

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407ieh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

recommended footprint	75
UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array package outline	77
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array recommended footprint	78
UFBGA176+25 marking example (package top view)1	79
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline	80
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint 18	
LQFP176 marking example (package top view)18	83
USB controller configured as peripheral-only and used	
in Full speed mode	86
USB controller configured as host-only and used in full speed mode	86
USB controller configured in dual mode and used in full speed mode	87
USB controller configured as peripheral, host, or dual-mode	
and used in high speed mode	88
MII mode using a 25 MHz crystal	89
RMII with a 50 MHz oscillator	89
RMII with a 25 MHz crystal and PHY with PLL19	90
	ball grid array package outline11UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch11ball grid array recommended footprint11UFBGA176+25 marking example (package top view)11LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline14LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint.16LQFP176 marking example (package top view)16USB controller configured as peripheral-only and used16in Full speed mode16USB controller configured as host-only and used in full speed mode16USB controller configured as peripheral, host, or dual-mode16and used in high speed mode16MII mode using a 25 MHz crystal16RMII with a 50 MHz oscillator16

1 Introduction

This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32[™] family, please refer to Section 2.1: Full compatibility throughout the family.

The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual which is available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core, please refer to the Cortex[®]-M4 programming manual (PM0214) available from *www.st.com*.

			FSMC			M/ 00000
Pins ⁽¹⁾	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽²⁾	WLCSP90 (2)
PG2	-	A12	-	-	-	-
PG3	-	A13	-	-	-	-
PG4	-	A14	-	-	-	-
PG5	-	A15	-	-	-	-
PG6	-	-	-	INT2	-	-
PG7	-	-	-	INT3	-	-
PD0	D2	D2	DA2	D2	Yes	Yes
PD1	D3	D3	DA3	D3	Yes	Yes
PD3	-	CLK	CLK	-	Yes	-
PD4	NOE	NOE	NOE	NOE	Yes	Yes
PD5	NWE	NWE	NWE	NWE	Yes	Yes
PD6	NWAIT	NWAIT	NWAIT	NWAIT	Yes	Yes
PD7	-	NE1	NE1	NCE2	Yes	Yes
PG9	-	NE2	NE2	NCE3	-	-
PG10	NCE4_1	NE3	NE3	-	-	-
PG11	NCE4_2	-	-	-	-	-
PG12	-	NE4	NE4	-	-	-
PG13	-	A24	A24	-	-	-
PG14	-	A25	A25	-	-	-
PB7	-	NADV	NADV	-	Yes	Yes
PE0	-	NBL0	NBL0	-	Yes	-
PE1	-	NBL1	NBL1	-	Yes	-

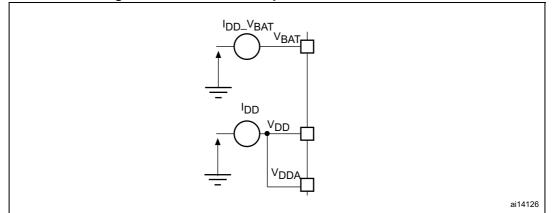
Table 8. FSMC pin definition (continued)

1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on smaller packages are given in the dedicated package column.

2. Ports F and G are not available in devices delivered in 100-pin packages.

	Table 9. Alternate function mapping																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PA0	-	TIM2_CH1_ ETR	TIM 5_CH1	TIM8_ETR	-	-	-	USART2_CTS	UART4_TX	-	-	ETH_MII_CRS	-	-	-	EVENTOUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_RTS	UART4_RX	-	-	ETH_MII _RX_CLK ETH_RMIIREF _CLK	-	-	-	EVENTOUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_TX	-	-	-	ETH_MDIO	-	-	-	EVENTOUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	-	USART2_RX	-	-	OTG_HS_ULPI_ D0	ETH _MII_COL	-	-	-	EVENTOUT
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK	-	-	-	-	OTG_HS_SOF	DCMI_ HSYNC	-	EVENTOUT
	PA5	-	TIM2_CH1_ ETR	-	TIM8_CH1N	-	SPI1_SCK	-	-	-	-	OTG_HS_ULPI_ CK	-	-	-	-	EVENTOUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	-	-	-	TIM13_CH1	-	-	-	DCMI_PIXCK	-	EVENTOUT
Port A	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI	-	-	-	TIM14_CH1	-	ETH_MII_RX_DV ETH_RMII _CRS_DV	-	-	-	EVENTOUT
	PA8	MCO1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_CK	-	-	OTG_FS_SOF	-	-	-	-	EVENTOUT
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_TX	-	-	-	-	-	DCMI_D0	-	EVENTOUT
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_RX	-	-	OTG_FS_ID	-	-	DCMI_D1	-	EVENTOUT
	PA11	-	TIM1_CH4	-	-	-	-	-	USART1_CTS	-	CAN1_RX	OTG_FS_DM	-	-	-	-	EVENTOUT
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_RTS	-	CAN1_TX	OTG_FS_DP	-	-	-	-	EVENTOUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA15	JTDI	TIM 2_CH1 TIM 2_ETR	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	-	-	-	-	-	-	-	-	EVENTOUT

DocID022152 Rev 8


5

62/202

STM32F405xx, STM32F407xx

Pinouts and pin description

5.1.7 Current consumption measurement

Figure 22. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
$V_{DD}-V_{SS}$	External main supply voltage (including V_{DDA} , V_{DD}) ⁽¹⁾	-0.3	4.0	
V	Input voltage on five-volt tolerant pin ⁽²⁾	V _{SS} -0.3	V _{DD} +4	V
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0	
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50	
V _{SSX} -V _{SS}	Variations between all the different ground pins including V_{REF-}	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	naximum ectrical	

Table 11. Voltage characteristics

 All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BOR2}	Brownout level 2	Falling edge	2.44	2.50	2.56	V
	threshold	Rising edge	2.53	2.59	2.63	V
	Brownout level 3	Falling edge	2.75	2.83	2.88	V
	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 22: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using a CoreMark-compliant code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to 168 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

			Typ Max ⁽¹⁾				
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168 MHz	59	77	84	
			144 MHz	46	61	67	
			120 MHz	38	53	60	
			90 MHz	30	44	51	
		(2)	60 MHz	20	34	41	
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	30 MHz	11	24	31	
			25 MHz	8	21	28	
			16 MHz	6	18	25	
			8 MHz	3	16	23	mA
			4 MHz	2	15	22	
	Supply current in		2 MHz	2	14	21	
I _{DD}	Sleep mode		168 MHz	12	27	35	ШA
			144 MHz	9	22	29	
			120 MHz	8	20	28	
			90 MHz	7	19	26	
		(2)	60 MHz	5	17	24	
		External clock ⁽²⁾ , all peripherals disabled	30 MHz	3	16	23	
			25 MHz	2	15	22	
			16 MHz	2	14	21	
			8 MHz	1	14	21	
			4 MHz	1	13	21	
			2 MHz	1	13	21	

Table 22. Typica	al and maximum cu	rrent consumption i	n Sleep mode
------------------	-------------------	---------------------	--------------

1. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

5.3.18 TIM timer characteristics

The parameters given in Table 52 and Table 53 are guaranteed by design.

Refer to *Section 5.3.16: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB1	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	prescaler distinct from 1, f _{TIMxCLK} = 84 MHz	11.9	-	ns
		AHB/APB1	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 42 MHz	23.8	-	ns
f	Timer external clock		0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4		0	42	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
	16-bit counter clock		1	65536	t _{TIMxCLK}
t	period when internal clock is selected	f _{TIMxCLK} = 84 MHz APB1= 42 MHz	0.0119	780	μs
^t COUNTER	32-bit counter clock		1	-	t _{TIMxCLK}
	period when internal clock is selected		0.0119	51130563	μs
+	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT	Maximum possible count		-	51.1	S

Table 52. Characteristics of TIMx connected to the APB1 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

51						
Parameter		Symbol	Min	Nominal	Max	Unit
Frequency (steady state) ±500 ppm		F _{STEADY}	59.97	60	60.03	MHz
Duty cycle (first transition) 8-bit ±10%		D _{START_8BIT}	40	50	60	%
Duty cycle (steady state) ±500 ppm		D _{STEADY}	49.975	50	50.025	%
Time to reach the steady state frequency and duty cycle after the first transition		T _{STEADY}	-	-	1.4	ms
Clock startup time after the	Peripheral	T _{START_DEV}	-	-	5.6	ma
de-assertion of SuspendM	Host	T _{START_HOST}	-	-	-	ms
PHY preparation time after the of the input clock	first transition	T _{PREP}	-	-	-	μs

Table 61. USB HS clock timing parameters⁽¹⁾

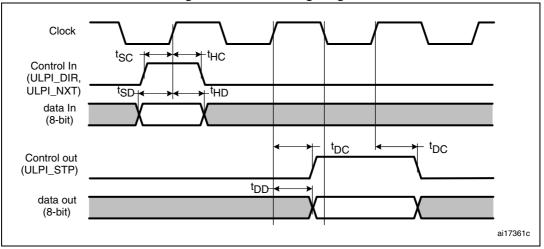

1. Guaranteed by design.

Table 62. UL	.Fi unning			
Parameter	Symbol	Valu	Value ⁽¹⁾	
Falanielei	Symbol	Min.	Max.	Unit
Control in (ULPI_DIR) setup time	+	-	2.0	
Control in (ULPI_NXT) setup time	t _{SC}	-	1.5	
Control in (ULPI_DIR, ULPI_NXT) hold time	t _{HC}	0	-	
Data in setup time	t _{SD}	-	2.0	ns
Data in hold time	t _{HD}	0	-	
Control out (ULPI_STP) setup time and hold time	t _{DC}	-	9.2	
Data out available from clock rising edge	t _{DD}	-	10.7	

Table 62. ULPI timing

1. V_{DD} = 2.7 V to 3.6 V and T_A = -40 to 85 °C.

Figure 45. ULPI timing diagram

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	9		-	
t _{ih(RXD)}	Receive data hold time	10		-	
t _{su(DV)}	Data valid setup time	9		-	
t _{ih(DV)}	Data valid hold time	8		-	
t _{su(ER)}	Error setup time	6		-	– ns
t _{ih(ER)}	Error hold time	8		-	
t _{d(TXEN)}	Transmit enable valid delay time	0	10	14	
t _{d(TXD)}	Transmit data valid delay time	0	10	15	

 Table 66. Dynamic characteristics: Ethernet MAC signals for MII⁽¹⁾

1. Guaranteed by characterization.

5.3.20 CAN (controller area network) interface

Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

5.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table* 67 are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table* 14.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Power supply	-	1.8 ⁽¹⁾	-	3.6		
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾⁽²⁾⁽³⁾	-	V _{DDA}	V _{DDA} V	
V _{REF-}	Negative reference voltage	-	-	0	-		
f _{ADC}	ADC clock frequency	V _{DDA} = 1.8 ⁽¹⁾⁽³⁾ to 2.4 V	0.6	15	18	MHz	
-		V_{DDA} = 2.4 to 3.6 V ⁽³⁾	0.6	30	36	MHz	
f _{TRIG} ⁽⁴⁾	External trigger frequency	f _{ADC} = 30 MHz, 12-bit resolution	-	-	1764	kHz	
		-	-	-	17	1/f _{ADC}	
V _{AIN}	Conversion voltage range ⁽⁵⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V	
R _{AIN} ⁽⁴⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	кΩ	
R _{ADC} ⁽⁴⁾⁽⁶⁾	Sampling switch resistance	-	-	-	6	кΩ	
C _{ADC} ⁽⁴⁾	Internal sample and hold capacitor	-	-	4	-	pF	

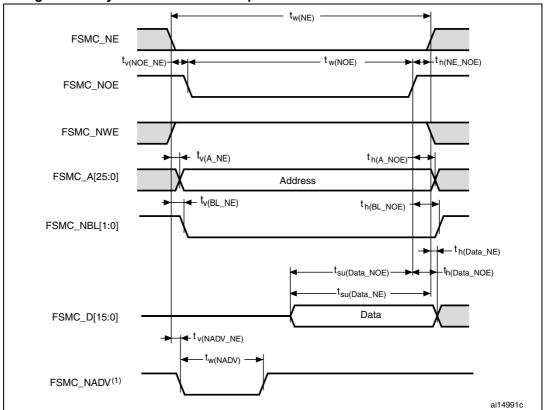
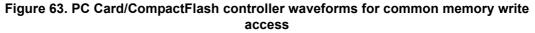
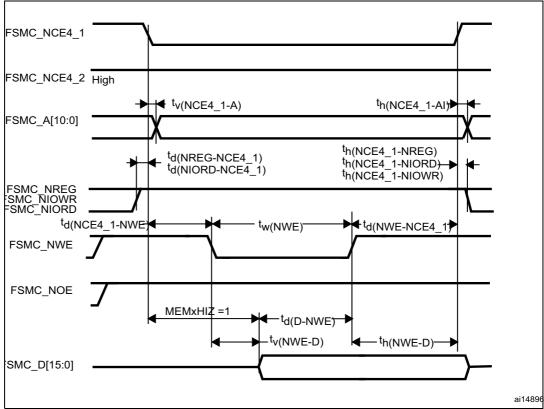


Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

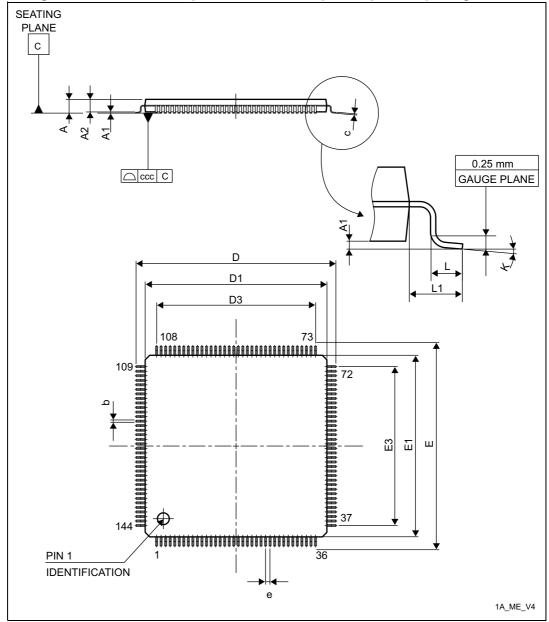
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.


Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾⁽²⁾


Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} -0.5	2 T _{HCLK} +1	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	3	ns
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} –2	2T _{HCLK} + 2	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	4.5	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	4	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} +4	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} +4	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2	ns
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK}	ns

1. C_L = 30 pF.

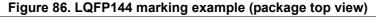
2. Guaranteed by characterization.



6.4 LQFP144 package information

Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.



Device marking for LQPF144

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

6.5 UFBGA176+25 package information

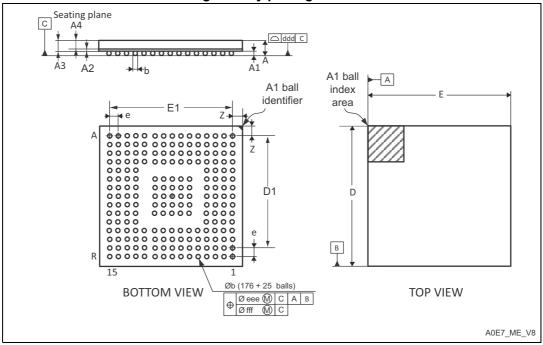


Figure 87. UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitchball grid array mechanical data

Gumbal		millimeters	-		inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.130	-	-	0.0051	-
A3	-	0.450	-	-	0.0177	-
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	9.100	-	-	0.3583	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	9.100	-	-	0.3583	-
е	-	0.650	-	-	0.0256	-
Z	-	0.450	-	-	0.0177	-
ddd	-	-	0.080	-	-	0.0031

Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch	
ball grid array mechanical data (continued)	

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 88. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array recommended footprint

00000000000000000000000000000000000000	
0000 00000 0000 ⁺ † 0000 00000 0000	
000000000000000000000000000000000000000	
0000000000000	
ADE	7_FP_V1

Table 96. UFBGA176+2 recommended PCB design rules (0.65 mm pitch BGA)

Dimension	Recommended values			
Pitch	0.65			
Dpad	0.300 mm			
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)			

Note:

Non solder mask defined (NSMD) pads are recommended.
 4 to 6 mils solder paste screen printing process.
 Stencil opening is 0.300 mm.
 Stencil thickness is between 0.100 mm and 0.125 mm.
 Pad trace width is 0.100 mm.

6.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Parameter Value Uni				
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	46				
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	43	°C/W			
0	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch	40				
Θ_{JA}	Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch	38				
	Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.65 mm pitch	39				
	Thermal resistance junction-ambient WLCSP90 - 0.400 mm pitch	38.1				

Table 98.	Package	thermal	characteristics
-----------	---------	---------	-----------------

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

7 Part numbering

Example:	STM32	F	405 R	E	Т	6	xxx
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = general-purpose							
Device subfamily							
405 = STM32F40xxx, connectivity							
407= STM32F40xxx, connectivity, camera interface, Ethernet							
Din count							
Pin count							
R = 64 pins							
O = 90 pins							
V = 100 pins							
Z = 144 pins							
I = 176 pins							
Flash memory size							
E = 512 Kbytes of Flash memory							
G = 1024 Kbytes of Flash memory							
Package							
T = LQFP					1		
H = UFBGA							
Y = WLCSP							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C.							
7 = Industrial temperature range, -40 to 105 °C.							
Options							

Table 99. Ordering information scheme

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID022152 Rev 8

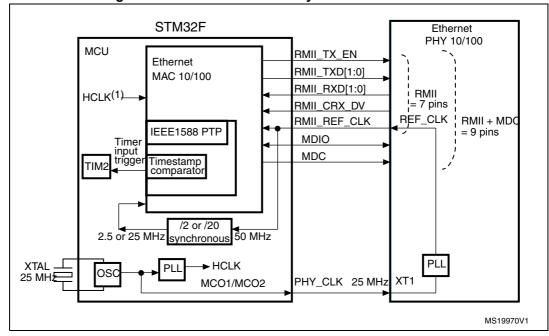


Figure 99. RMII with a 25 MHz crystal and PHY with PLL

1. f_{HCLK} must be greater than 25 MHz.

2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.

Date	Revision	Changes
22-Oct-2015	6	In the whole document, updated notes related to values guaranteed by design or by characterization. Updated <i>Table 34: HSI oscillator characteristics</i> . Changed f _{VCO_OUT} minimum value and VCO freq to 100 MHz in <i>Table 36: Main PLL characteristics</i> and <i>Table 37: PLLI2S (audio PLL)</i> <i>characteristics</i> . Updated <i>Figure 39: SPI timing diagram - slave mode and CPHA = 0</i> . Updated <i>Figure 53: 12-bit buffered /non-buffered DAC</i> . Removed note 1 related to better performance using a restricted V _{DD} range in <i>Table 68: ADC accuracy at fADC = 30 MHz</i> . Upated <i>Figure 84: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat</i> <i>package outline</i> . Updated <i>Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,</i> <i>ultra fine pitch ball grid array package outline</i> and <i>Table 95:</i> <i>UFBGA176+25 ball, 10 x 10 x 0.65 mm pitch, ultra thin fine pitch ball</i> <i>grid array mechanical data</i> .
16-Mar-2016 7		Updated Figure 2: Compatible board design STM32F10xx/STM32F2/STM32F40xxx for LQFP100 package. Updated Vssx–Vss in Table 11: Voltage characteristics to add V _{REF} . Added V _{REF} _in Table 67: ADC characteristics. Updated Table 90: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale package mechanical data.
09-Sep-2016	8	Remove note 1 below <i>Figure 5: STM32F40xxx block diagram</i> . Updated definition of stresses above maximum ratings in Section 5.2: <i>Absolute maximum ratings</i> . Updated $t_{h(NSS)}$ in <i>Figure 39: SPI timing diagram - slave mode and</i> <i>CPHA = 0Figure</i> and <i>Figure 40: SPI timing diagram - slave mode and</i> <i>CPHA = 1.</i> Added note related to optional marking and inset/upset marks in all package marking sections. Updated <i>Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,</i> <i>ultra fine pitch ball grid array package outline</i> and <i>Table 95:</i> <i>UFBGA176+25 ball, 10 x 10 x 0.65 mm pitch, ultra thin fine pitch ball</i> <i>grid array mechanical data.</i>

Table 100. Document revision history (continued)

