

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f405rgt6w

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripherals		STM32F405RG	STM32F405OG	STM32F405VG	STM32F405ZG	STM32F405OE	STM32F407Vx	STM32F407Zx	STM32F407					
	SPI / I2S				3/2 (full du	iplex) ⁽²⁾								
	l ² C				3									
	USART/ UART		4/2											
Communi cation interfaces	USB OTG FS		Yes											
	USB OTG HS				Yes	3								
	CAN		2											
	SDIO	Yes												
Camera in	terface	No Yes												
GPIOs		51	72	82	114	72	82	114	140					
12-bit ADC)	3												
Number of	f channels	16	13	16	24	13	16	24	24					
12-bit DAC Number of	C f channels				Yes 2	3								
Maximum frequency	CPU				168 N	ЛНz								
Operating	voltage				1.8 to 3.	6 V ⁽³⁾								
Operating				Ambient te	mperatures: -40 f	to +85 °C /–40 to	+105 °C							
temperatu	res			Jur	iction temperature	e: –40 to + 125 °C								
Package		LQFP64	WLCSP90	LQFP100	LQFP144	WLCSP90	LQFP100	LQFP144	UFBGA176					

Т. Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I^2S audio mode.

V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). 3.

Description

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
в	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
с	VBAT	PI7	PI6	PI5	VDD	PDR_ON	VDD	VDD	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13	PI8	PI9	PI4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
Е	PC14	PF0	PI10	PI11								PH13	PH14	P10	PA 9
F	PC15	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP_2	PC9	PA8
G	PH0	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
н	PH1	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	BYPASS_ REG								PH11	PH10	PD15	PG2
м	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS	VSS	VCAP_1	PH6	PH8	PH9	PD14	PD13
Ν	VREF-	PA 1	PA0	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15
															ai18497b

Figure 16. STM32F40xxx UFBGA176 ballout

1. This figure shows the package top view.

	10	9	8	7	6	5	4	3	2	1
А	VBAT	PC13	PDR_ON	BOOT0	PB4	PD7	PD4	PC12	PA14	VDD
В	PC14	PC15	VDD	PB7	PB3	PD6	PD2	PA15	PI1	VCAP_2
С	PA0	vss	PB9	PB6	PD5	PD1	PC11	PI0	PA12	PA11
D	PC2	BYPASS_ REG	PB8	PB5	PD0	PC10	PA13	PA10	PA9	PA8
E	PC0	PC3	VSS	VSS	VDD	VSS	VDD	PC9	PC8	PC7
F	PH0	PH1	PA1	VDD	PE10	PE14	VCAP_1	PC6	PD14	PD15
G	NRST	VDDA	PA5	PB0	PE7	PE13	PE15	PD10	PD12	PD11
н	VSSA	PA3	PA6	PB1	PE8	PE12	PB10	PD9	PD8	PB15
J	PA2	PA4	PA7	PB2	PE9	PE11	PB11	PB12	PB14	PB13

Figure 17. STM32F40xxx WLCSP90 ballout

1. This figure shows the package bump view.

Table 6. Legend/abbreviations used in the	pinout table
---	--------------

Name	Abbreviation	Definition					
Pin name	Unless otherwise reset is the same	specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input / output pin					
	FT	5 V tolerant I/O					
I/O atruatura	ТТа	3.3 V tolerant I/O directly connected to ADC					
	В	Dedicated BOOT0 pin					
	RST	Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected	d through GPIOx_AFR registers					
Additional functions	Functions directly	selected/enabled through peripheral registers					

	I	Pin r	numb	er							
LQFP64	MLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	-	1	1	A2	1	PE2	I/O	FT	-	TRACECLK/ FSMC_A23 / ETH_MII_TXD3 / EVENTOUT	-
-	-	2	2	A1	2	PE3	I/O	FT	-	TRACED0/FSMC_A19 / EVENTOUT	-
-	-	3	3	B1	3	PE4	I/O	FT	-	TRACED1/FSMC_A20 / DCMI_D4/ EVENTOUT	-
-	-	4	4	B2	4	PE5	I/O	FT	-	TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6 / EVENTOUT	-
-	-	5	5	В3	5	PE6	I/O	FT	-	TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7 / EVENTOUT	-
1	A10	6	6	C1	6	V _{BAT}	S	-	-	-	-
-	-	-	-	D2	7	PI8	I/O	FT	(2)(3)	EVENTOUT	RTC_TAMP1, RTC_TAMP2, RTC_TS
2	A9	7	7	D1	8	PC13	I/O	FT	(2) (3)	EVENTOUT	RTC_OUT, RTC_TAMP1, RTC_TS
3	B10	8	8	E1	9	PC14/OSC32_IN (PC14)	I/O	FT	(2)(3)	EVENTOUT	OSC32_IN ⁽⁴⁾
4	B9	9	9	F1	10	PC15/ OSC32_OUT (PC15)	I/O	FT	(2)(3)	EVENTOUT	OSC32_OUT ⁽⁴⁾
-	-	-	-	D3	11	PI9	I/O	FT	-	CAN1_RX / EVENTOUT	-
-	-	-	-	E3	12	PI10	I/O	FT	-	ETH_MII_RX_ER / EVENTOUT	-
-	-	-	-	E4	13	PI11	I/O	FT	-	OTG_HS_ULPI_DIR / EVENTOUT	-
-	-	-	-	F2	14	V _{SS}	S	-	-	-	-
-	-	-	-	F3	15	V _{DD}	S	-	-	-	-
-	-	-	10	E2	16	PF0	I/O	FT	-	FSMC_A0 / I2C2_SDA / EVENTOUT	-

Table 7. STM32F40xxx pin and ball definitions

STM32F405xx, STM32F407xx

Pinouts and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS_ULPI_ STP	-	-	-	-	EVENTOUT
	PC1	-	-	-	-	-	-	-	-	-	-	-	ETH_MDC	-	-	-	EVENTOUT
	PC2	-	-	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	OTG_HS_ULPI_ DIR	ETH _MII_TXD2	-	-	-	EVENTOUT
	PC3	-	-	-	-	-	SPI2_MOSI I2S2_SD	-	-	-	-	OTG_HS_ULPI_ NXT	ETH _MII_TX_CLK	-	-	-	EVENTOUT
	PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD0 ETH_RMII_RXD0	-	-	-	EVENTOUT
	PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD1 ETH_RMII_RXD1	-	-	-	EVENTOUT
	PC6	-	-	TIM3_CH1	TIM8_CH1		I2S2_MCK		-	USART6_TX	-	-	-	SDIO_D6	DCMI_D0	-	EVENTOUT
t C	PC7	-	-	TIM3_CH2	TIM8_CH2	-	-	I2S3_MCK	-	USART6_RX	-	-	-	SDIO_D7	DCMI_D1	-	EVENTOUT
	PC8	i	-	TIM3_CH3	TIM8_CH3	-	-	-	-	USART6_CK	-	-	-	SDIO_D0	DCMI_D2	-	EVENTOUT
	PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	I2S_CKIN	-	-	-	-	-	-	SDIO_D1	DCMI_D3	-	EVENTOUT
	PC10	-	-	-	-	-	-	SPI3_SCK/ I2S3_CK	USART3_TX/	UART4_TX	-	-	-	SDIO_D2	DCMI_D8	-	EVENTOUT
	PC11	-	-	-	-	-	I2S3ext_SD	SPI3_MISO/	USART3_RX	UART4_RX	-	-	-	SDIO_D3	DCMI_D4	-	EVENTOUT
	PC12	-	-	-	-	-	-	SPI3_MOSI I2S3_SD	USART3_CK	UART5_TX	-	-	-	SDIO_CK	DCMI_D9	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT

DocID022152 Rev 8

Port C

64/202

5

Table 9. Alternate function mapping (continued)

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait state (f _{Flashmax})	Maximum Flash memory access frequency with wait states ^{(1) (2)}	I/O operation	Clock output Frequency on I/O pins	Possible Flash memory operations
V _{DD} =1.8 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	160 MHz with 7 wait states	 Degraded speed performance No I/O compensation 	up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	168 MHz with 7 wait states	 Degraded speed performance No I/O compensation 	up to 30 MHz	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	168 MHz with 6 wait states	 Degraded speed performance I/O compensation works 	up to 48 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽⁵⁾	Conversion time up to 2.4 Msps	30 MHz	168 MHz with 5 wait states	 Full-speed operation I/O compensation works 	- up to 60 MHz when V _{DD} = 3.0 to 3.6 V - up to 48 MHz when V _{DD} = 2.7 to 3.0 V	32-bit erase and program operations

Table 15. Limitations depending on the operating power supply range

1. It applies only when code executed from Flash memory access, when code executed from RAM, no wait state is required.

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

3. V_{DD}/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to *Section : Internal reset OFF*).

4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.

5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

5.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V _{PVD}	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
V	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
Y POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
Vacat	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V

Table 19. Embedded reset and	power control block characteristics
------------------------------	-------------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BOR2}	Brownout level 2	Falling edge	2.44	2.50	2.56	V
	threshold	Rising edge	2.53	2.59	2.63	V
	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V BOR3	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 22: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using a CoreMark-compliant code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to 168 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Figure 34. ACC_{LSI} versus temperature

5.3.10 PLL characteristics

The parameters given in *Table 36* and *Table 37* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	168	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-	-	48	75	MHz
f _{VCO_OUT}	PLL VCO output	-	100	-	432	MHz
t	PLL lock time	VCO freq = 100 MHz	75	-	200	116
LOCK		VCO freq = 432 MHz	100	-	300	μο

Table 36. Main PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 100 MHz VCO freq = 432 MHz	0.15 0.45	-	0.40 0.75	mA		
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 100 MHz VCO freq = 432 MHz	0.30 0.55	-	0.40 0.85	mA		

Table 37. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design.

3. Value given with main PLL running.

4. Guaranteed by characterization.

5.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 44: EMI characteristics*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP		-	-	2 ¹⁵ –1	-

Table 38.	SSCG	parameters	constraint
-----------	------	------------	------------

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL \ IN}/ \ (4 \times f_{Mod})]$

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round[10^{6} / (4 × 10³)] = 250

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[($(2^{15}-1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$]

f_{VCO OUT} must be expressed in MHz.

DocID022152 Rev 8

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table	46	Electrical	sensitivities
Table	τυ.	LICCUICAI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

5.3.15 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 47.

5.3.18 TIM timer characteristics

The parameters given in Table 52 and Table 53 are guaranteed by design.

Refer to *Section 5.3.16: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit
		AHB/APB1 prescaler distinct from 1, f _{TIMxCLK} = 84 MHz	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time		11.9	-	ns
		AHB/APB1	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 42 MHz	23.8	-	ns
f	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	42	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
	16-bit counter clock		1	65536	t _{TIMxCLK}
toouurra	period when internal clock is selected	f _{TIMxCLK} = 84 MHz APB1= 42 MHz	0.0119	780	μs
COUNTER	32-bit counter clock		1	_	t _{TIMxCLK}
	period when internal clock is selected		0.0119	51130563	μs
t	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
MAX_COUNT			-	51.1	S

Table 52. Characteristics of TIMx connected to the APB1 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

Figure 41. SPI timing diagram - master mode

Figure 70. NAND controller waveforms for common memory read access

Figure 71. NAND controller waveforms for common memory write access

Table 85. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NOE)}	FSMC_NOE low width	4Т _{НСLК} - 0.5	4T _{HCLK} + 3	ns
t _{su(D-NOE)}	FSMC_D[15-0] valid data before FSMC_NOE high	10	-	ns
t _{h(NOE-D)}	FSMC_D[15-0] valid data after FSMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	3T _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} – 2	_	ns

1. C_L = 30 pF.

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FSMC_NWE low width	4T _{HCLK} –1	4T _{HCLK} + 3	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15-0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15-0] invalid	3T _{HCLK} –2	-	ns
t _{d(D-NWE)}	FSMC_D[15-0] valid before FSMC_NWE high	5T _{HCLK} –3	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3T _{HCLK}	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} –2	_	ns

 Table 86. Switching characteristics for NAND Flash write cycles⁽¹⁾

1. C_L = 30 pF.

5.3.27 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 87* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 13*, with the following configuration:

- PCK polarity: falling
- VSYNC and HSYNC polarity: high
- Data format: 14 bits

Symbol	Parameter		Max	Unit
	Frequency ratio DCMI_PIXCLK/f _{HCLK}	-	0.4	
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{pixel}	Pixel clock input duty cycle	30	70	%

	(00)			
Symbol	Parameter	Min	Мах	Unit
t _{su(DATA)}	Data input setup time	2.5	-	
t _{h(DATA)}	Data hold time	1	-	
t _{su(HSYNC)} , t _{su(VSYNC)}	HSYNC/VSYNC input setup time	2	-	ns
t _{h(HSYNC)} , t _{h(VSYNC)}	HSYNC/VSYNC input hold time	0.5	-	

Table 87. DCMI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization.

5.3.28 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 88* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14* with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics.

Figure 73. SDIO high-speed mode

1. Dimensions are in millimeters.

6.5 UFBGA176+25 package information

Figure 87. UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitchball grid array mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	0.600	-	-	0.0236	
A1	-	-	0.110	-	-	0.0043	
A2	-	0.130	-	-	0.0051	-	
A3	-	0.450	-	-	0.0177	-	
A4	-	0.320	-	-	0.0126	-	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	9.850	10.000	10.150	0.3878	0.3937	0.3996	
D1	-	9.100	-	-	0.3583	-	
E	9.850	10.000	10.150	0.3878	0.3937	0.3996	
E1	-	9.100	-	-	0.3583	-	
е	-	0.650	-	-	0.0256	-	
Z	-	0.450	-	-	0.0177	-	
ddd	-	-	0.080	-	-	0.0031	

Device marking for UFBGA176+25

The following figure gives an example of topside marking and ball A 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 89. UFBGA176+25 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

6.6 LQFP176 package information

Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline

1. Drawing is not to scale.

Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat packagemechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0571
b	0.170	-	0.270	0.0067	-	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488
HD	25.900	-	26.100	1.0197	-	1.0276

DocID022152 Rev 8

