

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407ieh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.3.12	Memory characteristics	108
		5.3.13	EMC characteristics	110
		5.3.14	Absolute maximum ratings (electrical sensitivity)	112
		5.3.15	I/O current injection characteristics	113
		5.3.16	I/O port characteristics	114
		5.3.17	NRST pin characteristics	118
		5.3.18	TIM timer characteristics	119
		5.3.19	Communications interfaces	121
		5.3.20	CAN (controller area network) interface	133
		5.3.21	12-bit ADC characteristics	133
		5.3.22	Temperature sensor characteristics	138
		5.3.23	V _{BAT} monitoring characteristics	139
		5.3.24	Embedded reference voltage	139
		5.3.25	DAC electrical characteristics	139
		5.3.26	FSMC characteristics	142
		5.3.27	Camera interface (DCMI) timing specifications	161
		5.3.28	SD/SDIO MMC card host interface (SDIO) characteristics	162
		5.3.29	RTC characteristics	163
6	Packa	ige info	rmation	64
6	Packa 6.1		rmation 1 90 package information 1	
6		WLCSP		164
6	6.1	WLCSP LQFP64	90 package information	164 167
6	6.1 6.2	WLCSP LQFP64 LQPF10	90 package information	164 167 170
6	6.1 6.2 6.3	WLCSP LQFP64 LQPF10 LQFP14	90 package information 1 package information 1 0 package information 1	164 167 170 173
6	6.1 6.2 6.3 6.4	WLCSP LQFP64 LQPF10 LQFP14 UFBGA	90 package information 1 • package information 1 • 0 package information 1 • 4 package information 1	164 167 170 173 177
6	6.1 6.2 6.3 6.4 6.5	WLCSP LQFP64 LQPF10 LQFP14 UFBGA LQFP17	90 package information 1 • package information 1 •0 package information 1 •4 package information 1 •176+25 package information 1	164 167 170 173 177 180
6 7	 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	WLCSP LQFP64 LQPF10 LQFP14 UFBGA LQFP17 Therma	90 package information 1 • package information 1 •0 package information 1 •4 package information 1 •176+25 package information 1 •6 package information 1	164 167 170 173 177 180 184
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 Part n	WLCSP LQFP64 LQPF10 LQFP14 UFBGA LQFP17 Therma	90 package information 1 • package information 1 • 0 package information 1 • 4 package information 1 • 176+25 package information 1 • 6 package information 1 • 6 package information 1 • 6 package information 1	164 167 170 173 177 180 184
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 Part n	WLCSP LQFP64 LQFP14 UFBGA LQFP17 Therma	90 package information 1 9 package information 1 10 package information 1 14 package information 1 176+25 package information 1 176 package information 1 16 package information 1 176 hackage information 1 177 hackage information 1 178 hackage information 1 178 hackage information 1 178 hackage informating 1	164 167 170 173 177 180 184 185
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 Part n x A Ag A.1	WLCSP LQFP64 LQFP14 UFBGA LQFP17 Therma	90 package information 1 9 package information 1 10 package information 1 14 package information 1 176+25 package information 1 16 package information 1 176+25 package information 1 16 package information 1 16 package information 1 176 package information 1 16 package information 1 176 characteristics 1 176 full speed (FS) interface solutions 1	164 167 170 173 177 180 184 85 186
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 Part n A.1 A.2	WLCSP LQFP64 LQFP10 LQFP14 UFBGA LQFP17 Therma Dumberi USB 01 USB 01	90 package information 1 9 package information 1 90 package information 1 90 package information 1 90 package information 1 90 package information 1 176+25 package information 1 176 package information 1 16 package information 1 16 package information 1 176 package information 1 16 package information 1 176 characteristics 1 177 ng 1 176 full speed (FS) interface solutions 1 176 high speed (HS) interface solutions 1	164 167 170 173 177 180 184 85 186 186
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7 Part n x A Ag A.1	WLCSP LQFP64 LQFP10 LQFP14 UFBGA LQFP17 Therma Dumberi USB 01 USB 01	90 package information 1 9 package information 1 10 package information 1 14 package information 1 176+25 package information 1 16 package information 1 176+25 package information 1 16 package information 1 16 package information 1 176 package information 1 16 package information 1 176 characteristics 1 176 full speed (FS) interface solutions 1	164 167 170 173 177 180 184 85 186 186

1 Introduction

This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32[™] family, please refer to Section 2.1: Full compatibility throughout the family.

The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual which is available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core, please refer to the Cortex[®]-M4 programming manual (PM0214) available from *www.st.com*.

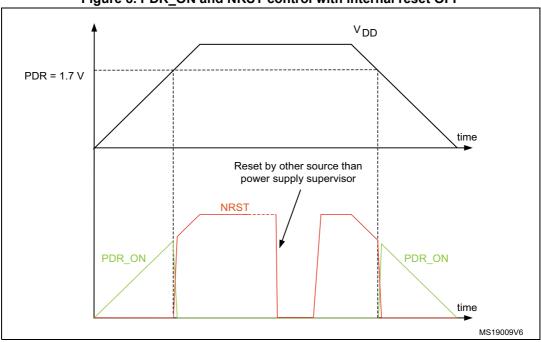


Figure 8. PDR_ON and NRST control with internal reset OFF

2.2.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low-power regulator (LPR)
 - Power-down
- Regulator OFF

Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. Refer to *Table 14: General operating conditions*.
- LPR is used in the Stop modes
 The LP regulator mode is configured by software when entering Stop mode.
- Power-down is used in Standby mode.
 - The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost)

	F	Pin r	numb	er	-						
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	2		Alternate functions	Additional functions
-	A8	-	143	C6	171	PDR_ON	PDR_ON I FT -		-	-	-
64	A1	10 0	144	C5	172	V _{DD}		-	-	-	-
-	-	-	-	D4	173	Pl4	I/O	FT	-	TIM8_BKIN / DCMI_D5/ EVENTOUT	-
-	-	-	-	C4	174	PI5	I/O	//O FT -		TIM8_CH1 / DCMI_VSYNC/ EVENTOUT	-
-	-	-	-	C3	175	Pl6	I/O	I/O FT -		TIM8_CH2 / DCMI_D6/ EVENTOUT	-
-	-	-	-	C2	176	PI7	I/O	FT	-	TIM8_CH3 / DCMI_D7/ EVENTOUT	-

Table 7. STM32F40xxx pin and ball definitions (continued)

1. Function availability depends on the chosen device.

PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

- These I/Os must not be used as a current source (e.g. to drive an LED).

3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low). 5.

				WLCSP90		
Pins ⁽¹⁾	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽²⁾	(2)
PE2	-	A23	A23	-	Yes	-
PE3	-	A19	A19	-	Yes	-
PE4	-	A20	A20	-	Yes	-
PE5	-	A21	A21	-	Yes	-
PE6	-	A22	A22	-	Yes	-
PF0	A0	A0	-	-	-	-

Table 8. FSMC pin definition

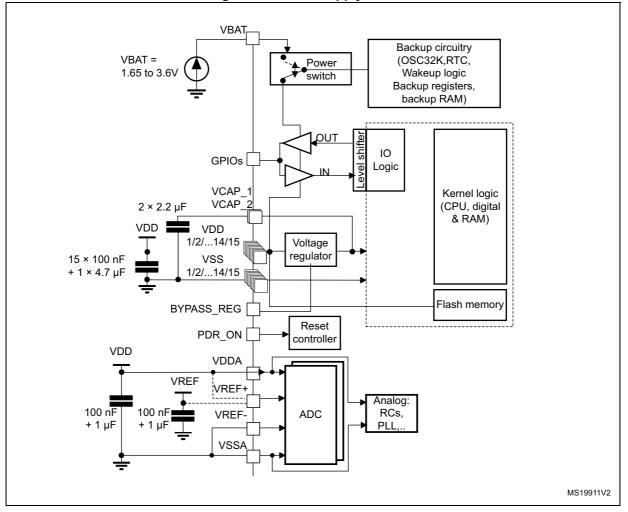
Pins ⁽¹⁾	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽²⁾	WLCSP90 (2)
PF1	A1	A1	-	-	-	-
PF2	A2	A2	-	-	-	-
PF3	A3	A3	-	-	-	-
PF4	A4	A4	-	-	-	-
PF5	A5	A5	-	-	-	-
PF6	NIORD	-	-	-	-	-
PF7	NREG	-	-	-	-	-
PF8	NIOWR	-	-	-	-	-
PF9	CD	-	-	-	-	-
PF10	INTR	-	-	-	-	-
PF12	A6	A6	-	-	-	-
PF13	A7	A7	-	-	-	-
PF14	A8	A8	-	-	-	-
PF15	A9	A9	-	-	-	-
PG0	A10	A10	-	-	-	-
PG1		A11	-	-	-	-
PE7	D4	D4	DA4	D4	Yes	Yes
PE8	D5	D5	DA5	D5	Yes	Yes
PE9	D6	D6	DA6	D6	Yes	Yes
PE10	D7	D7	DA7	D7	Yes	Yes
PE11	D8	D8	DA8	D8	Yes	Yes
PE12	D9	D9	DA9	D9	Yes	Yes
PE13	D10	D10	DA10	D10	Yes	Yes
PE14	D11	D11	DA11	D11	Yes	Yes
PE15	D12	D12	DA12	D12	Yes	Yes
PD8	D13	D13	DA13	D13	Yes	Yes
PD9	D14	D14	DA14	D14	Yes	Yes
PD10	D15	D15	DA15	D15	Yes	Yes
PD11	-	A16	A16	CLE	Yes	Yes
PD12	-	A17	A17	ALE	Yes	Yes
PD13	-	A18	A18	-	Yes	-
PD14	D0	D0	DA0	D0	Yes	Yes
PD15	D1	D1	DA1	D1	Yes	Yes

Table 8. FSM	C pin definition	n (continued)
--------------	------------------	---------------

|--|

DocID022152 Rev 8

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
P	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PE0	-	-	TIM4_ETR	-	-	-	-	-	-	-	-	-	FSMC_NBL0	DCMI_D2	-	EVENTOUT
	PE1	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_NBL1	DCMI_D3	-	EVENTOUT
	PE2	TRACECL K	-	-	-	-	-	-	-	-	-	-	ETH _MII_TXD3	FSMC_A23	-	-	EVENTOUT
	PE3	TRACED0	-	-	-	-	-	-	-	-	-	-	-	FSMC_A19	-	-	EVENTOUT
	PE4	TRACED1	-	-	-	-	-	-	-	-	-	-	-	FSMC_A20	DCMI_D4	-	EVENTOUT
	PE5	TRACED2	-	-	TIM9_CH1	-	-	-	-	-	-	-	-	FSMC_A21	DCMI_D6	-	EVENTOUT
	PE6	TRACED3	-	-	TIM9_CH2	-	-	-	-	-	-	-	-	FSMC_A22	DCMI_D7	-	EVENTOUT
Port E	PE7	-	TIM1_ETR	-	-	-	-	-	-	-	-	-	-	FSMC_D4	-	-	EVENTOUT
	PE8	-	TIM1_CH1N	-	-	-	-	-	-	-	-	-	-	FSMC_D5	-	-	EVENTOUT
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	-	-	FSMC_D6	-	-	EVENTOUT
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	-	-	FSMC_D7	-	-	EVENTOUT
	PE11	-	TIM1_CH2	-	-	-	-	-	-	-	-	-	-	FSMC_D8	-	-	EVENTOUT
	PE12	-	TIM1_CH3N	-	-	-	-	-	-	-	-	-	-	FSMC_D9	-	-	EVENTOUT
	PE13	-	TIM1_CH3	-	-	-	-	-	-	-	-	-	-	FSMC_D10	-	-	EVENTOUT
	PE14	-	TIM1_CH4	-	-	-	-	-	-	-	-	-	-	FSMC_D11	-	-	EVENTOUT
	PE15	-	TIM1_BKIN	÷	-	-	-	-	-	-	-	-	-	FSMC_D12	-	-	EVENTOUT


 Table 9. Alternate function mapping (continued)

Bus	Boundary address	Peripheral
	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 9400 - 0x4003 FFFF	Reserved
	0x4002 9000 - 0x4002 93FF	
	0x4002 8C00 - 0x4002 8FFF	
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC
	0x4002 8400 - 0x4002 87FF	
	0x4002 8000 - 0x4002 83FF	
	0x4002 6800 - 0x4002 7FFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register
АПВТ	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2400 - 0x4002 2FFF	Reserved
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA
	0x4001 5800- 0x4001 FFFF	Reserved

Table 10. register boundary addresses (continued)

5.1.6 Power supply scheme

Figure 21. Power supply scheme

1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

- 2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply supervisor.
- 3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 4. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.
- 5. $V_{DDA}=V_{DD}$ and $V_{SSA}=V_{SS}$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N	Brownout level 2	Falling edge	2.44	2.50	2.56	V
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.56	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 22: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using a CoreMark-compliant code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to 168 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Additional current consumption

The MCU is placed under the following conditions:

- All I/O pins are configured in analog mode.
- The Flash memory access time is adjusted to f_{HCLK} frequency.
- The voltage scaling is adjusted to f_{HCLK} frequency as follows:
 - Scale 2 for f_{HCLK} ≤ 144 MHz
 - Scale 1 for 144 MHz < $f_{HCLK} \le 168$ MHz.
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/4$, and $f_{PCLK2} = f_{HCLK}/2$.
- The HSE crystal clock frequency is 25 MHz.
- T_A= 25 °C.

Table 26. Typical current consumption in Run mode, code with data processing running from Flash memory, regulator ON (ART accelerator enabled except prefetch), $V_{DD} = 1.8 V^{(1)}$

Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Typ. at T _A = 25 °C	Unit	
			160	36.2		
			144	29.3		
			120	24.7		
IDD	Supply current in Run mode	All peripheral disabled	90	19.3	mA	
			60	13.4		
			30	7.7		
			25	6.0		

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC or DAC) is not included.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 48: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to

DocID022152 Rev 8

floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 28: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

 V_{DD} is the MCU supply voltage

 $f_{\mbox{SW}}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

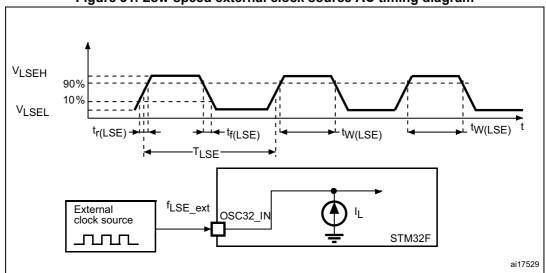


Figure 31. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 32*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
G _m	Oscillator transconductance	Statup	5	-	-	mA/V
G _{mcritmax}	Maximum critical crystal G _m	Startup	-	-	1	THAV V
t _{SU(HSE)} ⁽²⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 32. HSE 4-26 MHz oscillator characteristics ⁽¹⁾	Table 32. HSE 4-26	6 MHz oscillator	characteristics ⁽¹⁾
--	--------------------	------------------	--------------------------------

1. Guaranteed by design.

 Guaranteed by characterization. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 32*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Symbol	Paran	neter	Conditions	Min	Тур	Max	Unit
V _{HYS}	FT, TTa and NRST I/O input hysteresis		1.7 V ≤V _{DD} ≤3.6 V	10%V _{DD} ⁽³⁾	-	-	
	BOOT0 I/O input hysteresis		1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	0.1	-	-	V
			1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C				
	I/O input leakage	e current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	
l _{lkg}	I/O FT input leak	age current ⁽⁵⁾	V _{IN} = 5 V	-	-	3	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10 and PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
		PA10 and PB12 (OTG_FS_ID, OTG_HS_ID)	-	7	10	14	kΩ
	Weak pull-down F equivalent F resistor ⁽⁷⁾ F	All pins except for PA10 and PB12	$V_{IN} = V_{DD}$	30	40	50	
		PA10 and - 7 PB12 - 7	7	10	14		
C _{IO} ⁽⁸⁾	I/O pin capacitance			-	5	-	pF

 Table 48. I/O static characteristics (continued)

1. Guaranteed by design.

2. Tested in production.

3. With a minimum of 200 mV.

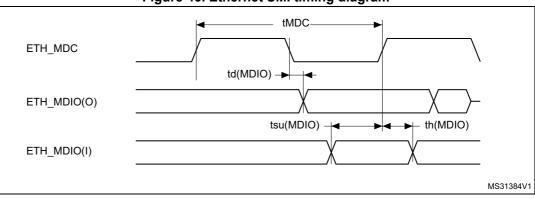
- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 47: I/O current injection susceptibility
- To sustain a voltage higher than V_{DD} + 0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 47: I/O current injection susceptibility.
- Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
- 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters.

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 64*, *Table 65* and *Table 66* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 14* and VDD supply voltage conditions summarized in *Table 63*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.


Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics.

Symbol Parameter		Min. ⁽¹⁾	Max. ⁽¹⁾	Unit	
Input level	V _{DD}	Ethernet operating voltage	2.7	3.6	V

Table 63. Ethernet DC electrical characteristics

1. All the voltages are measured from the local ground potential.

Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 46* shows the corresponding timing diagram.

Figure 46. Ethernet SMI timing diagram

Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time(2.38 MHz)	411	420	425	
T _{d(MDIO)}	Write data valid time	6	10	13	ne
t _{su(MDIO)}	Read data setup time	12	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	

1. Guaranteed by characterization.

Table 65 gives the list of Ethernet MAC signals for the RMII and *Figure 47* shows the corresponding timing diagram.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{lat} ⁽⁴⁾	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
^l lat` ′	latency		-	-	3 ⁽⁷⁾	1/f _{ADC}
t _{latr} (4)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
Hatr	latency		-	-	2 ⁽⁷⁾	1/f _{ADC}
ts ⁽⁴⁾	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
C		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽⁴⁾	Power-up time	-	-	2	3	μs
t _{conv} ⁽⁴⁾		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution 0.43		-	16.34	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				
f _S ⁽⁴⁾		12-bit resolution Single ADC	-	-	2	Msps
	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} (4)	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽⁴⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

 Table 67. ADC characteristics (continued)

1. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to *Section : Internal reset OFF*).

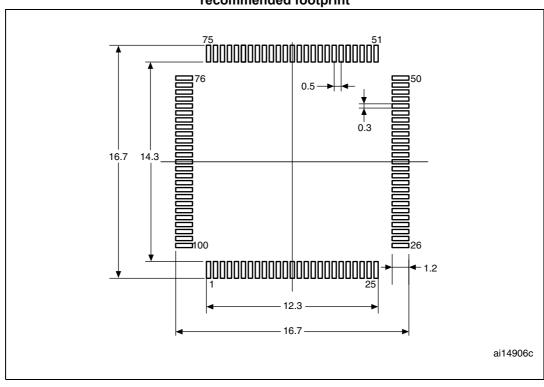
2. It is recommended to maintain the voltage difference between V_{REF+} and V_{DDA} below 1.8 V.

3. $V_{DDA} - V_{REF+} < 1.2 V.$

4. Guaranteed by characterization.

5. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .

6. R_{ADC} maximum value is given for V_{DD}=1.8 V, and minimum value for V_{DD}=3.3 V.

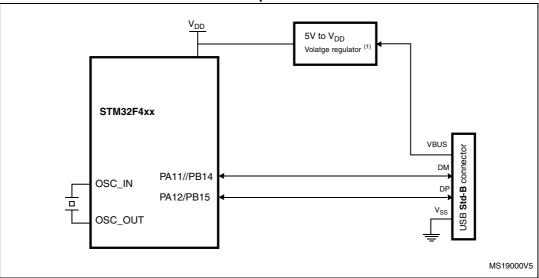

7. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table* 67.



Cumb al		millimeters		inches				
Symbol	Min	Тур	Мах	Min	Тур	Max		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	-	12.000	-	-	0.4724	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.080	-	-	0.0031		

Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package mechanical data⁽¹⁾ (continued)

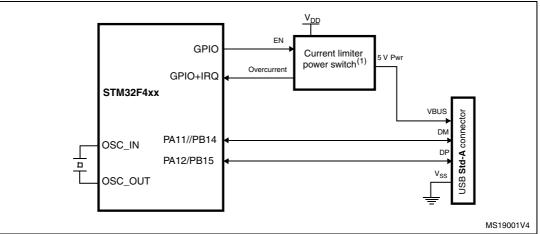
1. Values in inches are converted from mm and rounded to 4 decimal digits.



1. Dimensions are expressed in millimeters.

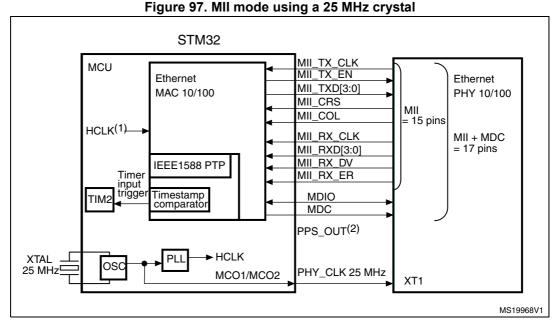
Appendix A Application block diagrams


A.1 USB OTG full speed (FS) interface solutions


Figure 93. USB controller configured as peripheral-only and used in Full speed mode

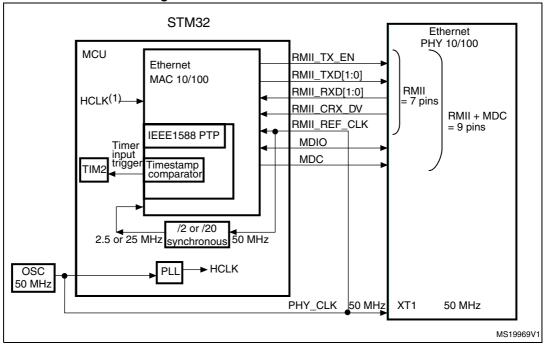
1. External voltage regulator only needed when building a V_{BUS} powered device.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.



 The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.



A.3 Ethernet interface solutions

1. f_{HCLK} must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 98. RMII with a 50 MHz oscillator

1. f_{HCLK} must be greater than 25 MHz.

8 Revision history

Date	Revision	Changes
15-Sep-2011	1	Initial release.
24-Jan-2012	2	Added WLCSP90 package on cover page. Renamed USART4 and USART5 into UART4 and UART5, respectively. Updated number of USB OTG HS and FS in <i>Table 2: STM32F405xx</i> and <i>STM32F407xx: features and peripheral counts.</i> Updated <i>Figure 3: Compatible board design between</i> <i>STM32F10xx/STM32F2/STM32F40xxx for LQFP144 package</i> and <i>Figure 4: Compatible board design between STM32F2 and</i> <i>STM32F40xxx for LQFP176 and BGA176 packages,</i> and removed note 1 and 2. Updated <i>Section 2.2.9: Flexible static memory controller (FSMC).</i> Modified I/Os used to reprogram the Flash memory for CAN2 and USB OTG FS in <i>Section 2.2.13: Boot modes.</i> Updated note in <i>Section 2.2.14: Power supply schemes.</i> PDR_ON no more available on LQFP100 package. Updated <i>Section 2.2.16: Voltage regulator.</i> Updated condition to obtain a minimum supply voltage of 1.7 V in the whole document. Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for UART4 and UART5 in <i>Table 5: USART feature comparison.</i> Removed support of I2C for OTG PHY in <i>Section 2.2.30: Universal</i> <i>serial bus on-the-go full-speed (OTG_FS).</i> Added <i>Table 6: Legend/abbreviations used in the pinout table.</i> <i>Table 7: STM32F40xxx pin and ball definitions:</i> replaced V _{SS_3} , V _{SS_4} , and V _{SS_8} by V _{SS} : reformatted <i>Table 7: STM32F40xxx pin and</i> <i>ball definitions</i> to better highlight I/O structure, and alternate functions versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to V _{SS} : EVENTOUT added in the list of alternate functions for all I/OS; ADC3_IN8 added as alternate function for PD11 and PD12, respectively; PH10 alternate function <i>TIM15_CH1_ETR</i> renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa. Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in <i>Table 7:</i> <i>STM32F40xxx pin and ball definitions</i> and <i>Table 9: Alternate function</i> <i>mapping.</i> Changed TCM data RAM to CCM data RAM in <i>Figure 18:</i> <i>STM32F40xxx pin and ball definitions</i> and <i>Table 9: Alternate function</i> <i>mapping.</i> Changed TCM data RAM to CCM data

Table 100. Document revision history

Table 100. Document revision history (continued)						
Date						
Date						

Table 100. Document revision history (cont	inued)
--	--------

