

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407zet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	luction	
2	Descr	iption .	
	2.1	Full com	patibility throughout the family
	2.2	Device of	overview
		2.2.1	$ARM^{\textcircled{R}}$ Cortex ^{\textcircled{R}} -M4 core with FPU and embedded Flash and SRAM 20
		2.2.2	Adaptive real-time memory accelerator (ART Accelerator™)20
		2.2.3	Memory protection unit
		2.2.4	Embedded Flash memory
		2.2.5	CRC (cyclic redundancy check) calculation unit
		2.2.6	Embedded SRAM
		2.2.7	Multi-AHB bus matrix
		2.2.8	DMA controller (DMA)
		2.2.9	Flexible static memory controller (FSMC)23
		2.2.10	Nested vectored interrupt controller (NVIC)
		2.2.11	External interrupt/event controller (EXTI)
		2.2.12	Clocks and startup
		2.2.13	Boot modes
		2.2.14	Power supply schemes
		2.2.15	Power supply supervisor
		2.2.16	Voltage regulator
		2.2.17	Regulator ON/OFF and internal reset ON/OFF availability
		2.2.18	Real-time clock (RTC), backup SRAM and backup registers
		2.2.19	Low-power modes
		2.2.20	V _{BAT} operation
		2.2.21	Timers and watchdogs
		2.2.22	Inter-integrated circuit interface (I ² C)
		2.2.23	Universal synchronous/asynchronous receiver transmitters (USART) . 34
		2.2.24	Serial peripheral interface (SPI)
		2.2.25	Inter-integrated sound (I2S) 35
		2.2.26	Audio PLL (PLLI2S)
		2.2.27	Secure digital input/output interface (SDIO)
		2.2.28	Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 36
		2.2.29	Controller area network (bxCAN)

recommended footprint	75
UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array package outline	77
UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch	
ball grid array recommended footprint	78
UFBGA176+25 marking example (package top view)1	79
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline	80
LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint 18	
LQFP176 marking example (package top view)18	83
USB controller configured as peripheral-only and used	
in Full speed mode	86
USB controller configured as host-only and used in full speed mode	86
USB controller configured in dual mode and used in full speed mode	87
USB controller configured as peripheral, host, or dual-mode	
and used in high speed mode	88
MII mode using a 25 MHz crystal	89
RMII with a 50 MHz oscillator	89
RMII with a 25 MHz crystal and PHY with PLL19	90
	ball grid array package outline11UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch11ball grid array recommended footprint11UFBGA176+25 marking example (package top view)11LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline14LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint.16LQFP176 marking example (package top view)16USB controller configured as peripheral-only and used16in Full speed mode16USB controller configured as host-only and used in full speed mode16USB controller configured as peripheral, host, or dual-mode16and used in high speed mode16MII mode using a 25 MHz crystal16RMII with a 50 MHz oscillator16

2.2.1 ARM[®] Cortex[®]-M4 core with FPU and embedded Flash and SRAM

The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software.

Figure 5 shows the general block diagram of the STM32F40xxx family.

Note: Cortex-M4 with FPU is binary compatible with Cortex-M3.

2.2.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz.

2.2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.4 Embedded Flash memory

The STM32F40xxx devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for storing programs and data.

DocID022152 Rev 8

Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the V_{12} domain is controlled by an external power.

2.2.20 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Note: When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is not connected to V_{DD} (internal reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

2.2.21 Timers and watchdogs

The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max interface clock (MHz)	Max timer clock (MHz)
Advanceo -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	84	168

Table 4. Timer feature comparison

		•								
	10	9	8	7	6	5	4	3	2	1
A	VBAT	PC13	PDR_ON	BOOT0	PB4	PD7	PD4	PC12	PA14	VDD
В	PC14	PC15	VDD	PB7	PB3	PD6	PD2	PA15	PI1	VCAP_2
С	PA0	vss	PB9	PB6	PD5	PD1	PC11	PI0	PA12	PA11
D	PC2	BYPASS_ REG	PB8	PB5	PD0	PC10	PA13	PA10	PA9	PA8
E	PC0	PC3	vss	VSS	VDD	VSS	VDD	PC9	PC8	PC7
F	PH0	PH1	PA1	VDD	PE10	PE14	VCAP_1	PC6	PD14	PD15
G	NRST	VDDA	PA5	PB0	PE7	PE13	PE15	PD10	PD12	PD11
н	VSSA	PA3	PA6	PB1	PE8	PE12	PB10	PD9	PD8	PB15
J	PA2	PA4	PA7	PB2	PE9	PE11	PB11	PB12	PB14	PB13
	•	:				1	1		:	

Figure 17. STM32F40xxx WLCSP90 ballout

1. This figure shows the package bump view.

Table 6. Legend/abbreviations used in the	pinout table
---	--------------

Name	Abbreviation	Definition					
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name					
	S	Supply pin					
Pin type	I	Input only pin					
	I/O	Input / output pin					
	FT	5 V tolerant I/O					
	ТТа	3.3 V tolerant I/O directly connected to ADC					
I/O structure	B Dedicated BOOT0 pin						
	RST	Bidirectional reset pin with embedded weak pull-up resistor					
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset					
Alternate functions	Functions selected through GPIOx_AFR registers						
Additional functions	Functions directly	selected/enabled through peripheral registers					

	F	Pin r	numb							demittions (continued)	
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Alternate functions		Additional functions		
29	H4	47	69	R12	79	PB10	I/O	FT	-	SPI2_SCK / I2S2_CK / I2C2_SCL/ USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / TIM2_CH3/ EVENTOUT	-
30	J4	48	70	R13	80	PB11	I/O	FT	-	I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / TIM2_CH4/ EVENTOUT	-
31	F4	49	71	M10	81	V _{CAP_1}	S		-	-	-
32	-	50	72	N10	82	V _{DD}	S		-	-	-
-	-	-	-	M11	83	PH6 I/O FT - I2C2_SMBA / TIM12_CH1 / ETH_MII_RXD2/ EVENTOUT		-			
-	-	-	-	N12	84	PH7	I/O	FT	-	I2C3_SCL / ETH_MII_RXD3/ EVENTOUT	-
-	-	-	-	M12	85	PH8	I/O	FT	-	I2C3_SDA / DCMI_HSYNC/ EVENTOUT	-
-	-	-	-	M13	86	PH9	I/O	FT	-	I2C3_SMBA / TIM12_CH2/ DCMI_D0/ EVENTOUT	-
-	-	-	-	L13	87	PH10	I/O	FT	-	TIM5_CH1 / DCMI_D1/ EVENTOUT	-
-	-	-	-	L12	88	PH11	I/O	FT	-	TIM5_CH2 / DCMI_D2/ EVENTOUT	-
-	-	-	-	K12	89	PH12	I/O	FT	-	TIM5_CH3 / DCMI_D3/ EVENTOUT	-
-	-	-	I	H12	90	V _{SS}	S	-	-	-	-
-	-	-	-	J12	91	V_{DD}	S	-	-	-	-

Table 7. STM32F40xxx pin and ball definitions (continued)

	I	Pin r	numb	er							
LQFP64	WLCSP90	LQFP100	LQFP144	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Notes	Alternate functions	Additional functions
-	A4	85	118	D10	146	PD4	I/O	FT	-	FSMC_NOE/ USART2_RTS/ EVENTOUT	-
-	C6	86	119	C11	147	PD5	I/O	FT	-	FSMC_NWE/USART2_TX/ EVENTOUT	-
-	-	-	120	D8	148	V _{SS}	S	-	-	-	-
-	-	-	121	C8	149	V _{DD}	S	-	-	-	-
-	B5	87	122	B11	150	PD6	I/O	FT	-	FSMC_NWAIT/ USART2_RX/ EVENTOUT	-
-	A5	88	123	A11	151	PD7	I/O	FT	-	USART2_CK/FSMC_NE1/ FSMC_NCE2/ EVENTOUT	-
-	-	-	124	C10	152	PG9	I/O	FT	-	USART6_RX / FSMC_NE2/FSMC_NCE3/ EVENTOUT	-
-	-	-	125	B10	153	PG10	I/O	FT	-	FSMC_NCE4_1/ FSMC_NE3/ EVENTOUT	-
-	-	-	126	В9	154	PG11	I/O	FT	-	FSMC_NCE4_2 / ETH_MII_TX_EN/ ETH_RMII_TX_EN/ EVENTOUT	-
-	-	-	127	B8	155	PG12	I/O	FT	-	FSMC_NE4 / USART6_RTS/ EVENTOUT	-
-	-	-	128	A8	156	PG13	I/O	FT	-	FSMC_A24 / USART6_CTS /ETH_MII_TXD0/ ETH_RMII_TXD0/ EVENTOUT	-
-	-	-	129	A7	157	PG14	I/O	FT	-	FSMC_A25 / USART6_TX /ETH_MII_TXD1/ ETH_RMII_TXD1/ EVENTOUT	-
-	E8	-	130	D7	158	V_{SS}	S	-	-	-	-
-	F7	-	131	C7	159	V _{DD}	S	-	-	-	-
-	-	-	132	B7	160	PG15	I/O	FT	-	USART6_CTS / DCMI_D13/ EVENTOUT	-

Table 7. STM32F40xxx pin and ball definitions (continued)

69/202

DocID022152 Rev 8

		1	r	1	1						``	,		1	1	r	,
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Po	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH2	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_CRS	-	-	-	EVENTOUT
	PH3	-	-	-	-	-	-	-	-	-	-	-	ETH _MII_COL	-	-	-	EVENTOUT
	PH4	-	-	-	-	I2C2_SCL	-	-	-	-	-	OTG_HS_ULPI_ NXT	-	-	-	-	EVENTOUT
	PH5	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH6	-	-	-	-	I2C2_ SMBA	-	-	-	-	TIM12_CH1	-	ETH_MII_RXD2	-	-	-	EVENTOUT
DestU	PH7	-	-	-	-	I2C3_SCL	-	-	-	-	-	-	ETH_MII_RXD3	-	-	-	EVENTOUT
Port H	PH8	-	-	-	-	I2C3_SDA	-	-	-	-	-	-	-	-	DCMI_ HSYNC	-	EVENTOUT
	PH9	-	-	-	-	I2C3_ SMBA	-	-	-	-	TIM12_CH2	-	-	-	DCMI_D0	-	EVENTOUT
	PH10	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	-	-	DCMI_D1	-	EVENTOUT
	PH11	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	-	DCMI_D2	-	EVENTOUT
	PH12	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	-	DCMI_D3	-	EVENTOUT
	PH13	-	-	-	TIM8_CH1N	-	-	-	-	-	CAN1_TX	-	-	-	-	-	EVENTOUT
	PH14	-	-	-	TIM8_CH2N	-	-	-	-	-	-	-	=	-	DCMI_D4	-	EVENTOUT
	PH15	-	-	-	TIM8_CH3N	-	-	-	-	-	-	-	-	-	DCMI_D11	-	EVENTOUT

 Table 9. Alternate function mapping (continued)

577

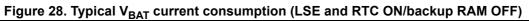
			Тур		Max		
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode	Flash in Stop mode, low-speed and high- speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.45	1.5	11.00	20.00	
	with main regulator in Run mode	Flash in Deep power-down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.40	1.5	11.00	20.00	mA
IDD_STOP	Supply current in Stop mode	Flash in Stop mode, low-speed and high- speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.31	1.1	8.00	15.00	ША
	with main regulator in Low-power mode	Flash in Deep power-down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.28	1.1	8.00	15.00	

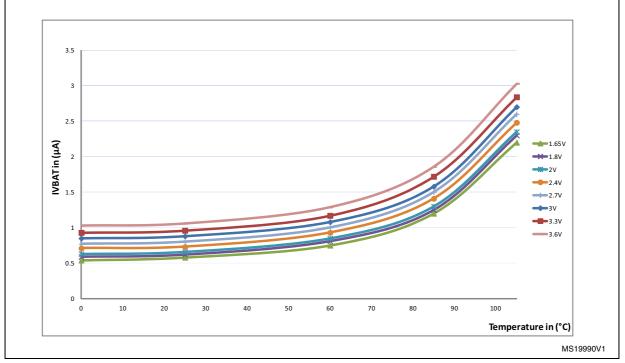
Table 23. Typical and maximum current consumptions in Stop mode	Table 23.	Typical and	maximum	current	consum	ptions	in Sto	p mode
---	-----------	-------------	---------	---------	--------	--------	--------	--------

Table 24. Typical and maximum current consumptions in Standby mode

				Тур			Max ⁽¹⁾		
Symbol	Parameter	Conditions	Conditions T _A = 25 °C		T _A = 85 °C	T _A = 105 °C	Unit		
			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} = 3.6 V			
		Backup SRAM ON, low- speed oscillator and RTC ON	3.0	3.4	4.0	20	36		
	Supply current in Standby	Backup SRAM OFF, low- speed oscillator and RTC ON	2.4	2.7	3.3	16	32]	
IDD_STBY	mode	Backup SRAM ON, RTC OFF	2.4	2.6	3.0	12.5	24.8	μA	
		Backup SRAM OFF, RTC OFF	1.7	1.9	2.2	9.8	19.2		

1. Guaranteed by characterization.





Symbol			Тур			Ма			
	Parameter	Parameter Conditions		T _A = 25 °C			T _A = 105 °C	Unit	
			V _{BAT} = 1.8 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	= 3.6 V		
	Backup domain supply	Backup SRAM ON, low-speed oscillator and RTC ON	1.29	1.42	1.68	6	11		
I _{DD_VBA} T		Backup SRAM OFF, low-speed oscillator and RTC ON	0.62	0.73	0.96	3	5	μA	
	current	Backup SRAM ON, RTC OFF	0.79	0.81	0.86	5	10		
		Backup SRAM OFF, RTC OFF	0.10	0.10	0.10	2	4		

Table 25. Typical and maximum current consumptions in V _{BAT} mode

1. Guaranteed by characterization.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 28*. The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog pins by firmware.
- All peripherals are disabled unless otherwise mentioned
- The code is running from Flash memory and the Flash memory access time is equal to 5 wait states at 168 MHz.
- The code is running from Flash memory and the Flash memory access time is equal to 4 wait states at 144 MHz, and the power scale mode is set to 2.
- The ART accelerator is ON.
- The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- When the peripherals are enabled: HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- The typical values are obtained for V_{DD} = 3.3 V and T_A= 25 °C, unless otherwise specified.

		I _{DD} (T	yp) ⁽¹⁾	
Perip	heral	Scale1 (up t 168 MHz)	Scale2 (up to 144 MHz)	Unit
	GPIOA	2.70	2.40	
	GPIOB	2.50	2.22	
	GPIOC	2.54	2.28	
	GPIOD	2.55	2.28	
	GPIOE	2.68	2.40	
	GPIOF	2.53	2.28	
	GPIOG	2.51	2.22	
	GPIOH	2.51	2.22	
AHB1	GPIOI	2.50	2.22	µA/MHz
(up to 168 MHz)	OTG_HS+ULPI	28.33	25.38	
	CRC	0.41	0.40	
	BKPSRAM	0.63	0.58	
	DMA1	37.44	33.58	
	DMA2	37.69	33.93	
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	20.43	18.39	

Table 28. Peripheral current consumption

DocID022152 Rev 8

A device reset allows normal operations to be resumed.

The test results are given in *Table 43*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 168 MHz, conforms to IEC 61000-4-2	4A

Table 43. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

5.3.15 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 47.

USB OTG FS characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs

Table 57. USB OTG FS startup time

1. Guaranteed by design.

Sym	bol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
Input	V_{DD}	USB OTG FS operating voltage	-	3.0 ⁽²⁾	-	3.6	V
	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	-	2.0	
Output levels	V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 V $^{(4)}$	-	-	0.3	V
	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6	v
Б		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DD}	17	21	24	
R _F	'nD	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
	PA12, PB15 (USB_FS_DP, USB_HS_DP)		V _{IN} = V _{SS}	1.5	1.8	2.1	
R _{PU}		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 58. USB OTG FS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

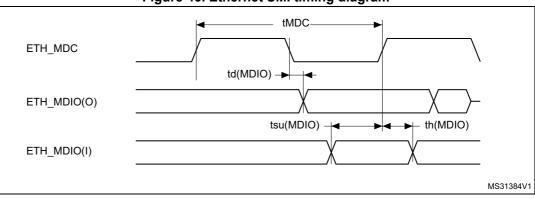
3. Guaranteed by design.

4. $\ensuremath{\,\mathsf{R}_{\mathsf{L}}}$ is the load connected on the USB OTG FS drivers

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 64*, *Table 65* and *Table 66* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 14* and VDD supply voltage conditions summarized in *Table 63*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}.


Refer to Section 5.3.16: I/O port characteristics for more details on the input/output characteristics.

Symb	ol	Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V _{DD}	Ethernet operating voltage	2.7	3.6	V

Table 63. Ethernet DC electrical characteristics

1. All the voltages are measured from the local ground potential.

Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 46* shows the corresponding timing diagram.

Figure 46. Ethernet SMI timing diagram

Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time(2.38 MHz)	411	420	425	
T _{d(MDIO)}	Write data valid time	6	10	13	ne
t _{su(MDIO)}	Read data setup time	12	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	

1. Guaranteed by characterization.

Table 65 gives the list of Ethernet MAC signals for the RMII and *Figure 47* shows the corresponding timing diagram.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k - 0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit	
ET	Total unadjusted error	f _{PCLK2} = 60 MHz, f _{ADC} = 30 MHz, R _{AIN} < 10 kΩ V _{DDA} = 1.8 ⁽²⁾ to 3.6 V	±2	±5	LSB	
EO	Offset error		±1.5	±2.5		
EG	Gain error		±1.5	±3		
ED	Differential linearity error		±1	±2		
EL	Integral linearity error		±1.5	±3		

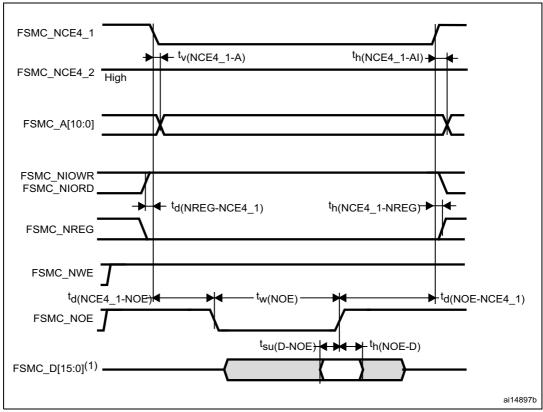
1. Guaranteed by characterization.

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF).

Note:

te: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and SI_{INJ(PIN)} in Section 5.3.16 does not affect the ADC accuracy.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} –0.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	0	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	3	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	2	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	0.5	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	6	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	3	-	ns
t _{su(NWAIT-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FSMC_NWAIT valid after FSMC_CLK high	0	-	ns


 Table 81. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization.

Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Device marking for UFBGA176+25

The following figure gives an example of topside marking and ball A 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

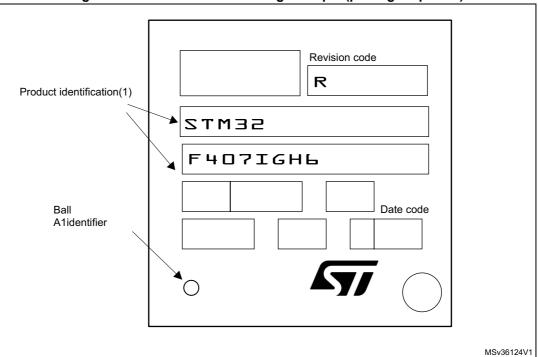


Figure 89. UFBGA176+25 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7 Part numbering

Example:	STM32	F	405 R	E	Т	6	xxx
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = general-purpose							
Device subfamily							
405 = STM32F40xxx, connectivity							
407= STM32F40xxx, connectivity, camera interface, Ethernet							
Pin count							
R = 64 pins							
O = 90 pins							
V = 100 pins							
Z = 144 pins							
I = 176 pins							
Flash memory size							
E = 512 Kbytes of Flash memory							
G = 1024 Kbytes of Flash memory							
Package							
T = LQFP							
H = UFBGA							
Y = WLCSP							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C.							
7 = Industrial temperature range, –40 to 105 °C.							
Options							

Table 99. Ordering information scheme

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID022152 Rev 8