188
	Δ3	Ethern	et interface solutions	180
	73.0			. 109
8	Revi	ision his	tory	. 191

Table 45.	ESD absolute maximum ratings	112
Table 46.	Electrical sensitivities	113
Table 47.	I/O current injection susceptibility	114
Table 48.	I/O static characteristics	114
Table 49.	Output voltage characteristics	116
Table 50.	I/O AC characteristics	117
Table 51.	NRST pin characteristics	119
Table 52.	Characteristics of TIMx connected to the APB1 domain	120
Table 53.	Characteristics of TIMx connected to the APB2 domain	121
Table 54.		121
Table 55.	SPI dynamic characteristics	122
Table 56.		126
Table 57.	USB OIG FS startup time	128
Table 58.	USB OTG FS DC electrical characteristics.	128
Table 59.	USB OTG FS electrical characteristics.	129
Table 60.	USB HS DC electrical characteristics	129
Table 61.	USB HS clock timing parameters	129
Table 62.	ULPI timing.	130
Table 63.	Ethernet DC electrical characteristics.	131
Table 64.	Dynamic characteristics: Eternity MAC signals for SMI	131
Table 65.	Dynamic characteristics: Ethernet MAC signals for RMII	132
Table 66.	Dynamic characteristics: Ethernet MAC signals for MII	133
Table 67.	ADC characteristics	133
Table 68.	ADC accuracy at f _{ADC} = 30 MHz	135
Table 69.	Temperature sensor characteristics	138
Table 70.	Temperature sensor calibration values.	138
Table 71.	V _{BAT} monitoring characteristics	139
Table 72.	Embedded internal reference voltage	139
Table 73.	Internal reference voltage calibration values	139
Table 74.	DAC characteristics	139
Table 75.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	143
Table 76.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	144
Table 77.	Asynchronous multiplexed PSRAM/NOR read timings.	145
Table 78.	Asynchronous multiplexed PSRAM/NOR write timings	146
Table 79.	Synchronous multiplexed NOR/PSRAM read timings	148
Table 80.	Synchronous multiplexed PSRAM write timings	149
Table 81.	Synchronous non-multiplexed NOR/PSRAM read timings	151
Table 82.	Synchronous non-multiplexed PSRAM write timings	152
Table 83.	Switching characteristics for PC Card/CF read and write cycles	
	in attribute/common space	157
Table 84.	Switching characteristics for PC Card/CF read and write cycles	
	in I/O space	158
Table 85.	Switching characteristics for NAND Flash read cycles	160
Table 86.	Switching characteristics for NAND Flash write cycles	161
Table 87.	DCMI characteristics.	161
Table 88.	Dynamic characteristics: SD / MMC characteristics	163
Table 89.	RTC characteristics	163
Table 90.	WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale	
	package mechanical data	165
Table 91.	WLCSP90 recommended PCB design rules	166
Table 92.	LQFP64 – 64-pin 10 x 10 mm low-profile quad flat package	
	mechanical data	167

Figure 40.	SPI timing diagram - slave mode and CPHA = 1	124
Figure 41.	SPI timing diagram - master mode	125
Figure 42.	I2S slave timing diagram (Philips protocol)	127
Figure 43.	I2S master timing diagram (Philips protocol) ⁽¹⁾	127
Figure 44.	USB OTG FS timings: definition of data signal rise and fall time	129
Figure 45.	ULPI timing diagram.	130
Figure 46.	Ethernet SMI timing diagram	131
Figure 47.	Ethernet RMII timing diagram	132
Figure 48	Ethernet MII timing diagram	132
Figure 49	ADC accuracy characteristics	136
Figure 50	Typical connection diagram using the ADC	136
Figure 51	Power supply and reference decoupling (V not connected to V)	137
Figure 51.	Tower supply and reference decoupling (V_{REF+} not connected to V_{DDA})	120
Figure 52.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	130
Figure 53.		142
Figure 54.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	143
Figure 55.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	144
Figure 56.	Asynchronous multiplexed PSRAM/NOR read waveforms.	145
Figure 57.	Asynchronous multiplexed PSRAM/NOR write waveforms	146
Figure 58.	Synchronous multiplexed NOR/PSRAM read timings	147
Figure 59.	Synchronous multiplexed PSRAM write timings	149
Figure 60.	Synchronous non-multiplexed NOR/PSRAM read timings	150
Figure 61.	Synchronous non-multiplexed PSRAM write timings	152
Figure 62.	PC Card/CompactFlash controller waveforms for common memory read access	153
Figure 63.	PC Card/CompactFlash controller waveforms for common memory write access	154
Figure 64.	PC Card/CompactFlash controller waveforms for attribute memory read	
0	access	155
Figure 65.	PC Card/CompactElash controller waveforms for attribute memory write	
	access	156
Figure 66	PC Card/CompactElash controller waveforms for I/O space read access	156
Figure 67	PC Card/CompactFlash controller waveforms for I/O space write access	157
Figure 68	NAND controller waveforms for read access	150
Figure 60.	NAND controller waveforms for write access	150
Figure 70	NAND controller waveforms for common momenty read access	160
Figure 70.	NAND controller waveforms for common memory write access	160
Figure 71.		100
Figure 72.		101
Figure 73.		162
Figure 74.	SD default mode	163
Figure 75.	WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch water level chip scale	
	package outline	164
Figure 76.	WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale	
	recommended footprint	165
Figure 77.	WLCSP90 marking example (package top view)	166
Figure 78.	LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat package outline	167
Figure 79.	LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat package	
	recommended footprint	168
Figure 80.	LPQF64 marking example (package top view)	169
Figure 81.	LQFP100 - 100-pin, 14 x 14 mm low-profile guad flat package outline	170
Figure 82	LQFP100 - 100-pin, 14 x 14 mm low-profile guad flat	-
J	recommended footprint.	171
Figure 83	I QEP100 marking example (package top view)	172
Figure 84	I QEP144 - 144-pin 20 x 20 mm low-profile guad flat package outline	173
Figure 85	I OEP144 - 144-pin 20 x 20 mm low-profile quad flat package	
. iguic 00.	Estimate provide the provide t	

Figure 6. Multi-AHB matrix

2.2.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC.

DocID022152 Rev 8

Figure 8. PDR_ON and NRST control with internal reset OFF

2.2.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low-power regulator (LPR)
 - Power-down
- Regulator OFF

Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. Refer to *Table 14: General operating conditions*.
- LPR is used in the Stop modes
 The LP regulator mode is configured by software when entering Stop mode.
- Power-down is used in Standby mode.
 - The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost)

				M# 00000		
Pins ⁽¹⁾	CF	NOR/PSRAM/ SRAM	AM/ NOR/PSRAM Mux NAND 16 bit		LQFP100 ⁽²⁾	(2) (2)
PF1	A1	A1	-	-	-	-
PF2	A2	A2	-	-	-	-
PF3	A3	A3	-	-	-	-
PF4	A4	A4	-	-	-	-
PF5	A5	A5	-	-	-	-
PF6	NIORD	-	-	-	-	-
PF7	NREG	-	-	-	-	-
PF8	NIOWR	-	-	-	-	-
PF9	CD	-	-	-	-	-
PF10	INTR	-	-	-	-	-
PF12	A6	A6	-	-	-	-
PF13	A7	A7	-	-	-	-
PF14	A8	A8	-	-	-	-
PF15	A9	A9	-	-	-	-
PG0	A10	A10			-	-
PG1		A11	-	-	-	-
PE7	D4	D4	DA4	D4	Yes	Yes
PE8	D5	D5	DA5	D5	Yes	Yes
PE9	D6	D6	DA6	D6	Yes	Yes
PE10	D7	D7	DA7	D7	Yes	Yes
PE11	D8	D8	DA8	D8	Yes	Yes
PE12	D9	D9	DA9	D9	Yes	Yes
PE13	D10	D10	DA10	D10	Yes	Yes
PE14	D11	D11	DA11	D11	Yes	Yes
PE15	D12	D12	DA12	D12	Yes	Yes
PD8	D13	D13	DA13	D13	Yes	Yes
PD9	D14	D14	DA14	D14	Yes	Yes
PD10	D15	D15	DA15	D15	Yes	Yes
PD11	-	A16	A16	CLE	Yes	Yes
PD12	-	A17	A17	ALE	Yes	Yes
PD13	-	A18	A18	-	Yes	-
PD14	D0	D0	DA0	D0	Yes	Yes
PD15	D1	D1	DA1	D1	Yes	Yes

63/202

DocID022152 Rev 8

	Table 9. Alternate function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15	
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_ D1	ETH_MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N		-	-	-	-	-	OTG_HS_ULPI_ D2	ETH _MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACES WO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	NJTRST	-	TIM3_CH1		-	SPI1_MISO	SPI3_MISO	I2S3ext_SD	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2		I2C1_SMB A	SPI1_MOSI	SPI3_MOSI I2S3_SD		-	CAN2_RX	OTG_HS_ULPI_ D7	ETH_PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1		I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2		I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYN C	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH _MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_CK	-	USART3_TX	-	-	OTG_HS_ULPI_ D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_ D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_ D5	ETH _MII_TXD0 ETH _RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_ D6	ETH _MII_TXD1 ETH _RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	I2S2ext_SD	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Pinouts and pin description

577

Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON

DocID022152 Rev 8

			Тур	Max				
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
I _{DD_STOP}	Supply current in	Flash in Stop mode, low-speed and high- speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.45	1.5	11.00	20.00		
	with main regulator in Run mode	Flash in Deep power-down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.40	1.5	11.00	20.00	- mA	
	Supply current in Stop mode with main regulator in Low-power mode	Flash in Stop mode, low-speed and high- speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.31	1.1	8.00	15.00		
		Flash in Deep power-down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.28	1.1	8.00	15.00		

Table 23. 1	Typical and	maximum	current	consum	ptions	in Sto	p mode

Table 24. Typical and maximum current consumptions in Standby mode

		Conditions		Тур		Ма			
Symbol	Parameter		1	(_A = 25 °	C	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} =	= 3.6 V		
I _{DD_STBY}	Supply current in Standby mode	Backup SRAM ON, low- speed oscillator and RTC ON	3.0	3.4	4.0	20	36		
		Backup SRAM OFF, low- speed oscillator and RTC ON	2.4	2.7	3.3	16	32		
		Backup SRAM ON, RTC OFF	2.4	2.6	3.0	12.5	24.8	- μΑ	
		Backup SRAM OFF, RTC OFF	1.7	1.9	2.2	9.8	19.2		

1. Guaranteed by characterization.

A device reset allows normal operations to be resumed.

The test results are given in *Table 43*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	4A

Table 43. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Parameter Conditions fi		Max vs. [f _{HSE} /f _{CPU}] 25/168 MHz	Unit
				22	
		$V_{PP} = 3.3 \text{ V}$ T = 25 °C OFP176	0.1 to 30 MHZ	32	
		v DD = 0.0 v, rA = 20 v,	30 to 130 MHz	25	dBµV
			130 MHz to 1GHz	29	
S	Poak loval		SAE EMI Level	4	-
SEWI		V _{DD} = 3.3 V, T _A = 25 °C, LQFP176	0.1 to 30 MHz	19	
		package, conforming to SAE J1752/3	30 to 130 MHz	16	dBµV
		ART accelerator and PLL spread	130 MHz to 1GHz	18	
		spectrum enabled	SAE EMI level	3.5	-

Table 44.	EMI	characteristics
-----------	-----	-----------------

5.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000 ⁽²⁾	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1	II	500	

Table 45. ESD absolute maximum ratings

1. Guaranteed by characterization.

2. On V_{BAT} pin, $V_{ESD(HBM)}$ is limited to 1000 V.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table	46	Electrical	sensitivities
Table	τυ.	LICCUICAI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

5.3.15 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 47.

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	- 0	NA	
	Injected current on NRST pin	- 0	NA	
I _{INJ} ⁽¹⁾	Injected current on PE2, PE3, PE4, PE5, PE6, PI8, PC13, PC14, PC15, PI9, PI10, PI11, PF0, PF1, PF2, PF3, PF4, PF5, PF10, PH0/OSC_IN, PH1/OSC_OUT, PC0, PC1, PC2, PC3, PB6, PB7, PB8, PB9, PE0, PE1, PI4, PI5, PI6, PI7, PDR_ON, BYPASS_REG	- 0	NA	mA
	Injected current on all FT pins	- 5	NA	
	Injected current on any other pin	- 5	+5	

Table 47. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

5.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	FT, TTa and NRST I/O input low		-	-	0.3V _{DD} -0.04 ⁽¹⁾	
	level voltage	1.7 v ≤v _{DD} ≤3.0 v	-	-	0.3V _{DD} ⁽²⁾	
	BOOT0 I/O input low level	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	-	-		
	voltage	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	-	-	0.1V _{DD} -+0.1	V
	FT, TTa and NRST I/O input low	1710 361	0.45V _{DD} +0.3 ⁽¹⁾	-	-	v
	level voltage	1.7 V ≤V _{DD} ≤3.0 V	0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT0 I/O input low level	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	$0.17 V_{-} + 0.7^{(1)}$	-	-	
	voltage	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	0.17 VDD+0.7 V	-	-	

Table 48.	I/O	static	characteristics
-----------	-----	--------	-----------------

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		t Maximum frequency ⁽³⁾	C_L = 30 pF, V_{DD} > 2.70 V	-	-	100 ⁽⁴⁾		
	с		C _L = 30 pF, V _{DD >} 1.8 V	-	-	50 ⁽⁴⁾	MHz	
	r max(IO)out		C _L = 10 pF, V _{DD >} 2.70 V	-	-	180 ⁽⁴⁾		
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	100 ⁽⁴⁾		
11	t _{f(IQ)out} /	Output high to low level fall time and output low to high level rise time	C _L = 30 pF, V _{DD >} 2.70 V	-	-	4		
			C _L = 30 pF, V _{DD >} 1.8 V	-	-	6	ns	
	t _{r(IO)out}		C _L = 10 pF, V _{DD >} 2.70 V	-	-	2.5		
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	-	ns	

Table 50. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by characterization.

 The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure* 37.

4. For maximum frequencies above 50 MHz, the compensation cell should be used.

Figure 37. I/O AC characteristics definition

Electrical characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	
R _O ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 $M\Omega$
C _{LOAD} ⁽²⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	3.6 V and (0x1C7) to (0xE38) at V_{REF+} = 1.8 V
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.
(4)	DAC DC V _{REF} current	-	170	240	uΔ	With no load, worst code (0x800) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs
'VREF+	mode (Standby mode)	-	50	75	μΛ	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC VDDA current	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	consumption in quiescent mode ⁽³⁾	-	475	625	μΑ	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs
DNI ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.

 Table 74. DAC characteristics (continued)

Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings ⁽¹⁾⁽²
--

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK}	3T _{HCLK} + 4	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	T _{HCLK} –0.5	T _{HCLK} +0.5	ns
t _{w(NWE)}	FSMC_NWE low time	T _{HCLK} –1	T _{HCLK} +2	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK} –1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	T _{HCLK} – 2	-	ns
$t_{v(BL_NE)}$	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} – 1	-	ns
t _{v(Data_NE)}	Data to FSMC_NEx low to Data valid	-	T _{HCLK} +3	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} –1	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2	ns
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK} +0.5	ns

1. C_L = 30 pF.

2. Guaranteed by characterization.

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FSMC_NWE low width	4T _{HCLK} –1	4T _{HCLK} + 3	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15-0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15-0] invalid	3T _{HCLK} –2	-	ns
t _{d(D-NWE)}	FSMC_D[15-0] valid before FSMC_NWE high	5T _{HCLK} –3	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3T _{HCLK}	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} –2	_	ns

 Table 86. Switching characteristics for NAND Flash write cycles⁽¹⁾

1. C_L = 30 pF.

5.3.27 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 87* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 13*, with the following configuration:

- PCK polarity: falling
- VSYNC and HSYNC polarity: high
- Data format: 14 bits

Symbol	Parameter	Min	Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{pixel}	Pixel clock input duty cycle	30	70	%

Device marking for LQFP64

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 80. LPQF64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

niconanical data (continued)										
Symbol	millimeters			inches ⁽¹⁾						
	Min	Тур	Мах	Min	Тур	Max				
ZD	-	1.250	-	-	0.0492	-				
E	23.900	-	24.100	0.9409	-	0.9488				
HE	25.900	-	26.100	1.0197	-	1.0276				
ZE	-	1.250	-	-	0.0492	-				
е	-	0.500	-	-	0.0197	-				
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295				
L1	-	1.000	-	-	0.0394	-				
k	0°	-	7°	0°	-	7°				
ссс	-	-	0.080	-	-	0.0031				

Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

