

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f405rgt6v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 8. PDR_ON and NRST control with internal reset OFF

2.2.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low-power regulator (LPR)
 - Power-down
- Regulator OFF

Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. Refer to *Table 14: General operating conditions*.
- LPR is used in the Stop modes
 The LP regulator mode is configured by software when entering Stop mode.
- Power-down is used in Standby mode.
 - The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost)

The STM32F407xx includes the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F40xxx/41xxx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

2.2.29 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

2.2.30 Universal serial bus on-the-go full-speed (OTG_FS)

The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 4 bidirectional endpoints
- 8 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

	I	Pin r	numb	er							
LQFP64	MLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	-	1	1	A2	1	PE2	I/O	FT	-	TRACECLK/ FSMC_A23 / ETH_MII_TXD3 / EVENTOUT	-
-	-	2	2	A1	2	PE3	I/O	FT	-	TRACED0/FSMC_A19 / EVENTOUT	-
-	-	3	3	B1	3	PE4	I/O	FT	-	TRACED1/FSMC_A20 / DCMI_D4/ EVENTOUT	-
-	-	4	4	B2	4	PE5	I/O	FT	-	TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6 / EVENTOUT	-
-	-	5	5	В3	5	PE6	I/O	FT	-	TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7 / EVENTOUT	-
1	A10	6	6	C1	6	V _{BAT}	S	-	-	-	-
-	-	-	-	D2	7	PI8	I/O	FT	(2)(3)	EVENTOUT	RTC_TAMP1, RTC_TAMP2, RTC_TS
2	A9	7	7	D1	8	PC13	I/O	FT	(2) (3)	EVENTOUT	RTC_OUT, RTC_TAMP1, RTC_TS
3	B10	8	8	E1	9	PC14/OSC32_IN (PC14)	I/O	FT	(2)(3)	EVENTOUT	OSC32_IN ⁽⁴⁾
4	B9	9	9	F1	10	PC15/ OSC32_OUT (PC15)	I/O	FT	(2)(3)	EVENTOUT	OSC32_OUT ⁽⁴⁾
-	-	-	-	D3	11	PI9	I/O	FT	-	CAN1_RX / EVENTOUT	-
-	-	-	-	E3	12	PI10	I/O	FT	-	ETH_MII_RX_ER / EVENTOUT	-
-	-	-	-	E4	13	PI11	I/O	FT	-	OTG_HS_ULPI_DIR / EVENTOUT	-
-	-	-	-	F2	14	V _{SS}	S	-	-	-	-
-	-	-	-	F3	15	V _{DD}	S	-	-	-	-
-	-	-	10	E2	16	PF0	I/O	FT	-	FSMC_A0 / I2C2_SDA / EVENTOUT	-

Table 7. STM32F40xxx pin and ball definitions

		Pin r	าumb	er							
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
33	J3	51	73	P12	92	PB12	I/O	FT	-	SPI2_NSS / I2S2_WS / I2C2_SMBA/ USART3_CK/ TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID/ EVENTOUT	-
34	J1	52	74	P13	93	PB13	I/O	FT	-	SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/ EVENTOUT	OTG_HS_VBUS
35	J2	53	75	R14	94	PB14	I/O	FT	_	SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM/ USART3_RTS / TIM8_CH2N/I2S2ext_SD/ EVENTOUT	-
36	H1	54	76	R15	95	PB15	I/O	FT	-	SPI2_MOSI / I2S2_SD/ TIM1_CH3N / TIM8_CH3N / TIM12_CH2 / OTG_HS_DP/ EVENTOUT	RTC_REFIN
-	H2	55	77	P15	96	PD8	I/O	FT	-	FSMC_D13 / USART3_TX/ EVENTOUT	-
-	H3	56	78	P14	97	PD9	I/O	FT	-	FSMC_D14 / USART3_RX/ EVENTOUT	-
-	G3	57	79	N15	98	PD10	I/O	FT	-	FSMC_D15/USART3_CK/ EVENTOUT	-
-	G1	58	80	N14	99	PD11	I/O	FT	-	FSMC_CLE / FSMC_A16/USART3_CTS/ EVENTOUT	-
-	G2	59	81	N13	100	PD12	I/O	FT	-	FSMC_ALE/ FSMC_A17/TIM4_CH1 / USART3_RTS/ EVENTOUT	-

Table 7. STM32F40xxx pin and ball definitions (continued)

63/202

DocID022152 Rev 8

	Table 9. Alternate function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Ρ	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_ D1	ETH_MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N		-	-	-	-	-	OTG_HS_ULPI_ D2	ETH _MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACES WO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	NJTRST	-	TIM3_CH1		-	SPI1_MISO	SPI3_MISO	I2S3ext_SD	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2		I2C1_SMB A	SPI1_MOSI	SPI3_MOSI I2S3_SD		-	CAN2_RX	OTG_HS_ULPI_ D7	ETH_PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1		I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2		I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYN C	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH _MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_CK	-	USART3_TX	-	-	OTG_HS_ULPI_ D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_ D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_ D5	ETH _MII_TXD0 ETH _RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_ D6	ETH _MII_TXD1 ETH _RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	I2S2ext_SD	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Pinouts and pin description

577

						Alternate function mapping (continueu)											
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Ρ	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A10	-	-	EVENTOUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A11	-	-	EVENTOUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A12	-	-	EVENTOUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A13	-	-	EVENTOUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A14	-	-	EVENTOUT
	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A15	-	-	EVENTOUT
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_INT2	-	-	EVENTOUT
	PG7	-	-	-	-	-	-	-	-	USART6_CK	-	-	-	FSMC_INT3	-	-	EVENTOUT
	PG8	-	-	-	-	-	-	-	-	USART6_ RTS	-	-	ETH_PPS_OUT	-	-	-	EVENTOUT
Port G	PG9	-	-	-	-	-	-	-	-	USART6_RX	-	-	-	FSMC_NE2/ FSMC_NCE3	-	-	EVENTOUT
	PG10	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_ NCE4_1/ FSMC_NE3	-	-	EVENTOUT
	PG11	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_TX_EN ETH _RMII_ TX_EN	FSMC_NCE4_ 2	-	-	EVENTOUT
	PG12	-	-	-	-	-	-	-	-	USART6_ RTS	-	-	-	FSMC_NE4	-	-	EVENTOUT
	PG13	-	-	-	-	-	-	-	-	UART6_CTS	-	-	ETH _MII_TXD0 ETH _RMII_TXD0	FSMC_A24	-	-	EVENTOUT
	PG14	-	-	-	-	-	-	-	-	USART6_TX	-	-	ETH _MII_TXD1 ETH _RMII_TXD1	FSMC_A25	-	-	EVENTOUT
	PG15	-	-	-	-	-	-	-	-	USART6_ CTS	-	-	-	-	DCMI_D13	-	EVENTOUT

Table 9. Alternate function mapping (continued)

DocID022152 Rev 8

57

68/202

STM32F405xx, STM32F407xx

Pinouts and pin description

69/202

DocID022152 Rev 8

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH2	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_CRS	-	-	-	EVENTOUT
	PH3	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_COL	-	-	-	EVENTOUT
	PH4	-	-	-	-	I2C2_SCL	-	-	-	-	-	OTG_HS_ULPI_ NXT	-	-	-	-	EVENTOUT
	PH5	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH6	-	-	-	-	I2C2_ SMBA	-	-	-	-	TIM12_CH1	-	ETH_MII_RXD2	-	-	-	EVENTOUT
DestU	PH7	-	-	-	-	I2C3_SCL	-	-	-	-	-	-	ETH _MII_RXD3	-	-	-	EVENTOUT
POILH	PH8	-	-	-	-	I2C3_SDA	-	-	-	-	-	-	-	-	DCMI_ HSYNC	-	EVENTOUT
	PH9	-	-	-	-	I2C3_ SMBA	-	-	-	-	TIM12_CH2	-	-	-	DCMI_D0	-	EVENTOUT
	PH10	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	-	-	DCMI_D1	-	EVENTOUT
	PH11	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	-	DCMI_D2	-	EVENTOUT
	PH12	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	-	DCMI_D3	-	EVENTOUT
	PH13	-	-	-	TIM8_CH1N	-	-	-	-	-	CAN1_TX	-	-	-	-	-	EVENTOUT
	PH14	-	-	-	TIM8_CH2N	-	-	-	-	-	-	-	-	-	DCMI_D4	-	EVENTOUT
	PH15	-	-	-	TIM8_CH3N	-	-	-	-	-	-	-	-	-	DCMI_D11	-	EVENTOUT

 Table 9. Alternate function mapping (continued)

577

Bus	Boundary address	Peripheral
	0x4001 4C00 - 0x4001 57FF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	ТІМ9
	0x4001 3C00 - 0x4001 3FFF	EXTI
	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	Reserved
	0x4001 3000 - 0x4001 33FF	SPI1
APB2	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	ТІМ8
	0x4001 0000 - 0x4001 03FF	TIM1
	0x4000 7800- 0x4000 FFFF	Reserved

Table 10. register boundary addresses (continued)

Operating power supply range	ADC operation	ADC access memory access frequency with wait state (f _{Flashmax})		I/O operation	Clock output Frequency on I/O pins	Possible Flash memory operations
V _{DD} =1.8 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	160 MHz with 7 wait states	 Degraded speed performance No I/O compensation 	up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	168 MHz with 7 wait states	 Degraded speed performance No I/O compensation 	up to 30 MHz	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	168 MHz with 6 wait states	 Degraded speed performance I/O compensation works 	up to 48 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁵⁾	Conversion time up to 2.4 Msps	30 MHz	168 MHz with 5 wait states	 Full-speed operation I/O compensation works 	- up to 60 MHz when V _{DD} = 3.0 to 3.6 V - up to 48 MHz when V _{DD} = 2.7 to 3.0 V	32-bit erase and program operations

Table 15. Limitations depending on the operating power supply range

1. It applies only when code executed from Flash memory access, when code executed from RAM, no wait state is required.

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

3. V_{DD}/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to *Section : Internal reset OFF*).

4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON

DocID022152 Rev 8

			Тур	Max			
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in	Flash in Stop mode, low-speed and high- speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.45	1.5	11.00	20.00	
1	with main regulator in Run mode	Flash in Deep power-down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.40	1.5	11.00	20.00	m۵
I _{DD_STOP}	Supply current in Stop mode	Flash in Stop mode, low-speed and high- speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.31	1.1	8.00	15.00	ШA
	with main regulator in Low-power mode	Flash in Deep power-down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.28	1.1	8.00	15.00	

Table 23. 1	Typical and	maximum	current	consum	ptions	in Sto	p mode

Table 24. Typical and maximum current consumptions in Standby mode

Symbol				Тур		Ма		
	Parameter	Conditions	1	(_A = 25 °	C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} =	= 3.6 V	
		Backup SRAM ON, low- speed oscillator and RTC ON	3.0	3.4	4.0	20	36	
	Supply current in Standby mode	Backup SRAM OFF, low- speed oscillator and RTC ON	2.4	2.7	3.3	16	32	
IDD_STBY		Backup SRAM ON, RTC OFF	2.4	2.6	3.0	12.5	24.8	μΑ
		Backup SRAM OFF, RTC OFF	1.7	1.9	2.2	9.8	19.2	

1. Guaranteed by characterization.

Symbol	Parameter	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
twusleep ⁽²⁾	Wakeup from Sleep mode	-	5	-	CPU clock cycle
	Wakeup from Stop mode (regulator in Run mode and Flash memory in Stop mode)	-	13	-	
+ (2)	Wakeup from Stop mode (regulator in low-power mode and Flash memory in Stop mode)	-	17	40	
'WUSTOP` '	Wakeup from Stop mode (regulator in Run mode and Flash memory in Deep power-down mode)	-	105	-	μο
	Wakeup from Stop mode (regulator in low-power mode and Flash memory in Deep power-down mode)	-	110	-	
t _{WUSTDBY} ⁽²⁾⁽³⁾	Wakeup from Standby mode	260	375	480	μs

Table 29. Low-power mode wakeup timi

1. Guaranteed by characterization.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}$ minimum and maximum values are given at 105 °C and -45 °C, respectively.

5.3.8 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 30* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
$DuCy_{(HSE)}$	Duty cycle	-	45	-	55	%
۱ _L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

	Table 3	30. High-	speed exter	nal user cl	lock char	acteristics
--	---------	-----------	-------------	-------------	-----------	-------------

1. Guaranteed by design.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	
		120 MHz	RMS	-	15	-	
Jitter ⁽³⁾	Period Jitter		peak to peak	-	±200	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 50 MHz on 1000 samples		-	32	-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples		-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 100 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 100 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table 36. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-		0.95 ⁽²⁾	1	2.10	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-		100	-	432	MHz
+	PLL I2S lock time	VCO freq = 100 MHz	2	75	-	200	
LOCK	VCO freq = 432 MHz		2	100	-	300	μο
Jitter ⁽³⁾	Master I ² S clock jitter	Cycle to cycle at	RMS	-	90	-	
		12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples		-	90	-	ps
	WS I ² S clock jitter	Cycle to cycle at 48 I on 1000 samples	KHz	-	400	-	ps

Table 37. PLLI2S (audio PLL) characteristics

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC[?] code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 25/168 MHz	Unit
				22	
		$V_{PP} = 3.3 \text{ V}$ T = 25 °C OFP176	0.1 to 30 MHZ	32	
	Peak level $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, I_A$ package, conforming to S EEMBC, code running from ART accelerator enabled $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, I_A$ package, conforming to S EEMBC, code running from ART accelerator and PLL spectrum enabled	package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator enabled	30 to 130 MHz	25	dBµV
			130 MHz to 1GHz	29	
S			SAE EMI Level	4	-
SEWI		V _{DD} = 3.3 V, T _A = 25 °C, LQFP176	0.1 to 30 MHz	19	
		package, conforming to SAE J1752/3	30 to 130 MHz	16	dBµV
		ART accelerator and PLL spread spectrum enabled	130 MHz to 1GHz	18	
			SAE EMI level	3.5	-

Table 44.	EMI	characteristics
-----------	-----	-----------------

5.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000 ⁽²⁾	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1	II	500	

Table 45. ESD absolute maximum ratings

1. Guaranteed by characterization.

2. On V_{BAT} pin, $V_{ESD(HBM)}$ is limited to 1000 V.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ} ⁽¹⁾	Injected current on BOOT0 pin	- 0	NA	
	Injected current on NRST pin	- 0	NA	
	Injected current on PE2, PE3, PE4, PE5, PE6, PI8, PC13, PC14, PC15, PI9, PI10, PI11, PF0, PF1, PF2, PF3, PF4, PF5, PF10, PH0/OSC_IN, PH1/OSC_OUT, PC0, PC1, PC2, PC3, PB6, PB7, PB8, PB9, PE0, PE1, PI4, PI5, PI6, PI7, PDR_ON, BYPASS_REG	- 0	NA	mA
	Injected current on all FT pins	- 5	NA	
	Injected current on any other pin	- 5	+5	

Table 47. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

5.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	FT, TTa and NRST I/O input low		-	-	0.3V _{DD} -0.04 ⁽¹⁾	
	level voltage	1.7 v ≤v _{DD} ≤3.0 v	-	-	0.3V _{DD} ⁽²⁾	
	BOOT0 I/O input low level	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	-	-		
	voltage	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	-	-	0.1V _{DD} -+0.1	V
	FT, TTa and NRST I/O input low level voltage	1.7 V ≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾	-	-	v
			0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT0 I/O input low level voltage	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	- 0.17V _{DD} +0.7 ⁽¹⁾	-	-	
		1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C		-	-	

Table 48.	I/O	static	characteristics
-----------	-----	--------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	9		-	
t _{ih(RXD)}	Receive data hold time	10		-	
t _{su(DV)}	Data valid setup time	9		-	
t _{ih(DV)}	Data valid hold time	8		-	ne
t _{su(ER)}	Error setup time	6		-	115
t _{ih(ER)}	Error hold time	8		-	
t _{d(TXEN)}	Transmit enable valid delay time	0	10	14	
t _{d(TXD)}	Transmit data valid delay time	0	10	15	

 Table 66. Dynamic characteristics: Ethernet MAC signals for MII⁽¹⁾

1. Guaranteed by characterization.

5.3.20 CAN (controller area network) interface

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

5.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table* 67 are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table* 14.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	1.8 ⁽¹⁾	-	3.6	
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾⁽²⁾⁽³⁾	-	V _{DDA}	V
V_{REF-}	Negative reference voltage	-	-	0	-	
f _{ADC}	ADC clock frequency	V _{DDA} = 1.8 ⁽¹⁾⁽³⁾ to 2.4 V	0.6	15	18	MHz
		V_{DDA} = 2.4 to 3.6 V ⁽³⁾	0.6	30	36	MHz
f _{TRIG} ⁽⁴⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽⁵⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽⁴⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	κΩ
R _{ADC} ⁽⁴⁾⁽⁶⁾	Sampling switch resistance	-	-	-	6	кΩ
C _{ADC} ⁽⁴⁾	Internal sample and hold capacitor	-	-	4	-	pF

Table 84.	Switching characteristics for PC Card/CF read and write cycles
	in I/O space ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NIOWR)}	FSMC_NIOWR low width	8T _{HCLK} –1	-	ns
t _{v(NIOWR-D)}	FSMC_NIOWR low to FSMC_D[15:0] valid	-	5T _{HCLK} – 1	ns
t _{h(NIOWR-D)}	FSMC_NIOWR high to FSMC_D[15:0] invalid	8T _{HCLK} – 2	-	ns
t _{d(NCE4_1-NIOWR)}	FSMC_NCE4_1 low to FSMC_NIOWR valid	-	5T _{HCLK} + 2.5	ns
t _{h(NCEx-NIOWR)}	FSMC_NCEx high to FSMC_NIOWR invalid	5T _{HCLK} –1.5	-	ns
t _{d(NIORD-NCEx)}	FSMC_NCEx low to FSMC_NIORD valid	-	5T _{HCLK} + 2	ns
t _{h(NCEx-NIORD)}	FSMC_NCEx high to FSMC_NIORD) valid	5T _{HCLK} – 1.5	-	ns
t _{w(NIORD)}	FSMC_NIORD low width	8T _{HCLK} –0.5	-	ns
t _{su(D-NIORD)}	su(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high		-	ns
t _{d(NIORD-D)} FSMC_D[15:0] valid after FSMC_NIORD high		0	-	ns

1. C_L = 30 pF.

2. Guaranteed by characterization.

NAND controller waveforms and timings

Figure 68 through *Figure 71* represent synchronous waveforms, and *Table 85* and *Table 86* provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FSMC_WaitSetupTime = 0x03;
- COM.FSMC_HoldSetupTime = 0x02;
- COM.FSMC_HiZSetupTime = 0x01;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FSMC_WaitSetupTime = 0x03;
- ATT.FSMC_HoldSetupTime = 0x02;
- ATT.FSMC_HiZSetupTime = 0x01;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

0b.a.l	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.540	0.570	0.600	0.0213	0.0224	0.0236
A1	-	0.190	-	-	0.0075	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118
D	4.188	4.223	4.258	0.1649	0.1663	0.1676
E	3.934	3.969	4.004	0.1549	0.1563	0.1576
е	-	0.400	-	-	0.0157	-
e1	-	3.600	-	-	0.1417	-
e2	-	3.200	-	-	0.1260	-
F	-	0.3115	-	-	0.0123	-
G	-	0.3845	-	-	0.0151	-
aaa	-	0.100	-	-	0.0039	-
bbb	-	0.100	-	-	0.0039	-
CCC	-	0.100	-	-	0.0039	-
ddd	-	0.050	-	-	0.0020	-
eee	-	0.050	-	-	0.0020	-

Table 90. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 76. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale recommended footprint

Figure 95. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

8 Revision history

Date	Revision	Changes
15-Sep-2011	1	Initial release.
24-Jan-2012	2	Added WLCSP90 package on cover page. Renamed USART4 and USART5 into UART4 and UART5, respectively. Updated number of USB OTG HS and FS in <i>Table 2: STM32F405xx</i> and <i>STM32F407xx: features and peripheral counts.</i> Updated <i>Figure 3: Compatible board design between</i> <i>STM32F10xx/STM32F2/STM32F40xx; for LQFP144 package</i> and <i>Figure 4: Compatible board design between</i> <i>STM32F10xx/STM32F2/STM32F40xx; for LQFP144 package</i> and <i>Figure 4: Compatible board design between</i> <i>STM32F40xxx for LQFP176 and BGA176 packages,</i> and removed note 1 and 2. Updated <i>Section 2.2.9: Flexible static memory controller (FSMC).</i> Modified I/Os used to reprogram the Flash memory for CAN2 and USB OTG FS in <i>Section 2.2.13: Boot modes.</i> Updated note in <i>Section 2.2.14: Power supply schemes.</i> PDR_ON no more available on LQFP100 package. Updated <i>Section 2.2.16: Voltage regulator.</i> Updated condition to obtain a minimum supply voltage of 1.7 V in the whole document. Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for UART4 and UART5 in <i>Table 5: USART feature comparison.</i> Removed support of I2C for OTG PHY in <i>Section 2.2.30: Universal</i> <i>serial bus on-the-go full-speed (OTG_FS).</i> Added <i>Table 6: Legend/abbreviations used in the pinout table.</i> <i>Table 7: STM32F40xxx pin and ball definitions:</i> replaced V _{SS_3} , V _{SS_4} , and V _{SS_5} by V _{SS} ; reformatted <i>Table 7: STM32F40xxx pin and</i> <i>ball definitions</i> to better highlight I/O structure, and alternate functions versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to V _{SS} ; EVENTOUT added in the list of alternate functions for all I/OS; ADC3_IN8 added as alternate function for PF10; FSMC_CLE and FSMC_ALE added as alternate function for PF11_and PD12, respectively; PH10 alternate function for PF11_eTH renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa. Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in <i>Table 7:</i> <i>STM32F40xxx pin and ball definitions</i> and <i>Table 9: Alternate function</i> <i>mapping.</i> Changed TCM data RAM to

Table 100. Document revision history

