

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407iet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Full compatibility throughout the family

The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto-pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle.

The STM32F405xx and STM32F407xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F405xx and STM32F407xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40xxx family remains simple as only a few pins are impacted.

Figure 4, *Figure 3*, *Figure 2*, and *Figure 1* give compatible board designs between the STM32F40xxx, STM32F2, and STM32F10xxx families.

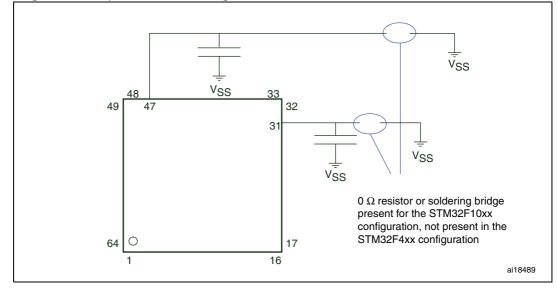


Figure 1. Compatible board design between STM32F10xx/STM32F40xxx for LQFP64

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the V_{12} domain is controlled by an external power.

2.2.20 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (internal reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

2.2.21 Timers and watchdogs

The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max interface clock (MHz)	Max timer clock (MHz)
Advanceo -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	84	168

Table 4. Timer feature comparison

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F40xxx devices (see *Table 4* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F40xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit prescaler.

bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 84 MHz.

2.2.35 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

2.2.36 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.2.37 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	PB8	PB5	PG14	PG13	PB4	PB3	PD7	PC12	PA15	PA14	PA13
В	PE4	PE5	PE6	PB9	PB7	PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
с	VBAT	PI7	PI6	PI5	VDD	PDR_ON	VDD	VDD	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13	PI8	PI9	Pl4	VSS	BOOT0	VSS	VSS	VSS	PD4	PD3	PD2	PH15	PI1	PA10
E	PC14	PF0	PI10	PI11								PH13	PH14	P10	PA 9
F	PC15	VSS	VDD	PH2		VSS	VSS	VSS	VSS	VSS		VSS	VCAP_2	PC9	PA 8
G	PH0	VSS	VDD	PH3		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PC8	PC7
н	PH1	PF2	PF1	PH4		VSS	VSS	VSS	VSS	VSS		VSS	VDD	PG8	PC6
J	NRST	PF3	PF4	PH5		VSS	VSS	VSS	VSS	VSS		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		VSS	VSS	VSS	VSS	VSS		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	BYPASS_ REG								PH11	PH10	PD15	PG2
М	VSSA	PC0	PC1	PC2	PC3	PB2	PG1	VSS	VSS	VCAP_1	PH6	PH8	PH9	PD14	PD13
Ν	VREF-	PA 1	PA0	PA4	PC4	PF13	PG0	VDD	VDD	VDD	PE13	PH7	PD12	PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	PB1	PB0	PF11	PF14	PE7	PE10	PE12	PE15	PB10	PB11	PB14	PB15
															ai18497b

Figure 16. STM32F40xxx UFBGA176 ballout

1. This figure shows the package top view.

	I	Pin r	numb							definitions (continued)	
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	-	60	82	M15	101	PD13	I/O	FT	-	FSMC_A18/TIM4_CH2/ EVENTOUT	-
-	-	-	83	-	102	V _{SS}	S		-	-	-
-	-	-	84	J13	103	V _{DD}	S		-	-	-
-	F2	61	85	M14	104	PD14	I/O	FT	-	FSMC_D0/TIM4_CH3/ EVENTOUT/ EVENTOUT	-
-	F1	62	86	L14	105	PD15	I/O	FT	-	FSMC_D1/TIM4_CH4/ EVENTOUT	-
-	-	-	87	L15	106	PG2	I/O	FT	-	FSMC_A12/ EVENTOUT	-
-	-	-	88	K15	107	PG3	I/O	FT	-	FSMC_A13/ EVENTOUT	-
-	-	-	89	K14	108	PG4	I/O	FT	-	FSMC_A14/ EVENTOUT	-
-	-	-	90	K13	109	PG5	I/O	FT	-	FSMC_A15/ EVENTOUT	-
-	-	-	91	J15	110	PG6	I/O	FT	-	FSMC_INT2/ EVENTOUT	-
-	-	-	92	J14	111	PG7	I/O	FT	-	FSMC_INT3/USART6_CK/ EVENTOUT	-
-	-	-	93	H14	112	PG8	I/O	FT	-	USART6_RTS / ETH_PPS_OUT/ EVENTOUT	-
-	-	-	94	G12	113	V _{SS}	S		-	-	-
-	-	-	95	H13	114	V _{DD}	S		-	-	-
37	F3	63	96	H15	115	PC6	I/O	FT	-	I2S2_MCK / TIM8_CH1/SDIO_D6 / USART6_TX / DCMI_D0/TIM3_CH1/ EVENTOUT	-
38	E1	64	97	G15	116	PC7	I/O	FT	-	I2S3_MCK / TIM8_CH2/SDIO_D7 / USART6_RX / DCMI_D1/TIM3_CH2/ EVENTOUT	-
39	E2	65	98	G14	117	PC8	I/O	FT	-	TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK / DCMI_D2/ EVENTOUT	-

Table 7. STM32F40xxx pin and ball definitions (continued)

Symbol	Ratings	Max.	Unit
I _{VDD}			
I _{VSS}			
	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current source by any I/Os and control pin	25	mA
ı (2)	Injected current on five-volt tolerant I/O ⁽³⁾	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

Table 12. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.21: 12-bit ADC characteristics.

3. Positive injection is not possible on these I/Os. A negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 11* for the values of the maximum allowed input voltage.

4. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS} . $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 11* for the values of the maximum allowed input voltage.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 13. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	125	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 14. General operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	Internal AHB clock frequency	VOS bit in PWR_CR register = $0^{(1)}$	0	-	144		
f _{HCLK}	Internal AITE Clock frequency	VOS bit in PWR_CR register= 1	0	-	168	MHz	
f _{PCLK1}	Internal APB1 clock frequency	-	0	-	42		
f _{PCLK2}	Internal APB2 clock frequency	-	0	-	84		
V _{DD}	Standard operating voltage	-	1.8 ⁽²⁾	-	3.6	V	
V _{DDA} ⁽³⁾⁽⁴⁾	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as	1.8 ⁽²⁾	-	2.4	V	
VDDA ^{(O)(1)}	Analog operating voltage (ADC limited to 1.4 M samples)	V _{DD} ⁽⁵⁾	2.4	-	3.6		
V _{BAT}	Backup operating voltage	-	1.65	-	3.6	V	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BOR2}	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
V _{BOR3}	Brownout level 3	Falling edge	2.75	2.83	2.88	V
	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 22: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using a CoreMark-compliant code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to 168 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Gumbal	Devementer	Conditions	4	Тур	Ма	ax ⁽¹⁾	Unit
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168 MHz	93	109	117	
			144 MHz	76	89	96	
			120 MHz	67	79	86	
			90 MHz	53	65	73	
		External clock ⁽²⁾ ,	60 MHz	37	49	56	
		all peripherals enabled ⁽³⁾⁽⁴⁾	30 MHz	20	32	39	
			25 MHz	16	27	35	
			16 MHz	11	23	30	- mA
			8 MHz	6	18	25	
			4 MHz	4	16	23	
	Supply current		2 MHz	3	15	22	
I _{DD}	in Run mode		168 MHz	46	61	69	
			144 MHz	40	52	60	
			120 MHz	37	48	56	
			90 MHz	30	42	50	
		External clock ⁽²⁾ ,	60 MHz	22	33	41	
		all peripherals	30 MHz	12	24	31	
		disabled ⁽³⁾⁽⁴⁾	25 MHz	10	21	29	
			16 MHz	7	19	26	
			8 MHz	4	16	23	
			4 MHz	3	15	22	
			2 MHz	2	14	21	

Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

57

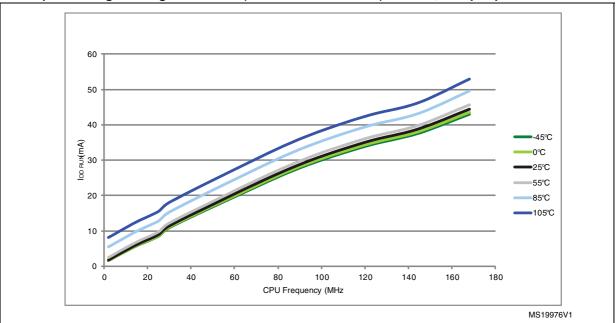
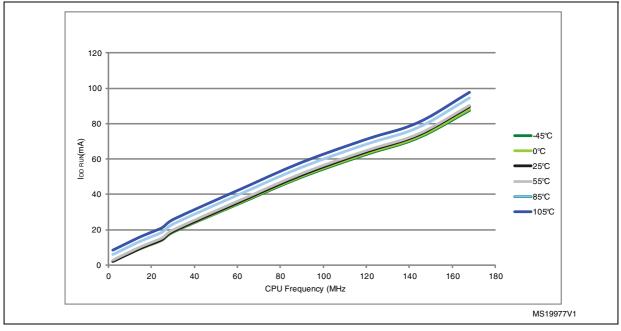



Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF

Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON

		I _{DD} (1	⁻ yp) ⁽¹⁾	
Perip	heral	Scale1 (up t 168 MHz)	Scale2 (up to 144 MHz)	Unit
	SDIO	7.08	7.92	
	TIM1	16.79	15.51	
	TIM8	17.88	16.53	
	TIM9	7.64	7.28	
	TIM10	4.89	4.82	
	TIM11	5.19	4.82	
APB2 (up to 84 MHz)	ADC1 ⁽⁵⁾	4.67	4.58	µA/MHz
(up to 04 mil2)	ADC2 ⁽⁵⁾	4.67	4.58	
	ADC3 ⁽⁵⁾	4.43	4.44	
	SPI1	1.32	1.39	
	USART1	3.51	3.72	
	USART6	3.55	3.75]
	SYSCFG	0.74	0.56]

 Table 28. Peripheral current consumption (continued)

1. When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

2. The BusMatrix is automatically active when at least one master is ON.

- 3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
- 4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.
- When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5.3.7 Wakeup time from low-power mode

The wakeup times given in *Table 29* is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

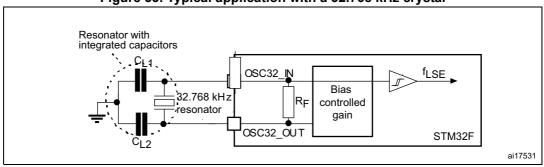


Figure 33. Typical application with a 32.768 kHz crystal

5.3.9 Internal clock source characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
f _{HSI}	Frequency	-	-	16	-	MHz					
100	HSI user trimming step ⁽²⁾	-	-	-	1	%					
		$T_A = -40$ to 105 °C ⁽³⁾	-8	-	4.5	%					
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	-4	-	4	%					
		$T_A = 25 \ ^{\circ}C^{(4)}$	-1	-	1	%					
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs					
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA					

Table 34. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization.

4. Factory calibrated, parts not soldered.

Low-speed internal (LSI) RC oscillator

Table 35. LSI oscillator characteristics	(1)
--	----	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization.

3. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	S	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 8	-	16	32		
		Program/erase parallelism (PSIZE) = x 16	-	11	22	s	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		
V _{prog}	Programming voltage	32-bit program operation	2.7	-	3.6	V	
		16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.8	-	3.6	V	

Table 40. Flash memory programming	(continued)
------------------------------------	-------------

1. Guaranteed by characterization.

2. The maximum programming time is measured after 100K erase operations.

A device reset allows normal operations to be resumed.

The test results are given in *Table 43*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	4A

Table 43. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

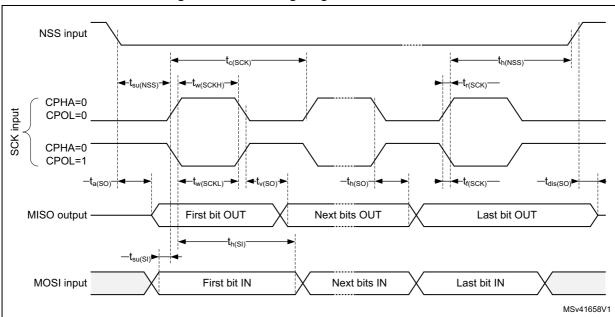
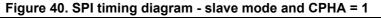
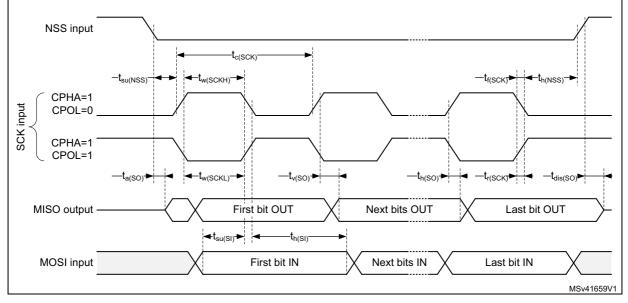




Figure 39. SPI timing diagram - slave mode and CPHA = 0

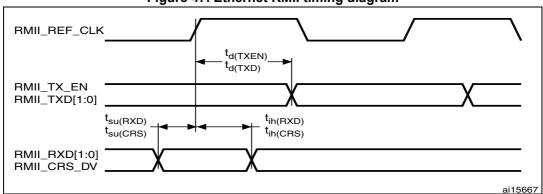


Figure 47. Ethernet RMII timing diagram

Symbol	Rating	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	2	-	-	ns
t _{ih(RXD)}	Receive data hold time	1	-	-	ns
t _{su(CRS)}	Carrier sense set-up time	0.5	-	-	ns
t _{ih(CRS)}	Carrier sense hold time	2	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	8	9.5	11	ns
t _{d(TXD)}	Transmit data valid delay time	8.5	10	11.5	ns

Table 66 gives the list of Ethernet MAC signals for MII and *Figure 47* shows the corresponding timing diagram.

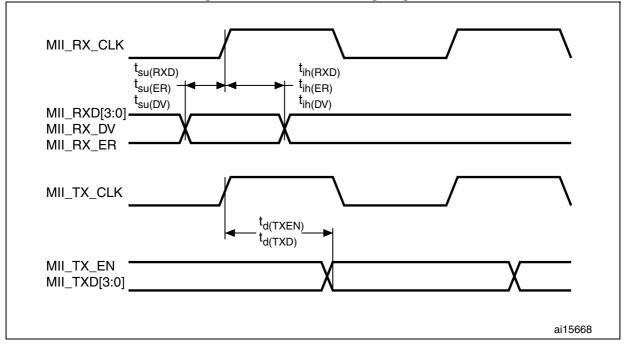


Figure 48. Ethernet MII timing diagram

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK}	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	2	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	0	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	2	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	4.5	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	ns
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	6	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAIT-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FSMC_NWAIT valid after FSMC_CLK high	0	-	ns

Table 79. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization.

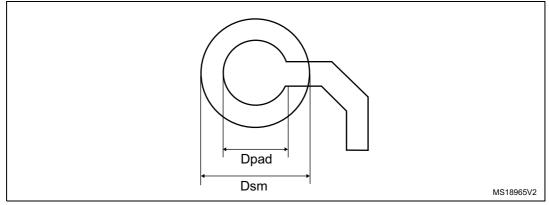
Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} –0.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	0	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	3	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	2	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	0.5	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	6	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	3	-	ns
t _{su(NWAIT-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FSMC_NWAIT valid after FSMC_CLK high	0	-	ns

 Table 81. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization.

		расказ	je mechanic				
Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	0.540	0.570	0.600	0.0213	0.0224	0.0236	
A1	-	0.190	-	-	0.0075	-	
A2	-	0.380	-	-	0.0150	-	
A3 ⁽²⁾	-	0.025	-	-	0.0010	-	
b ⁽³⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118	
D	4.188	4.223	4.258	0.1649	0.1663	0.1676	
E	3.934	3.969	4.004	0.1549	0.1563	0.1576	
е	-	0.400	-	-	0.0157	-	
e1	-	3.600	-	-	0.1417	-	
e2	-	3.200	-	-	0.1260	-	
F	-	0.3115	-	-	0.0123	-	
G	-	0.3845	-	-	0.0151	-	
aaa	-	0.100	-	-	0.0039	-	
bbb	-	0.100	-	-	0.0039	-	
ссс	-	0.100	-	-	0.0039	-	
ddd	-	0.050	-	-	0.0020	-	
eee	-	0.050	-	-	0.0020	-	


Table 90. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 76. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale recommended footprint

7 Part numbering

Example:	STM32	F	405 R	E	Т	6	xxx
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = general-purpose							
Device subfamily							
405 = STM32F40xxx, connectivity			_				
407= STM32F40xxx, connectivity, camera interface, Ethernet							
Pin count							
R = 64 pins							
O = 90 pins							
V = 100 pins							
Z = 144 pins							
I = 176 pins							
Flash memory size							
E = 512 Kbytes of Flash memory							
G = 1024 Kbytes of Flash memory							
Package							
T = LQFP							
H = UFBGA							
Y = WLCSP							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C.							
7 = Industrial temperature range, –40 to 105 °C.							
Options							

Table 99. Ordering information scheme

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID022152 Rev 8