#### STMicroelectronics - STM32F405VGT6TR Datasheet



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

E·XF

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                           |
| Core Size                  | 32-Bit Single-Core                                                        |
| Speed                      | 168MHz                                                                    |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB OTG |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LCD, POR, PWM, WDT         |
| Number of I/O              | 82                                                                        |
| Program Memory Size        | 1MB (1M × 8)                                                              |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 192K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                               |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                     |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 100-LQFP                                                                  |
| Supplier Device Package    | 100-LQFP (14x14)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f405vgt6tr   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 Introduction

This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32<sup>™</sup> family, please refer to Section 2.1: Full compatibility throughout the family.

The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual which is available from the STMicroelectronics website *www.st.com*.

For information on the Cortex<sup>®</sup>-M4 core, please refer to the Cortex<sup>®</sup>-M4 programming manual (PM0214) available from *www.st.com*.



| Perip                           | herals           | STM32F405RG | STM32F405OG                                         | STM32F405VG | STM32F405ZG        | STM32F405OE           | STM32F407Vx | STM32F407Zx | STM32F407 |  |  |
|---------------------------------|------------------|-------------|-----------------------------------------------------|-------------|--------------------|-----------------------|-------------|-------------|-----------|--|--|
|                                 | SPI / I2S        |             |                                                     |             | 3/2 (full du       | iplex) <sup>(2)</sup> |             |             |           |  |  |
|                                 | l <sup>2</sup> C |             |                                                     |             | 3                  |                       |             |             |           |  |  |
|                                 | USART/<br>UART   |             |                                                     |             | 4/2                | 2                     |             |             |           |  |  |
| Communi<br>cation<br>interfaces | USB<br>OTG FS    |             |                                                     |             | Yes                | 3                     |             |             |           |  |  |
|                                 | USB<br>OTG HS    |             |                                                     |             | Yes                | 3                     |             |             |           |  |  |
|                                 | CAN              |             |                                                     |             | 2                  |                       |             |             |           |  |  |
|                                 | SDIO             |             |                                                     |             | Yes                | 3                     |             |             |           |  |  |
| Camera in                       | terface          |             | No Yes                                              |             |                    |                       |             |             |           |  |  |
| GPIOs                           |                  | 51          | 72                                                  | 82          | 114                | 72                    | 82          | 114         | 140       |  |  |
| 12-bit ADC                      | )                | 3           |                                                     |             |                    |                       |             |             |           |  |  |
| Number of                       | f channels       | 16          | 13                                                  | 16          | 24                 | 13                    | 16          | 24          | 24        |  |  |
| 12-bit DAC<br>Number of         | C<br>f channels  | Yes<br>2    |                                                     |             |                    |                       |             |             |           |  |  |
| Maximum<br>frequency            | CPU              | 168 MHz     |                                                     |             |                    |                       |             |             |           |  |  |
| Operating voltage               |                  |             | 1.8 to 3.6 V <sup>(3)</sup>                         |             |                    |                       |             |             |           |  |  |
|                                 |                  |             | Ambient temperatures: -40 to +85 °C /-40 to +105 °C |             |                    |                       |             |             |           |  |  |
| temperatu                       | res              |             |                                                     | Jur         | iction temperature | e: –40 to + 125 °C    |             |             |           |  |  |
| Package                         |                  | LQFP64      | WLCSP90                                             | LQFP100     | LQFP144            | WLCSP90               | LQFP100     | LQFP144     | UFBGA176  |  |  |

-----

Т. Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the  $I^2S$  audio mode.

V<sub>DD</sub>/V<sub>DDA</sub> minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). 3.

Description

| USART<br>name | Standard<br>features | Modem<br>(RTS/<br>CTS) | LIN | SPI<br>master | irDA | Smartcard<br>(ISO 7816) | Max. baud rate<br>in Mbit/s<br>(oversampling<br>by 16) | Max. baud rate<br>in Mbit/s<br>(oversampling<br>by 8) | APB<br>mapping           |
|---------------|----------------------|------------------------|-----|---------------|------|-------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------|
| USART1        | х                    | х                      | x   | х             | х    | х                       | 5.25                                                   | 10.5                                                  | APB2<br>(max.<br>84 MHz) |
| USART2        | х                    | х                      | x   | х             | х    | х                       | 2.62                                                   | 5.25                                                  | APB1<br>(max.<br>42 MHz) |
| USART3        | х                    | х                      | x   | х             | х    | х                       | 2.62                                                   | 5.25                                                  | APB1<br>(max.<br>42 MHz) |
| UART4         | х                    | -                      | x   | -             | х    | -                       | 2.62                                                   | 5.25                                                  | APB1<br>(max.<br>42 MHz) |
| UART5         | х                    | -                      | x   | -             | х    | -                       | 2.62                                                   | 5.25                                                  | APB1<br>(max.<br>42 MHz) |
| USART6        | х                    | х                      | x   | х             | х    | х                       | 5.25                                                   | 10.5                                                  | APB2<br>(max.<br>84 MHz) |

Table 5. USART feature comparison

# 2.2.24 Serial peripheral interface (SPI)

The STM32F40xxx feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

# 2.2.25 Inter-integrated sound (I<sup>2</sup>S)

Two standard I<sup>2</sup>S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I<sup>2</sup>S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All  $I^2Sx$  can be served by the DMA controller.





Figure 13. STM32F40xxx LQFP100 pinout

1. The above figure shows the package top view.





69/202

DocID022152 Rev 8

|       |      | AF0 | AF1    | AF2      | AF3              | AF4           | AF5                            | AF6                  | AF7                    | AF8                | AF9                       | AF10                | AF11          | AF12                 | AF13           |      |          |
|-------|------|-----|--------|----------|------------------|---------------|--------------------------------|----------------------|------------------------|--------------------|---------------------------|---------------------|---------------|----------------------|----------------|------|----------|
| P     | ort  | SYS | TIM1/2 | TIM3/4/5 | TIM8/9/10<br>/11 | I2C1/2/3      | SPI1/SPI2/<br>I2S2/I2S2e<br>xt | SPI3/I2Sext<br>/I2S3 | USART1/2/3/<br>I2S3ext | UART4/5/<br>USART6 | CAN1/2<br>TIM12/13/<br>14 | OTG_FS/<br>OTG_HS   | ЕТН           | FSMC/SDIO<br>/OTG_FS | DCMI           | AF14 | AF15     |
|       | PH0  | -   | -      | -        | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | -              | -    | EVENTOUT |
|       | PH1  | -   | -      | -        | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | -              | -    | EVENTOUT |
|       | PH2  | -   | -      | -        | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | ETH _MII_CRS  | -                    | -              | -    | EVENTOUT |
|       | PH3  | -   | -      | -        | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | ETH _MII_COL  | -                    | -              | -    | EVENTOUT |
|       | PH4  | -   | -      | -        | -                | I2C2_SCL      | -                              | -                    | -                      | -                  | -                         | OTG_HS_ULPI_<br>NXT | -             | -                    | -              | -    | EVENTOUT |
|       | PH5  | -   | -      | -        | -                | I2C2_SDA      | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | -              | -    | EVENTOUT |
|       | PH6  | -   | -      | -        | -                | I2C2_<br>SMBA | -                              | -                    | -                      | -                  | TIM12_CH1                 | -                   | ETH_MII_RXD2  | -                    | -              | -    | EVENTOUT |
| DestU | PH7  | -   | -      | -        | -                | I2C3_SCL      | -                              | -                    | -                      | -                  | -                         | -                   | ETH _MII_RXD3 | -                    | -              | -    | EVENTOUT |
| POILH | PH8  | -   | -      | -        | -                | I2C3_SDA      | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | DCMI_<br>HSYNC | -    | EVENTOUT |
|       | PH9  | -   | -      | -        | -                | I2C3_<br>SMBA | -                              | -                    | -                      | -                  | TIM12_CH2                 | -                   | -             | -                    | DCMI_D0        | -    | EVENTOUT |
|       | PH10 | -   | -      | TIM5_CH1 | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | DCMI_D1        | -    | EVENTOUT |
|       | PH11 | -   | -      | TIM5_CH2 | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | DCMI_D2        | -    | EVENTOUT |
|       | PH12 | -   | -      | TIM5_CH3 | -                | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | DCMI_D3        | -    | EVENTOUT |
|       | PH13 | -   | -      | -        | TIM8_CH1N        | -             | -                              | -                    | -                      | -                  | CAN1_TX                   | -                   | -             | -                    | -              | -    | EVENTOUT |
|       | PH14 | -   | -      | -        | TIM8_CH2N        | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | DCMI_D4        | -    | EVENTOUT |
|       | PH15 | -   | -      | -        | TIM8_CH3N        | -             | -                              | -                    | -                      | -                  | -                         | -                   | -             | -                    | DCMI_D11       | -    | EVENTOUT |

 Table 9. Alternate function mapping (continued)

577

# 5 Electrical characteristics

# 5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V<sub>SS</sub>.

## 5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at  $T_A = 25$  °C and  $T_A = T_A max$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$ ).

## 5.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_A = 25$  °C,  $V_{DD} = 3.3$  V (for the 1.8 V  $\leq$ V<sub>DD</sub>  $\leq$ 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$ ).

## 5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

## 5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 19*.

## 5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 20.





|        |                   |                                                                           |                   | Тур                       | Max                       | к <sup>(1)</sup>           |      |
|--------|-------------------|---------------------------------------------------------------------------|-------------------|---------------------------|---------------------------|----------------------------|------|
| Symbol | Parameter         | Conditions                                                                | f <sub>HCLK</sub> | T <sub>A</sub> =<br>25 °C | T <sub>A</sub> =<br>85 °C | T <sub>A</sub> =<br>105 °C | Unit |
|        |                   |                                                                           | 168 MHz           | 59                        | 77                        | 84                         |      |
|        |                   | 144 MHz                                                                   | 46                | 61                        | 67                        |                            |      |
|        |                   | 120 MHz                                                                   | 38                | 53                        | 60                        |                            |      |
|        |                   |                                                                           | 90 MHz            | 30                        | 44                        | 51                         |      |
|        |                   | (2)                                                                       | 60 MHz            | 20                        | 34                        | 41                         |      |
|        |                   | External clock <sup>(2)</sup> ,<br>all peripherals enabled <sup>(3)</sup> | 30 MHz            | 11                        | 24                        | 31                         |      |
|        |                   |                                                                           | 25 MHz            | 8                         | 21                        | 28                         |      |
|        |                   |                                                                           | 16 MHz            | 6                         | 18                        | 25                         |      |
|        |                   |                                                                           | 8 MHz             | 3                         | 16                        | 23                         | - mA |
|        |                   |                                                                           | 4 MHz             | 2                         | 15                        | 22                         |      |
| 1      | Supply current in |                                                                           | 2 MHz             | 2                         | 14                        | 21                         |      |
| DD     | Sleep mode        |                                                                           | 168 MHz           | 12                        | 27                        | 35                         |      |
|        |                   |                                                                           | 144 MHz           | 9                         | 22                        | 29                         |      |
|        |                   |                                                                           | 120 MHz           | 8                         | 20                        | 28                         | 1    |
|        |                   |                                                                           | 90 MHz            | 7                         | 19                        | 26                         |      |
|        |                   |                                                                           | 60 MHz            | 5                         | 17                        | 24                         |      |
|        |                   | External clock <sup>(2)</sup> , all peripherals disabled                  | 30 MHz            | 3                         | 16                        | 23                         |      |
|        |                   | 25 MHz                                                                    | 2                 | 15                        | 22                        | 1                          |      |
|        |                   |                                                                           | 16 MHz            | 2                         | 14                        | 21                         | -    |
|        |                   |                                                                           | 8 MHz             | 1                         | 14                        | 21                         |      |
|        |                   |                                                                           | 4 MHz             | 1                         | 13                        | 21                         |      |
|        |                   |                                                                           | 2 MHz             | 1                         | 13                        | 21                         |      |

| Table 22. Ty | ypical and | maximum | current | consum | ption in | Sleep | mode |
|--------------|------------|---------|---------|--------|----------|-------|------|
|--------------|------------|---------|---------|--------|----------|-------|------|

1. Guaranteed by characterization, tested in production at  $V_{DD}$  max and  $f_{HCLK}$  max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when  $f_{HCLK}$  > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC\_CR2 register).



|                        |                                                                                     |                                                                                                                                                  | Тур                       |                           | Мах                       |                            |      |
|------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|------|
| Symbol                 | Parameter                                                                           | Conditions                                                                                                                                       | T <sub>A</sub> =<br>25 °C | T <sub>A</sub> =<br>25 °C | T <sub>A</sub> =<br>85 °C | T <sub>A</sub> =<br>105 °C | Unit |
| Supply<br>current in   |                                                                                     | Flash in Stop mode, low-speed and high-<br>speed internal RC oscillators and high-speed<br>oscillator OFF (no independent watchdog)              | 0.45                      | 1.5                       | 11.00                     | 20.00                      |      |
| I <sub>DD_STOP</sub> - | with main<br>regulator in<br>Run mode                                               | Flash in Deep power-down mode, low-speed<br>and high-speed internal RC oscillators and<br>high-speed oscillator OFF (no independent<br>watchdog) | 0.40                      | 1.5                       | 11.00                     | 20.00                      | m۵   |
|                        | Supply<br>current in<br>Stop mode<br>with main<br>regulator in<br>Low-power<br>mode | Flash in Stop mode, low-speed and high-<br>speed internal RC oscillators and high-speed<br>oscillator OFF (no independent watchdog)              | 0.31                      | 1.1                       | 8.00                      | 15.00                      | ШA   |
|                        |                                                                                     | Flash in Deep power-down mode, low-speed<br>and high-speed internal RC oscillators and<br>high-speed oscillator OFF (no independent<br>watchdog) | 0.28                      | 1.1                       | 8.00                      | 15.00                      |      |

| Table 23. 1 | Typical and | maximum | current | consum | ptions | in Sto | p mode |
|-------------|-------------|---------|---------|--------|--------|--------|--------|
|             |             |         |         |        |        |        |        |

# Table 24. Typical and maximum current consumptions in Standby mode

|                                                          |                    |                                                      |                            | Тур                        |                            | Ма                        |                            |      |  |
|----------------------------------------------------------|--------------------|------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|------|--|
| Symbol                                                   | Parameter          | Conditions                                           | 1                          | ( <sub>A</sub> = 25 °      | C                          | T <sub>A</sub> =<br>85 °C | T <sub>A</sub> =<br>105 °C | Unit |  |
|                                                          |                    |                                                      | V <sub>DD</sub> =<br>1.8 V | V <sub>DD</sub> =<br>2.4 V | V <sub>DD</sub> =<br>3.3 V | V <sub>DD</sub> =         | = 3.6 V                    |      |  |
| I <sub>DD_STBY</sub><br>Supply cur<br>in Standby<br>mode |                    | Backup SRAM ON, low-<br>speed oscillator and RTC ON  | 3.0                        | 3.4                        | 4.0                        | 20                        | 36                         |      |  |
|                                                          | Supply current     | Backup SRAM OFF, low-<br>speed oscillator and RTC ON | 2.4                        | 2.7                        | 3.3                        | 16                        | 32                         |      |  |
|                                                          | in Standby<br>mode | Backup SRAM ON, RTC<br>OFF                           | 2.4                        | 2.6                        | 3.0                        | 12.5                      | 24.8                       | μΑ   |  |
|                                                          |                    | Backup SRAM OFF, RTC<br>OFF                          | 1.7                        | 1.9                        | 2.2                        | 9.8                       | 19.2                       |      |  |

1. Guaranteed by characterization.





| Symbol            | Parameter                | Conditions <sup>(1)</sup>                                          | l/O toggling<br>frequency (f <sub>SW</sub> ) | Тур  | Unit |
|-------------------|--------------------------|--------------------------------------------------------------------|----------------------------------------------|------|------|
|                   |                          |                                                                    | 2 MHz                                        | 0.02 |      |
|                   |                          | $V_{DD} = 3.3 V^{(2)}$                                             | 8 MHz                                        | 0.14 |      |
|                   |                          | $C = C_{INT}$                                                      | 25 MHz                                       | 0.51 |      |
|                   |                          |                                                                    | 50 MHz                                       | 0.86 |      |
|                   |                          |                                                                    | 60 MHz                                       | 1.30 |      |
|                   |                          |                                                                    | 2 MHz                                        | 0.10 |      |
|                   |                          | V <sub>DD</sub> = 3.3 V                                            | 8 MHz                                        | 0.38 |      |
|                   |                          | C <sub>EXT</sub> = 0 pF                                            | 25 MHz                                       | 1.18 |      |
|                   |                          | $C = C_{INT} + C_{EXT} + C_{S}$                                    | 50 MHz                                       | 2.47 |      |
|                   |                          |                                                                    | 60 MHz                                       | 2.86 |      |
|                   |                          | $V_{DD} = 3.3 V$ $C_{EXT} = 10 pF$ $C = C_{INT} + C_{EXT} + C_{S}$ | 2 MHz                                        | 0.17 |      |
|                   | I/O switching<br>current |                                                                    | 8 MHz                                        | 0.66 | mA   |
| I <sub>DDIO</sub> |                          |                                                                    | 25 MHz                                       | 1.70 |      |
|                   |                          |                                                                    | 50 MHz                                       | 2.65 |      |
|                   |                          |                                                                    | 60 MHz                                       | 3.48 |      |
|                   |                          |                                                                    | 2 MHz                                        | 0.23 |      |
|                   |                          | V <sub>DD</sub> = 3.3 V                                            | 8 MHz                                        | 0.95 |      |
|                   |                          | C <sub>EXT</sub> = 22 pF                                           | 25 MHz                                       | 3.20 |      |
|                   |                          | $C = C_{INT} + C_{EXT} + C_{S}$                                    | 50 MHz                                       | 4.69 |      |
|                   |                          |                                                                    | 60 MHz                                       | 8.06 |      |
|                   |                          |                                                                    | 2 MHz                                        | 0.30 |      |
|                   |                          | V <sub>DD</sub> = 3.3 V                                            | 8 MHz                                        | 1.22 |      |
|                   |                          | C <sub>EXT</sub> = 33 pF                                           | 25 MHz                                       | 3.90 |      |
|                   |                          | $C = C_{INT} + C_{EXT} + C_S$                                      | 50 MHz                                       | 8.82 |      |
|                   |                          |                                                                    | 60 MHz                                       | _(3) |      |

| Table 27. Switchin | g output I/O cur | rent consumption |
|--------------------|------------------|------------------|
|--------------------|------------------|------------------|

1.  $C_S$  is the PCB board capacitance including the pad pin.  $C_S$  = 7 pF (estimated value).

2. This test is performed by cutting the LQFP package pin (pad removal).

3. At 60 MHz, C maximum load is specified 30 pF.





Figure 33. Typical application with a 32.768 kHz crystal

### 5.3.9 Internal clock source characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 14*.

#### High-speed internal (HSI) RC oscillator

| Symbol                              | Parameter                             | Conditions                           | Min | Тур | Max | Unit |
|-------------------------------------|---------------------------------------|--------------------------------------|-----|-----|-----|------|
| f <sub>HSI</sub>                    | Frequency                             | -                                    | -   | 16  | -   | MHz  |
|                                     | HSI user trimming step <sup>(2)</sup> | -                                    | -   | -   | 1   | %    |
|                                     | Accuracy of the HSI oscillator        | $T_A = -40$ to 105 °C <sup>(3)</sup> | -8  | -   | 4.5 | %    |
| ACCHSI                              |                                       | $T_A = -10$ to 85 °C <sup>(3)</sup>  | -4  | -   | 4   | %    |
|                                     |                                       | $T_A = 25 \ ^{\circ}C^{(4)}$         | -1  | -   | 1   | %    |
| t <sub>su(HSI)</sub> <sup>(2)</sup> | HSI oscillator startup time           | -                                    | -   | 2.2 | 4   | μs   |
| I <sub>DD(HSI)</sub> <sup>(2)</sup> | HSI oscillator power<br>consumption   | -                                    | -   | 60  | 80  | μA   |

Table 34. HSI oscillator characteristics <sup>(1)</sup>

1.  $V_{DD}$  = 3.3 V,  $T_A$  = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization.

4. Factory calibrated, parts not soldered.

#### Low-speed internal (LSI) RC oscillator

| Table 35. | LSI | oscillator | characteristics | (1) |
|-----------|-----|------------|-----------------|-----|
|-----------|-----|------------|-----------------|-----|

| Symbol                              | Parameter                        |    | Тур | Мах | Unit |
|-------------------------------------|----------------------------------|----|-----|-----|------|
| f <sub>LSI</sub> <sup>(2)</sup>     | Frequency                        | 17 | 32  | 47  | kHz  |
| t <sub>su(LSI)</sub> <sup>(3)</sup> | LSI oscillator startup time      | -  | 15  | 40  | μs   |
| I <sub>DD(LSI)</sub> <sup>(3)</sup> | LSI oscillator power consumption | -  | 0.4 | 0.6 | μA   |

1.  $V_{DD}$  = 3 V,  $T_A$  = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization.

3. Guaranteed by design.



#### Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 37* and *Table 50*, respectively.

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under the ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 14*.

| OSPEEDRy<br>[1:0] bit<br>value <sup>(1)</sup>  | Symbol                                           | Parameter                                                                                | Conditions                                                  | Min | Тур | Мах                | Unit |
|------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|-----|--------------------|------|
|                                                |                                                  |                                                                                          | $C_L$ = 50 pF, $V_{DD}$ > 2.70 V                            | -   | -   | 4                  |      |
|                                                | f                                                | Maximum frequency <sup>(3)</sup>                                                         | C <sub>L</sub> = 50 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 2                  | MHz  |
| 00                                             | 'max(IO)out                                      |                                                                                          | $C_L$ = 10 pF, $V_{DD}$ > 2.70 V                            | -   | -   | 8                  |      |
| 00                                             |                                                  |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 4                  |      |
| t <sub>f</sub> (IO)out<br><sup>t</sup> r(IO)ou | t <sub>f(IO)out</sub> /<br>t <sub>r(IO)out</sub> | Output high to low level fall<br>time and output low to high<br>level rise time          | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.8 V to<br>3.6 V | -   | -   | 100                | ns   |
|                                                |                                                  |                                                                                          | C <sub>L</sub> = 50 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 25                 |      |
|                                                | f <sub>max(IO)out</sub> Maximum fi               | Maximum frequency <sup>(3)</sup>                                                         | C <sub>L</sub> = 50 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 12.5               | MHz  |
| 04                                             |                                                  |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 50 <sup>(4)</sup>  |      |
|                                                |                                                  |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 20                 |      |
| UT                                             |                                                  | $t_{f(IO)out}$ Output high to low level fall time and output low to high level rise time | C <sub>L</sub> = 50 pF, V <sub>DD</sub> >2.7 V              | -   | -   | 10                 | - ns |
|                                                | t <sub>f(IO)out</sub> /                          |                                                                                          | C <sub>L</sub> = 50 pF, V <sub>DD</sub> > 1.8 V             | -   | -   | 20                 |      |
|                                                | t <sub>r(IO)out</sub>                            |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 6                  |      |
|                                                |                                                  |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 10                 |      |
|                                                |                                                  |                                                                                          | C <sub>L</sub> = 40 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 50 <sup>(4)</sup>  |      |
|                                                | £                                                | Maximum fraguanau <sup>(3)</sup>                                                         | C <sub>L</sub> = 40 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 25                 | MHz  |
| 10                                             | Imax(IO)out                                      |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 100 <sup>(4)</sup> |      |
|                                                |                                                  |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 50 <sup>(4)</sup>  |      |
| 10                                             |                                                  |                                                                                          | C <sub>L</sub> = 40 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 6                  | - ns |
|                                                | t <sub>f(IO)out</sub> /                          | Output high to low level fall                                                            | C <sub>L</sub> = 40 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 10                 |      |
|                                                | t <sub>r(IO)out</sub>                            | level rise time                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 2.70 V         | -   | -   | 4                  |      |
|                                                |                                                  |                                                                                          | C <sub>L</sub> = 10 pF, V <sub>DD &gt;</sub> 1.8 V          | -   | -   | 6                  |      |

Table 50. I/O AC characteristics<sup>(1)(2)</sup>



#### SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 55* for SPI are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 14* with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V<sub>DD</sub>

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

| Symbol                | Parameter                            | Conditions                                              | Min | Тур | Max | Unit |
|-----------------------|--------------------------------------|---------------------------------------------------------|-----|-----|-----|------|
| £                     |                                      | Master mode, SPI1,<br>2.7V < V <sub>DD</sub> < 3.6V     | -   | -   | 42  | MHz  |
| ISCK                  | SPI clock frequency                  | Slave mode, SPI1,<br>2.7V < V <sub>DD</sub> < 3.6V      |     |     | 42  |      |
| 1/4                   | - SPI clock frequency                | Master mode, SPI1/2/3,<br>1.7V < V <sub>DD</sub> < 3.6V | _   | -   | 21  |      |
| <sup>1/1</sup> c(SCK) |                                      | Slave mode, SPI1/2/3,<br>1.7V < V <sub>DD</sub> < 3.6V  |     |     | 21  |      |
| Duty(SCK)             | Duty cycle of SPI clock<br>frequency | Slave mode                                              | 30  | 50  | 70  | %    |

### Table 55. SPI dynamic characteristics<sup>(1)</sup>



| Symbol                            | Parameter                   | Conditions                                                                  | Min                    | Тур               | Max                    | Unit |
|-----------------------------------|-----------------------------|-----------------------------------------------------------------------------|------------------------|-------------------|------------------------|------|
| t <sub>w(SCKH)</sub>              | SCK high and low time       | Master mode, SPI presc = 2,<br>2.7V < V <sub>DD</sub> < 3.6V                | T <sub>PCLK</sub> -0.5 | T <sub>PCLK</sub> | T <sub>PCLK</sub> +0.5 |      |
| t <sub>w(SCKL)</sub>              |                             | Master mode, SPI presc = 2,<br>1.7V < V <sub>DD</sub> < 3.6V                | T <sub>PCLK</sub> -2   | T <sub>PCLK</sub> | T <sub>PCLK</sub> +2   |      |
| t <sub>su(NSS)</sub>              | NSS setup time              | Slave mode, SPI presc = 2                                                   | 4 x T <sub>PCLK</sub>  |                   |                        |      |
| t <sub>h(NSS)</sub>               | NSS hold time               | Slave mode, SPI presc = 2                                                   | 2 x T <sub>PCLK</sub>  | -                 | -                      |      |
| t <sub>su(MI)</sub>               | Deta input actua tima       | Master mode                                                                 | 6.5                    | -                 | -                      |      |
| t <sub>su(SI)</sub>               | Data input setup time       | Slave mode                                                                  | 2.5                    | -                 | -                      |      |
| t <sub>h(MI)</sub>                | Dete input held time        | Master mode                                                                 | 2.5                    | -                 | -                      |      |
| t <sub>h(SI)</sub>                | Data input noid time        | Slave mode                                                                  | 4                      | -                 | -                      |      |
| $t_{a(SO)}^{(2)}$                 | Data output access time     | Slave mode, SPI presc = 2                                                   | 0                      | -                 | 4 x T <sub>PCLK</sub>  |      |
| + (3)                             | Data output disable time    | Slave mode, SPI1,<br>2.7V < V <sub>DD</sub> < 3.6V                          | 0                      | -                 | 7.5                    |      |
| <sup>L</sup> dis(SO) <sup>*</sup> |                             | Slave mode, SPI1/2/3<br>1.7V < V <sub>DD</sub> < 3.6V                       | 0                      | -                 | 16.5                   | ns   |
|                                   |                             | Slave mode (after enable edge),<br>SPI1, 2.7V < V <sub>DD</sub> < 3.6V      | -                      | 11                | 13                     |      |
| t <sub>v(SO)</sub>                |                             | Slave mode (after enable edge),<br>SPI2/3, 2.7V < $V_{DD}$ < 3.6V           | -                      | 12                | 16.5                   |      |
| t <sub>h(SO)</sub>                | Data output valid/hold time | Slave mode (after enable edge),<br>SPI1, 1.7V < V <sub>DD</sub> < 3.6V      | -                      | 15.5              | 19                     |      |
|                                   |                             | Slave mode (after enable edge),<br>SPI2/3, $1.7V < V_{DD} < 3.6V$           | -                      | 18                | 20.5                   |      |
|                                   | Dete output valid time      | Master mode (after enable edge),<br>SPI1, 2.7V < V <sub>DD</sub> < 3.6V     | -                      | -                 | 2.5                    |      |
| <sup>د</sup> v(MO)                |                             | Master mode (after enable edge),<br>SPI1/2/3, 1.7V < V <sub>DD</sub> < 3.6V | -                      | -                 | 4.5                    |      |
| t <sub>h(MO)</sub>                | Data output hold time       | Master mode (after enable edge)                                             | 0                      | -                 | -                      |      |

| Table 55. SPI c | lynamic | characteristics <sup>(1)</sup> | (continued) | ) |
|-----------------|---------|--------------------------------|-------------|---|
|-----------------|---------|--------------------------------|-------------|---|

1. Guaranteed by characterization.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.





Figure 41. SPI timing diagram - master mode



## I<sup>2</sup>S interface characteristics

Unless otherwise specified, the parameters given in *Table 56* for the i<sup>2</sup>S interface are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V<sub>DD</sub>

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

| Symbol                                         | Parameter                                   | Conditions                             | Min         | Мах                                 | Unit  |  |
|------------------------------------------------|---------------------------------------------|----------------------------------------|-------------|-------------------------------------|-------|--|
| f <sub>MCK</sub>                               | I <sup>2</sup> S main clock output          | -                                      | 256 x<br>8K | 256 x F <sub>S</sub> <sup>(2)</sup> | MHz   |  |
| f                                              | 128 clock frequency                         | Master data: 32 bits                   | -           | 64 x F <sub>S</sub>                 | M⊔⇒   |  |
| 'CK                                            |                                             | Slave data: 32 bits                    | -           | 64 x F <sub>S</sub>                 | IVITZ |  |
| D <sub>CK</sub>                                | I <sup>2</sup> S clock frequency duty cycle | Slave receiver                         | 30          | 70                                  | %     |  |
| t <sub>v(WS)</sub>                             | WS valid time                               | Master mode                            | 0           | 6                                   |       |  |
| t <sub>h(WS)</sub>                             | WS hold time                                | Master mode                            | 0           | -                                   |       |  |
| t <sub>su(WS)</sub>                            | WS setup time                               | Slave mode                             | 1           | -                                   |       |  |
| t <sub>h(WS)</sub>                             | WS hold time                                | Slave mode                             | 0           | -                                   |       |  |
| t <sub>su(SD_MR)</sub>                         | Data input actus time                       | Master receiver                        | 7.5         | -                                   |       |  |
| $t_{su(SD\_SR)}$                               | Data input setup time                       | Slave receiver                         | 2           | -                                   | ns    |  |
| t <sub>h(SD_MR)</sub>                          | Data input hold time                        | Master receiver                        | 0           | -                                   | 110   |  |
| t <sub>h(SD_SR)</sub>                          |                                             | Slave receiver                         | 0           | -                                   |       |  |
| t <sub>v(SD_ST)</sub><br>t <sub>h(SD_ST)</sub> | Data output valid time                      | Slave transmitter (after enable edge)  | -           | 27                                  |       |  |
| t <sub>v(SD_MT)</sub>                          |                                             | Master transmitter (after enable edge) | -           | 20                                  | 1     |  |
| t <sub>h(SD_MT)</sub>                          | Data output hold time                       | Master transmitter (after enable edge) | 2.5         | -                                   |       |  |

1. Guaranteed by characterization.

2. The maximum value of 256 x  $F_S$  is 42 MHz (APB1 maximum frequency).

Note: Refer to the  $l^2S$  section of RM0090 reference manual for more details on the sampling frequency ( $F_S$ ).  $f_{MCK}$ ,  $f_{CK}$ , and  $D_{CK}$  values reflect only the digital peripheral behavior. The value of these parameters might be slightly impacted by the source clock accuracy.  $D_{CK}$ depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV + ODD).  $F_S$  maximum value is supported for each mode/condition.





Figure 52. Power supply and reference decoupling (V<sub>REF+</sub> connected to V<sub>DDA</sub>)

1.  $V_{REF+}$  and  $V_{REF-}$  inputs are both available on UFBGA176.  $V_{REF+}$  is also available on LQFP100, LQFP144, and LQFP176. When  $V_{REF+}$  and  $V_{REF-}$  are not available, they are internally connected to  $V_{DDA}$  and  $V_{SSA}$ .

# 5.3.22 Temperature sensor characteristics

| Table 69. | Temperature | sensor | characteristics |
|-----------|-------------|--------|-----------------|
|-----------|-------------|--------|-----------------|

| Symbol                             | Parameter                                                      | Min | Тур  | Max | Unit  |
|------------------------------------|----------------------------------------------------------------|-----|------|-----|-------|
| T <sub>L</sub> <sup>(1)</sup>      | V <sub>SENSE</sub> linearity with temperature                  | -   | ±1   | ±2  | °C    |
| Avg_Slope <sup>(1)</sup>           | Average slope                                                  | -   | 2.5  |     | mV/°C |
| V <sub>25</sub> <sup>(1)</sup>     | Voltage at 25 °C                                               | -   | 0.76 |     | V     |
| t <sub>START</sub> <sup>(2)</sup>  | Startup time                                                   | -   | 6    | 10  | μs    |
| T <sub>S_temp</sub> <sup>(2)</sup> | ADC sampling time when reading the temperature (1 °C accuracy) | 10  | -    | -   | μs    |

1. Guaranteed by characterization.

2. Guaranteed by design.

| Symbol  | Parameter                                                                   | Memory address            |
|---------|-----------------------------------------------------------------------------|---------------------------|
| TS_CAL1 | TS ADC raw data acquired at temperature of 30 $^\circ\text{C},$ V_DDA=3.3 V | 0x1FFF 7A2C - 0x1FFF 7A2D |
| TS_CAL2 | TS ADC raw data acquired at temperature of 110 °C, $V_{DDA}$ =3.3 V         | 0x1FFF 7A2E - 0x1FFF 7A2F |

#### Table 70. Temperature sensor calibration values



# 5.3.23 V<sub>BAT</sub> monitoring characteristics

| Symbol                                | Parameter                                                            | Min | Тур | Мах | Unit |
|---------------------------------------|----------------------------------------------------------------------|-----|-----|-----|------|
| R                                     | Resistor bridge for V <sub>BAT</sub>                                 | -   | 50  | -   | KΩ   |
| Q                                     | Ratio on V <sub>BAT</sub> measurement                                | -   | 2   | -   |      |
| Er <sup>(1)</sup>                     | Error on Q                                                           | -1  | -   | +1  | %    |
| T <sub>S_vbat</sub> <sup>(2)(2)</sup> | ADC sampling time when reading the V <sub>BAT</sub><br>1 mV accuracy | 5   | -   | -   | μs   |

Table 71. V<sub>BAT</sub> monitoring characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

### 5.3.24 Embedded reference voltage

The parameters given in *Table 72* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 14*.

| Symbol                                | Parameter                                                        | Conditions                        | Min  | Тур  | Мах  | Unit   |
|---------------------------------------|------------------------------------------------------------------|-----------------------------------|------|------|------|--------|
| V <sub>REFINT</sub>                   | Internal reference voltage                                       | –40 °C < T <sub>A</sub> < +105 °C | 1.18 | 1.21 | 1.24 | V      |
| T <sub>S_vrefint</sub> <sup>(1)</sup> | ADC sampling time when reading the<br>internal reference voltage | -                                 | 10   | -    | -    | μs     |
| V <sub>RERINT_s</sub> <sup>(2)</sup>  | Internal reference voltage spread over the temperature range     | V <sub>DD</sub> = 3 V             | -    | 3    | 5    | mV     |
| T <sub>Coeff</sub> <sup>(2)</sup>     | Temperature coefficient                                          | -                                 | -    | 30   | 50   | ppm/°C |
| t <sub>START</sub> <sup>(2)</sup>     | Startup time                                                     | -                                 | -    | 6    | 10   | μs     |

#### Table 72. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

#### Table 73. Internal reference voltage calibration values

| Symbol                 | Parameter                                                          | Memory address            |
|------------------------|--------------------------------------------------------------------|---------------------------|
| V <sub>REFIN_CAL</sub> | Raw data acquired at temperature of 30 °C, V <sub>DDA</sub> =3.3 V | 0x1FFF 7A2A - 0x1FFF 7A2B |

# 5.3.25 DAC electrical characteristics

| Table | 74. | DAC | charac | teristics |
|-------|-----|-----|--------|-----------|
|-------|-----|-----|--------|-----------|

| Symbol            | Parameter                | Min                | Тур | Мах | Unit | Comments                            |
|-------------------|--------------------------|--------------------|-----|-----|------|-------------------------------------|
| V <sub>DDA</sub>  | Analog supply voltage    | 1.8 <sup>(1)</sup> | -   | 3.6 | V    |                                     |
| V <sub>REF+</sub> | Reference supply voltage | 1.8 <sup>(1)</sup> | -   | 3.6 | V    | V <sub>REF+</sub> ≤V <sub>DDA</sub> |
| V <sub>SSA</sub>  | Ground                   | 0                  | -   | 0   | V    |                                     |



| Symbol                          | Parameter                             | Min | Max | Unit |
|---------------------------------|---------------------------------------|-----|-----|------|
| t <sub>d(CLKL-NBLH)</sub>       | FSMC_CLK low to FSMC_NBL high         | 0   | -   | ns   |
| t <sub>su(NWAIT-</sub><br>CLKH) | FSMC_NWAIT valid before FSMC_CLK high | 4   | -   | ns   |
| t <sub>h(CLKH-NWAIT)</sub>      | FSMC_NWAIT valid after FSMC_CLK high  | 0   | -   | ns   |

Table 80. Synchronous multiplexed PSRAM write timings<sup>(1)(2)</sup> (continued)

1. C<sub>L</sub> = 30 pF.

2. Guaranteed by characterization.



### Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings



#### **Device marking for LQFP176**

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.



Figure 92. LQFP176 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID022152 Rev 8

