STMicroelectronics - STM32F407VGT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407vgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 8- to 14-bit parallel camera interface up to 54 Mbytes/s
- 96-bit unique ID
- RTC: subsecond accuracy, hardware calendar
- True random number generator
- CRC calculation unit

Table	1. D	evice	summary

Reference	Part number
STM32F405xx	STM32F405RG, STM32F405VG, STM32F405ZG, STM32F405OG, STM32F405OE
STM32F407xx	STM32F407VG, STM32F407IG, STM32F407ZG, STM32F407VE, STM32F407ZE, STM32F407IE

recommended footprint	75
LQFP144 marking example (package top view)1	76
UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array package outline	77
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array recommended footprint	78
UFBGA176+25 marking example (package top view)1	79
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline	80
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint 18	82
LQFP176 marking example (package top view)18	83
USB controller configured as peripheral-only and used	
in Full speed mode	86
USB controller configured as host-only and used in full speed mode	86
USB controller configured in dual mode and used in full speed mode	87
USB controller configured as peripheral, host, or dual-mode	
and used in high speed mode	88
MII mode using a 25 MHz crystal 18	89
RMII with a 50 MHz oscillator	89
RMII with a 25 MHz crystal and PHY with PLL 19	90
	recommended footprint. 1 LQFP144 marking example (package top view) 1 UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch 1 ball grid array package outline 1 UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch 1 ball grid array recommended footprint. 1 UFBGA176+25 marking example (package top view) 1 LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline 1 LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. 1 LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. 1 LQFP176 marking example (package top view) 1 USB controller configured as peripheral-only and used 1 USB controller configured as host-only and used in full speed mode. 1 USB controller configured as peripheral, host, or dual-mode 1 and used in high speed mode. 1 MII mode using a 25 MHz crystal 1 RMII with a 50 MHz oscillator 1 RMII with a 25 MHz crystal and PHY with PLL. 1

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F40xxx devices (see *Table 4* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F40xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-

bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3 Pinouts and pin description

1. The above figure shows the package top view.

	10	9	8	7	6	5	4	3	2	1
А	VBAT	PC13	PDR_ON	BOOT0	PB4	PD7	PD4	PC12	PA14	VDD
В	PC14	PC15	VDD	PB7	PB3	PD6	PD2	PA15	PI1	VCAP_2
С	PA0	vss	PB9	PB6	PD5	PD1	PC11	PI0	PA12	PA11
D	PC2	BYPASS_ REG	PB8	PB5	PD0	PC10	PA13	PA10	PA9	PA8
E	PC0	PC3	VSS	VSS	VDD	VSS	VDD	PC9	PC8	PC7
F	PH0	PH1	PA1	VDD	PE10	PE14	VCAP_1	PC6	PD14	PD15
G	NRST	VDDA	PA5	PB0	PE7	PE13	PE15	PD10	PD12	PD11
н	VSSA	PA3	PA6	PB1	PE8	PE12	PB10	PD9	PD8	PB15
J	PA2	PA4	PA7	PB2	PE9	PE11	PB11	PB12	PB14	PB13

Figure 17. STM32F40xxx WLCSP90 ballout

1. This figure shows the package bump view.

Table 6. Legend/abbreviations used in the	pinout table
---	--------------

Name	Abbreviation	Definition							
Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name								
	S	Supply pin							
Pin type	I	Input only pin							
	I/O	Input / output pin							
	FT	5 V tolerant I/O							
I/O atruatura	ТТа	3.3 V tolerant I/O directly connected to ADC							
	В	Dedicated BOOT0 pin							
	RST	Bidirectional reset pin with embedded weak pull-up resistor							
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset								
Alternate functions	Functions selected through GPIOx_AFR registers								
Additional functions	Functions directly selected/enabled through peripheral registers								

				WI CEROO		
Pins ⁽¹⁾	CF	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽²⁾	(2)
PG2	-	A12	-	-	-	-
PG3	-	A13	-	-	-	-
PG4	-	A14	-	-	-	-
PG5	-	A15	-	-	-	-
PG6	-	-	-	INT2	-	-
PG7	-	-	-	INT3	-	-
PD0	D2	D2	DA2	D2	Yes	Yes
PD1	D3 D3		DA3	D3	Yes	Yes
PD3	-	CLK	CLK	-	Yes	-
PD4	NOE	NOE NOE		NOE	Yes	Yes
PD5	NWE	NWE	NWE	NWE	Yes	Yes
PD6	NWAIT	NWAIT	NWAIT	NWAIT	Yes	Yes
PD7	-	NE1	NE1	NCE2	Yes	Yes
PG9	-	NE2	NE2	NCE3	-	-
PG10	NCE4_1	NE3	NE3	-	-	-
PG11	NCE4_2	-	-	-	-	-
PG12	-	NE4	NE4	-	-	-
PG13	-	A24	A24	-	-	-
PG14	-	A25	A25	-	-	-
PB7	-	NADV	NADV	-	Yes	Yes
PE0	-	NBL0	NBL0	-	Yes	-
PE1	-	NBL1	NBL1	-	Yes	-

Table 8. FSMC pin definition (continued)

1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on smaller packages are given in the dedicated package column.

2. Ports F and G are not available in devices delivered in 100-pin packages.

67/202

DocID022152 Rev 8

						Tab	ole 9. Alt	ernate fu	unction m	apping	(contin	ued)					
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PF0	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	FSMC_A0	-	-	EVENTOUT
	PF1	-	-	-	-	I2C2_SCL	-	-	-	-	-	-	-	FSMC_A1	-	-	EVENTOUT
	PF2	-	-	-	-	I2C2_ SMBA	-	-	-	-	-	-	-	FSMC_A2	-	-	EVENTOUT
	PF3	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A3	-	-	EVENTOUT
	PF4	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A4	-	-	EVENTOUT
	PF5	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A5	-	-	EVENTOUT
	PF6	-	-	-	TIM10_CH1	-	-	-	-	-	-	-	-	FSMC_NIORD	-	-	EVENTOUT
Port F	PF7	-	-	-	TIM11_CH1	-	-	-	-	-	-	-	-	FSMC_NREG	-	-	EVENTOUT
, or the	PF8	-	-	-	-	-	-	-	-	-	TIM13_CH1	-	-	FSMC_ NIOWR	-	-	EVENTOUT
	PF9	-	-	-	-	-	-	-	-	-	TIM14_CH1	-	-	FSMC_CD	-	-	EVENTOUT
	PF10	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_INTR	-	-	EVENTOUT
	PF11	-	-	-	-	-	-	-	-	-	-	-	-		DCMI_D12	-	EVENTOUT
	PF12	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A6	-	-	EVENTOUT
	PF13	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A7	-	-	EVENTOUT
	PF14	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A8	-	-	EVENTOUT
	PF15	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A9	-	-	EVENTOUT

Pinouts and pin description

5

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Ρ	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PG0	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A10	-	-	EVENTOUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A11	-	-	EVENTOUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A12	-	-	EVENTOUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A13	-	-	EVENTOUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A14	-	-	EVENTOUT
	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_A15	-	-	EVENTOUT
	PG6	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_INT2	-	-	EVENTOUT
	PG7	-	-	-	-	-	-	-	-	USART6_CK	-	-	-	FSMC_INT3	-	-	EVENTOUT
	PG8	-	-	-	-	-	-	-	-	USART6_ RTS	-	-	ETH_PPS_OUT	-	-	-	EVENTOUT
Port G	PG9	-	-	-	-	-	-	-	-	USART6_RX	-	-	-	FSMC_NE2/ FSMC_NCE3	-	-	EVENTOUT
	PG10	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_ NCE4_1/ FSMC_NE3	-	-	EVENTOUT
	PG11	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_TX_EN ETH _RMII_ TX_EN	FSMC_NCE4_ 2	-	-	EVENTOUT
	PG12	-	-	-	-	-	-	-	-	USART6_ RTS	-	-	-	FSMC_NE4	-	-	EVENTOUT
	PG13	-	-	-	-	-	-	-	-	UART6_CTS	-	-	ETH _MII_TXD0 ETH _RMII_TXD0	FSMC_A24	-	-	EVENTOUT
	PG14	-	-	-	-	-	-	-	-	USART6_TX	-	-	ETH _MII_TXD1 ETH _RMII_TXD1	FSMC_A25	-	-	EVENTOUT
	PG15	-	-	-	-	-	-	-	-	USART6_ CTS	-	-	-	-	DCMI_D13	-	EVENTOUT

Table 9. Alternate function mapping (continued)

DocID022152 Rev 8

57

68/202

STM32F405xx, STM32F407xx

Pinouts and pin description

Port		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
		SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PI0	-	-	TIM5_CH4	-	-	SPI2_NSS I2S2_WS	-	-	-	-	-	-	-	DCMI_D13	-	EVENTOUT
	PI1	-	-	-	-	-	SPI2_SCK I2S2_CK	-	-	-	-	-	-	-	DCMI_D8	-	EVENTOUT
	PI2	-	-	-	TIM8_CH4	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	-	DCMI_D9	-	EVENTOUT
	PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI I2S2_SD	-	-	-	-	-	-	-	DCMI_D10	-	EVENTOUT
	PI4	-	-	-	TIM8_BKIN	-	-	-	-	-	-	-	-	-	DCMI_D5	-	EVENTOUT
Port I	PI5	-	-	-	TIM8_CH1	-	-	-	-	-	-	-	-	-	DCMI_ VSYNC	-	EVENTOUT
	PI6	-	-	-	TIM8_CH2	-	-	-	-	-	-	-	-	-	DCMI_D6	-	EVENTOUT
	PI7	-	-	-	TIM8_CH3	-	-	-	-	-	-	-	-	-	DCMI_D7	-	EVENTOUT
	PI8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PI9	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	-	-	-	EVENTOUT
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_RX_ER	-	-	-	EVENTOUT
	PI11	-	-	-	-	-	-	-	-	-	-	OTG_HS_ULPI_ DIR	-	-	-	-	EVENTOUT

Table 9. Alternate function mapping (continued)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	Regulator ON:	VOS bit in PWR_CR register = 0 ⁽¹⁾ Max frequency 144MHz	1.08	1.14	1.20	V	
V ₁₂	V_{CAP_1}/V_{CAP_2} pins	VOS bit in PWR_CR register= 1 Max frequency 168MHz	1.20	1.26	1.32	V	
12	Regulator OFF:	Max frequency 144MHz	1.10	1.14	1.20	V	
	1.2 V external voltage must be supplied from external regulator on V_{CAP_1}/V_{CAP_2} pins	Max frequency 168MHz	1.20	1.26	1.30	V	
	Input voltage on RST and FT	$2 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-0.3	-	5.5		
	pins ⁽⁶⁾	$V_{DD} \le 2 V$	-0.3	-	5.2		
V _{IN}	Input voltage on TTa pins	-	-0.3	-	V _{DDA} + 0.3	V _{DDA} + V 0.3 5.5	
	Input voltage on B pin	-	-	-	5.5		
	Power dissipation at $T_A = 85 \degree C$ for suffix 6 or $T_A = 105 \degree C$ for suffix 7 ⁽⁷⁾	LQFP64	-	-	435		
		LQFP100	-	-	465		
Р		LQFP144	-	-	500		
۳D		LQFP176	-	-	526	mvv	
		UFBGA176	-	-	513		
		WLCSP90	-	-	543		
	Ambient temperature for 6 suffix	Maximum power dissipation	-40	-	85	ŝ	
TA	version	Low-power dissipation ⁽⁸⁾	-40	-	105	C	
	Ambient temperature for 7 suffix	Maximum power dissipation	-40	-	105	ŝ	
	version	Low-power dissipation ⁽⁸⁾	-40	-	125	C	
т.	lunction tomporature range	6 suffix version	-40	-	105	°C	
TJ	Sunction temperature range	7 suffix version	-40	-	125	°C	

able 14. Genera	l operating	conditions	(continued)
-----------------	-------------	------------	-------------

1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole temperature range, when the system clock frequency is between 30 and 144 MHz.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF).

3. When the ADC is used, refer to *Table 67: ADC characteristics*.

4. If V_{REF+} pin is present, it must respect the following condition: V_{DDA}-V_{REF+} < 1.2 V.

5. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.

6. To sustain a voltage higher than V_{DD} +0.3, the internal pull-up and pull-down resistors must be disabled.

7. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax}

8. In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

5.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V _{PVD}	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
1.12		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
Vecer	Brownout level 1	Falling edge	2.13	2.19	2.24	V
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33	V

Table 19. Embedded reset	and power control	block characteristics
--------------------------	-------------------	-----------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. Guaranteed by design.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 22: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using a CoreMark-compliant code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to 168 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

				Тур	Max		
Symbol	Parameter	Conditions	^f нс∟к	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168 MHz	59	77	84	
			144 MHz	46	61	67	
			120 MHz	38	53	60	
			90 MHz	30	44	51	
		- (2)	60 MHz	20	34	41	
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	30 MHz	11	24	31	
	Supply current in		25 MHz	8	21	28	
			16 MHz	6	18	25	-
			8 MHz	3	16	23	
			4 MHz	2	15	22	
1			2 MHz	2	14	21	m۵
DD	Sleep mode		168 MHz	12	27	35	
			144 MHz	9	22	29	
			120 MHz	8	20	28	
			90 MHz	7	19	26	
		- (2)	60 MHz	5	17	24	
		External clock ⁽²⁾ , all peripherals disabled	30 MHz	3	16	23	
			25 MHz	2	15	22	
			16 MHz	2	14	21	
			8 MHz	1	14	21	
			4 MHz	1	13	21	
			2 MHz	1	13	21	

Table 22. Typical and	d maximum curren	t consumption in	Sleep mode
-----------------------	------------------	------------------	------------

1. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

Figure 36. PLL output clock waveforms in down spread mode

5.3.12 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD}	Supply current	Write / Erase 8-bit mode, V_{DD} = 1.8 V	-	5	-	
		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

 Table 39. Flash memory characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
terase16KB		Program/erase parallelism (PSIZE) = x 8	-	400	800	
	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
t _{erase64kb}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
		Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	

Table 40. Flash memory programming

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

able 41. Flash memo	y programming	with VPP
---------------------	---------------	----------

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

0h.al	Demonstern	Osmalikisma	Value	11
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
t _{RET}		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 42. Flash memory endurance and data retention

1. Guaranteed by characterization.

2. Cycling performed over the whole temperature range.

5.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

Symbol	Parameter	Conditions	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	AHB/APB2 prescaler distinct from 1, f _{TIMxCLK} = 168 MHz	1	-	t _{TIMxCLK}
			5.95	-	ns
		AHB/APB2 prescaler = 1, f _{TIMxCLK} = 84 MHz	1	-	t _{TIMxCLK}
			11.9	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4		0	f _{TIMxCLK} /2	MHz
			0	84	MHz
Res _{TIM}	Timer resolution	f _{TIMxCLK} = 168 MHz	-	16	bit
t _{COUNTER}	16-bit counter clock period when internal clock is selected	APB2 = 84 MHz	1	65536	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count		-	32768	t _{TIMxCLK}

 Table 53. Characteristics of TIMx connected to the APB2 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

5.3.19 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 5.3.16: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 54. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by design.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

Symbol	millimeters			inches		
	Min	Тур	Мах	Min	Тур	Max
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package mechanical data⁽¹⁾ (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

1. Dimensions are in millimeters.

Device marking for LQPF144

The following figure gives an example of topside marking and pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

6.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
ΘjA	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	46		
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	43		
	Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch	40	°C/W	
	Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch	38		
	Thermal resistance junction-ambient UFBGA176 - 10× 10 mm / 0.65 mm pitch	39		
	Thermal resistance junction-ambient WLCSP90 - 0.400 mm pitch	38.1		

Table 98	Package	thermal	characteristics
----------	---------	---------	-----------------

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

