

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	192K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407vgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

recommended footprint	75
UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array package outline	77
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array recommended footprint	78
UFBGA176+25 marking example (package top view)1	79
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline	80
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint 18	
LQFP176 marking example (package top view)18	83
USB controller configured as peripheral-only and used	
in Full speed mode	86
USB controller configured as host-only and used in full speed mode	86
USB controller configured in dual mode and used in full speed mode	87
USB controller configured as peripheral, host, or dual-mode	
and used in high speed mode	88
MII mode using a 25 MHz crystal	89
RMII with a 50 MHz oscillator	89
RMII with a 25 MHz crystal and PHY with PLL19	90
	ball grid array package outline11UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch11ball grid array recommended footprint11UFBGA176+25 marking example (package top view)11LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline14LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint.16LQFP176 marking example (package top view)16USB controller configured as peripheral-only and used16in Full speed mode16USB controller configured as host-only and used in full speed mode16USB controller configured as peripheral, host, or dual-mode16and used in high speed mode16MII mode using a 25 MHz crystal16RMII with a 50 MHz oscillator16

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the V_{12} domain is controlled by an external power.

2.2.20 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (internal reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

2.2.21 Timers and watchdogs

The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max interface clock (MHz)	Max timer clock (MHz)
Advanceo -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	84	168

Table 4. Timer feature comparison

2.2.31 Universal serial bus on-the-go high-speed (OTG_HS)

The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The major features are:

- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

2.2.32 Digital camera interface (DCMI)

The camera interface is *not* available in STM32F405xx devices.

STM32F407xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image

2.2.33 Random number generator (RNG)

All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.2.34 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog



Figure 13. STM32F40xxx LQFP100 pinout

1. The above figure shows the package top view.

63/202

DocID022152 Rev 8

	Table 9. Alternate function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_ D1	ETH _MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N		-	-	-	-	-	OTG_HS_ULPI_ D2	ETH _MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACES WO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	NJTRST	-	TIM3_CH1		-	SPI1_MISO	SPI3_MISO	I2S3ext_SD	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2		I2C1_SMB A	SPI1_MOSI	SPI3_MOSI I2S3_SD		-	CAN2_RX	OTG_HS_ULPI_ D7	ETH_PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1		I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2		I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYN C	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH _MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_CK	-	USART3_TX	-	-	OTG_HS_ULPI_ D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_ D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_ D5	ETH _MII_TXD0 ETH _RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_ D6	ETH _MII_TXD1 ETH _RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	I2S2ext_SD	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_ REFIN	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI I2S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Pinouts and pin description

577

69/202

DocID022152 Rev 8

		1	r	1	1						``	,		1	1	r	,
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH2	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_CRS	-	-	-	EVENTOUT
	PH3	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_COL	-	-	-	EVENTOUT
	PH4	-	-	-	-	I2C2_SCL	-	-	-	-	-	OTG_HS_ULPI_ NXT	-	-	-	-	EVENTOUT
	PH5	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH6	-	-	-	-	I2C2_ SMBA	-	-	-	-	TIM12_CH1	-	ETH_MII_RXD2	-	-	-	EVENTOUT
DestU	PH7	-	-	-	-	I2C3_SCL	-	-	-	-	-	-	ETH_MII_RXD3	-	-	-	EVENTOUT
Port H	PH8	-	-	-	-	I2C3_SDA	-	-	-	-	-	-	-	-	DCMI_ HSYNC	-	EVENTOUT
	PH9	-	-	-	-	I2C3_ SMBA	-	-	-	-	TIM12_CH2	-	-	-	DCMI_D0	-	EVENTOUT
	PH10	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	-	-	DCMI_D1	-	EVENTOUT
	PH11	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	-	DCMI_D2	-	EVENTOUT
	PH12	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	-	DCMI_D3	-	EVENTOUT
	PH13	-	-	-	TIM8_CH1N	-	-	-	-	-	CAN1_TX	-	-	-	-	-	EVENTOUT
	PH14	-	-	-	TIM8_CH2N	-	-	-	-	-	-	-	=	-	DCMI_D4	-	EVENTOUT
	PH15	-	-	-	TIM8_CH3N	-	-	-	-	-	-	-	-	-	DCMI_D11	-	EVENTOUT

 Table 9. Alternate function mapping (continued)

577

Bus	Boundary address	Peripheral
	0xE00F FFFF - 0xFFFF FFFF	Reserved
Cortex-M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals
	0xA000 1000 - 0xDFFF FFFF	Reserved
	0xA000 0000 - 0xA000 0FFF	FSMC control register
	0x9000 0000 - 0x9FFF FFFF	FSMC bank 4
AHB3	0x8000 0000 - 0x8FFF FFFF	FSMC bank 3
	0x7000 0000 - 0x7FFF FFFF	FSMC bank 2
	0x6000 0000 - 0x6FFF FFFF	FSMC bank 1
	0x5006 0C00- 0x5FFF FFFF	Reserved
	0x5006 0800 - 0x5006 0BFF	RNG
AHB2	0x5005 0400 - 0x5006 07FF	Reserved
	0x5005 0000 - 0x5005 03FF	DCMI
	0x5004 0000- 0x5004 FFFF	Reserved
	0x5000 0000 - 0x5003 FFFF	USB OTG FS
	0x4008 0000- 0x4FFF FFFF	Reserved

Table 10. register boundary addresses

				Тур	Ма	x ⁽²⁾	
Symbol	Parameter	Conditions	fhclk	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168 MHz	87	102	109	
			144 MHz	67	80	86	
			120 MHz	56	69	75	
		External clock ⁽³⁾ , all peripherals enabled ⁽⁴⁾⁽⁵⁾	90 MHz	44	56	62	
			60 MHz	30	42	49	
			30 MHz	16	28	35	
			25 MHz	12	24	31	
			16 MHz ⁽⁶⁾	9	20	28	
1			8 MHz	5	17	24	
			4 MHz	3	15	22	- mA
	Supply current in Run mode		2 MHz	2	14	21	
I _{DD}			168 MHz	40	54	61	
			144 MHz	31	43	50	
			120 MHz	26	38	45	
			90 MHz	20	32	39	
		- (2)	60 MHz	14	26	33	
		External clock ⁽³⁾ , all peripherals disabled ⁽⁴⁾⁽⁵⁾	30 MHz	8	20	27	
			25 MHz	6	18	25	
			16 MHz ⁽⁶⁾	5	16	24	
			8 MHz	3	15	22	
			4 MHz	2	14	21	
			2 MHz	2	14	21	

Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM ⁽¹⁾

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

6. In this case HCLK = system clock/2.

57

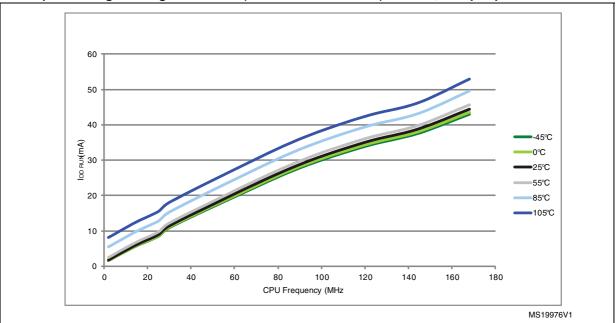
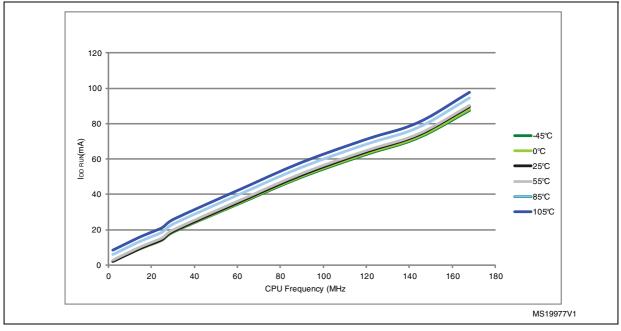
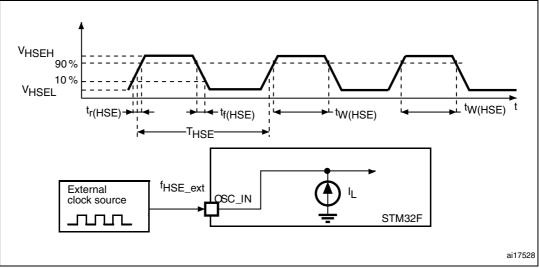



Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF

Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON


Low-speed external user clock generated from an external source


The characteristics given in *Table 31* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
ال	OSC32_IN Input leakage current	$V_{SS} \!\leq\! \! V_{IN} \!\leq\! \! V_{DD}$	-	-	±1	μA

Table 31. Low-speed external user clock characteristics

1. Guaranteed by design.

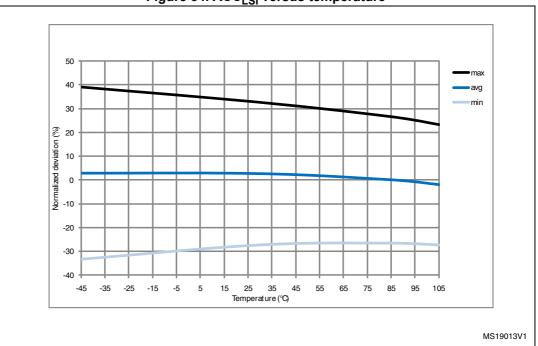


Figure 34. ACC_{LSI} versus temperature

5.3.10 PLL characteristics

The parameters given in *Table 36* and *Table 37* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	MHz	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	168	MHz	
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-	-	48	75	MHz	
f _{VCO_OUT}	PLL VCO output	-	100	-	432	MHz	
t	PLL lock time	VCO freq = 100 MHz	75	-	200	μs	
t _{LOCK}		VCO freq = 432 MHz	100	-	300	μο	

Table 36. Main PLL characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 41. Flash memor	y programming with V _{PP}
-----------------------	------------------------------------

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30	
		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 42. Flash memory endurance and data retention

1. Guaranteed by characterization.

2. Cycling performed over the whole temperature range.

5.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

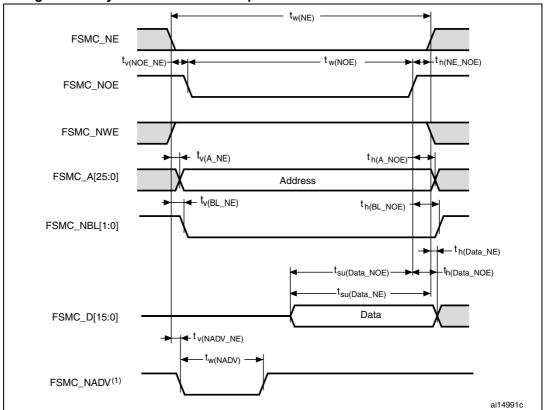


Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

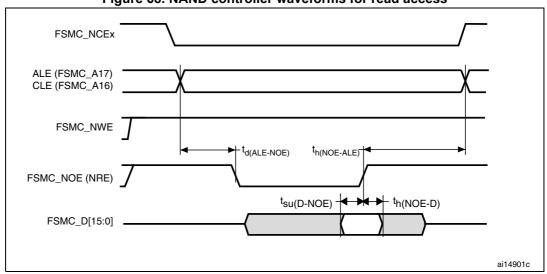
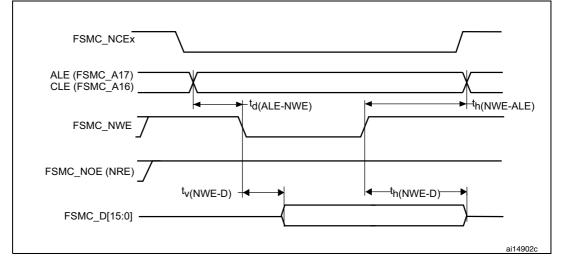
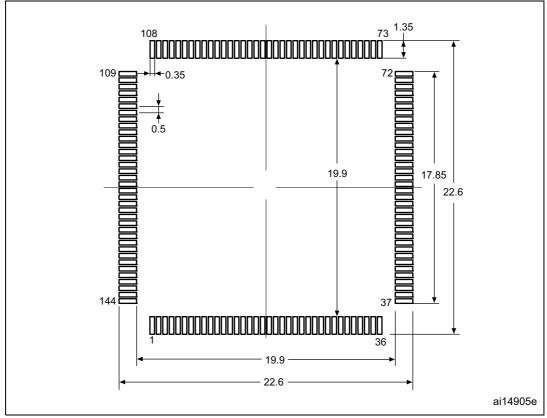
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} -0.5	2 T _{HCLK} +1	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	3	ns
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} –2	2T _{HCLK} + 2	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	4.5	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	4	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} +4	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} +4	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	(Data_NE) Data hold time after FSMC_NEx high		-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	2	ns
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK}	ns

1. C_L = 30 pF.

2. Guaranteed by characterization.

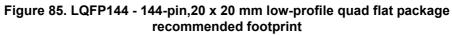

Figure 68. NAND controller waveforms for read access

Figure 69. NAND controller waveforms for write access

1. Dimensions are in millimeters.

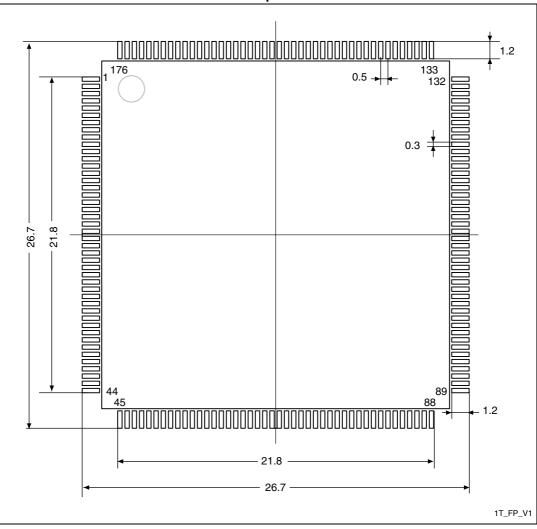
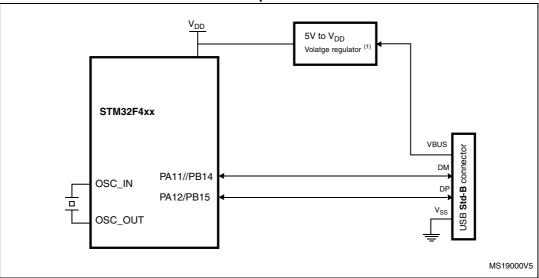
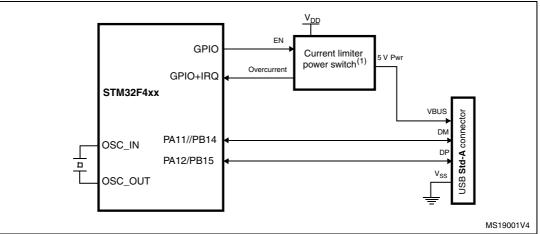


Figure 91. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint


1. Dimensions are expressed in millimeters.

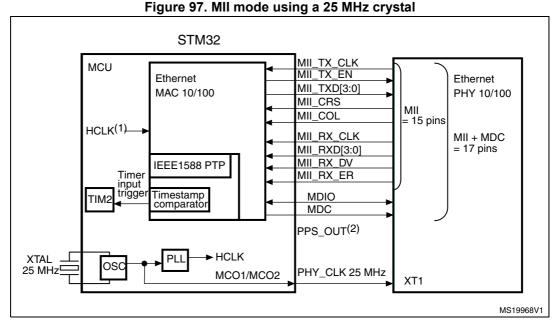
Appendix A Application block diagrams


A.1 USB OTG full speed (FS) interface solutions


Figure 93. USB controller configured as peripheral-only and used in Full speed mode

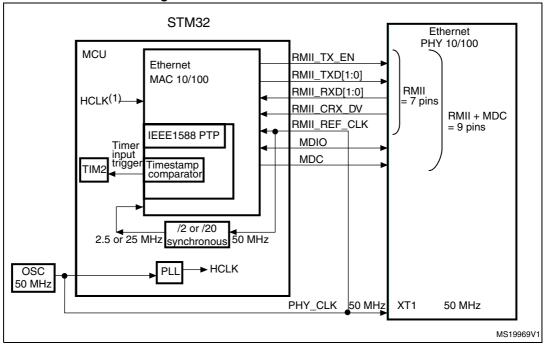
1. External voltage regulator only needed when building a V_{BUS} powered device.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.



 The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.

2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.



A.3 Ethernet interface solutions

1. f_{HCLK} must be greater than 25 MHz.

2. Pulse per second when using IEEE1588 PTP optional signal.

Figure 98. RMII with a 50 MHz oscillator

1. f_{HCLK} must be greater than 25 MHz.

8 Revision history

Date	Revision	Changes
15-Sep-2011	1	Initial release.
24-Jan-2012	2	Added WLCSP90 package on cover page. Renamed USART4 and USART5 into UART4 and UART5, respectively. Updated number of USB OTG HS and FS in <i>Table 2: STM32F405xx</i> and <i>STM32F407xx: features and peripheral counts.</i> Updated <i>Figure 3: Compatible board design between</i> <i>STM32F10xx/STM32F2/STM32F40xxx for LQFP144 package</i> and <i>Figure 4: Compatible board design between STM32F2 and</i> <i>STM32F40xxx for LQFP176 and BGA176 packages,</i> and removed note 1 and 2. Updated <i>Section 2.2.9: Flexible static memory controller (FSMC).</i> Modified I/Os used to reprogram the Flash memory for CAN2 and USB OTG FS in <i>Section 2.2.13: Boot modes.</i> Updated note in <i>Section 2.2.14: Power supply schemes.</i> PDR_ON no more available on LQFP100 package. Updated <i>Section 2.2.16: Voltage regulator.</i> Updated condition to obtain a minimum supply voltage of 1.7 V in the whole document. Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for UART4 and UART5 in <i>Table 5: USART feature comparison.</i> Removed support of I2C for OTG PHY in <i>Section 2.2.30: Universal</i> <i>serial bus on-the-go full-speed (OTG_FS).</i> Added <i>Table 6: Legend/abbreviations used in the pinout table.</i> <i>Table 7: STM32F40xxx pin and ball definitions:</i> replaced V _{SS_3} , V _{SS_4} , and V _{SS_8} by V _{SS} : reformatted <i>Table 7: STM32F40xxx pin and</i> <i>ball definitions</i> to better highlight I/O structure, and alternate functions versus additional functions; signal corresponding to LQFP100 pin 99 changed from PDR_ON to V _{SS} : EVENTOUT added in the list of alternate functions for all I/OS; ADC3_IN8 added as alternate function for PD11 and PD12, respectively; PH10 alternate function <i>TIM15_CH1_ETR</i> renamed TIM5_CH1; updated PA4 and PA5 I/O structure to TTa. Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in <i>Table 7:</i> <i>STM32F40xxx pin and ball definitions</i> and <i>Table 9: Alternate function</i> <i>mapping.</i> Changed TCM data RAM to CCM data RAM in <i>Figure 18:</i> <i>STM32F40xxx pin and ball definitions</i> and <i>Table 9: Alternate function</i> <i>mapping.</i> Changed TCM data RAM to CCM data

Table 100. Document revision history

Date	Revision	Changes	
Date 24-Jan-2012	Revision 2 (continued)	Changes Added V ₁₂ in Table 19: Embedded reset and power control block characteristics. Updated Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure , Figure 25, Figure 26, and Figure 27. Updated Table 22: Typical and maximum current consumption in Sleep mode and removed Note 1. Updated Table 23: Typical and maximum current consumptions in Stop mode and Table 24: Typical and maximum current consumptions in Stop mode and Table 25: Typical and maximum current consumptions in Standby mode, Table 25: Typical and maximum current consumptions in Standby mode, Table 25: Typical and maximum current consumptions in Standby mode, and Table 27: Switching output I/O current consumption. Section : On-chip peripheral current consumption: modified conditions, and updated Table 28: Peripheral current consumption and Note 2. Changed f _{HSE_ext} to 50 MHz and t _{r(HSE)} /t _{f(HSE)} maximum value in Table 30: High-speed external user clock characteristics. Added C _{in(LSE)} in Table 31: Low-speed external user clock characteristics. Updated maximum PLL input clock frequency, removed related note, and deleted jitter for MCO for RMII Ethernet typical value in Table 36: Main PLL characteristics. Updated maximum PLLI2S input clock frequency and removed related note in Table 37: PLLI2S (audio PLL) characteristics. Updated Section : Flash memory to specify that the devices are shipped to customers with the Flash memory erased. Updated Table 39: Fl	

Table 100. Document revision history (continued)

