

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, DCMI, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f407zgt6j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Compatible board design between STM32F10xx/STM32F40xxx for LQFP64	16
Figure 2.	Compatible board design STM32F10xx/STM32F2/STM32F40xxx for LQEP100 package	17
Figure 3.	Compatible board design between STM32F10xx/STM32F2/STM32F40xxx	••
U	for LQFP144 package	17
Figure 4.	Compatible board design between STM32F2 and STM32F40xxx	
-	for LQFP176 and BGA176 packages	18
Figure 5.	STM32F40xxx block diagram	19
Figure 6.	Multi-AHB matrix	22
Figure 7.	Power supply supervisor interconnection with internal reset OFF	25
Figure 8.	PDR_ON and NRST control with internal reset OFF	26
Figure 9.	Regulator OFF	27
Figure 10.	Startup in regulator OFF mode: slow V _{DD} slope	
-	- power-down reset risen after V _{CAP 1} /V _{CAP 2} stabilization	28
Figure 11.	Startup in regulator OFF mode: fast V _{DD} slope	
-	- power-down reset risen before V _{CAP 1} /V _{CAP 2} stabilization	29
Figure 12.	STM32F40xxx LQFP64 pinout	41
Figure 13.	STM32F40xxx LQFP100 pinout	12
Figure 14.	STM32F40xxx LQFP144 pinout	13
Figure 15.	STM32F40xxx LQFP176 pinout	14
Figure 16.	STM32F40xxx UFBGA176 ballout	45
Figure 17.	STM32F40xxx WLCSP90 ballout	46
Figure 18.	STM32F40xxx memory map	71
Figure 19.	Pin loading conditions.	76
Figure 20.	Pin input voltage	76
Figure 21.	Power supply scheme	77
Figure 22.	Current consumption measurement scheme	78
Figure 23.	External capacitor C _{EXT}	32
Figure 24.	Typical current consumption versus temperature, Run mode, code with data	
-	processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF 8	37
Figure 25.	Typical current consumption versus temperature, Run mode, code with data	
	processing running from Flash (ART accelerator ON) or RAM, and peripherals ON 8	37
Figure 26.	Typical current consumption versus temperature, Run mode, code with data	
	processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF	38
Figure 27.	Typical current consumption versus temperature, Run mode, code with data	
	processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON 8	38
Figure 28.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM OFF)) 1
Figure 29.	Typical V _{BAT} current consumption (LSE and RTC ON/backup RAM ON)	92
Figure 30.	High-speed external clock source AC timing diagram10	00
Figure 31.	Low-speed external clock source AC timing diagram)1
Figure 32.	Typical application with an 8 MHz crystal 10)2
Figure 33.	Typical application with a 32.768 kHz crystal 10)3
Figure 34.	ACC _{LSI} versus temperature)4
Figure 35.	PLL output clock waveforms in center spread mode10)7
Figure 36.	PLL output clock waveforms in down spread mode10)8
Figure 37.	I/O AC characteristics definition	18
Figure 38.	Recommended NRST pin protection1	19
Figure 39.	SPI timing diagram - slave mode and CPHA = 0 12	24

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F40xxx devices (see *Table 4* for differences).

• TIM2, TIM3, TIM4, TIM5

The STM32F40xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit prescaler.

bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

• TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.2.26 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I^2S flow with an external PLL (or Codec output).

2.2.27 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral available only on the STM32F407xx devices.

The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F407xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the STM32F407xx.

63/202

DocID022152 Rev 8

						Tab	ole 9. Alt	ernate fu	unction m	apping	(contin	ued)					
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Ρ	ort	SYS	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_ D1	ETH_MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N		-	-	-	-	-	OTG_HS_ULPI_ D2	ETH _MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACES WO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	NJTRST	-	TIM3_CH1		-	SPI1_MISO	SPI3_MISO	I2S3ext_SD	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2		I2C1_SMB A	SPI1_MOSI	SPI3_MOSI I2S3_SD		-	CAN2_RX	OTG_HS_ULPI_ D7	ETH_PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1		I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2		I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYN C	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH _MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_CK	-	USART3_TX	-	-	OTG_HS_ULPI_ D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_ D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_ D5	ETH _MII_TXD0 ETH _RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_ D6	ETH _MII_TXD1 ETH _RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	I2S2ext_SD	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Pinouts and pin description

577

5.1.6 Power supply scheme

Figure 21. Power supply scheme

1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

- 2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply supervisor.
- 3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 4. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.
- 5. $V_{DDA}=V_{DD}$ and $V_{SSA}=V_{SS}$.

O week al	Damanatan	O an didiana		Тур	Ма	ax ⁽¹⁾	11 14	
Symbol	Parameter	Conditions	THCLK	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	onn	
			168 MHz	93	109	117		
			144 MHz	76	89	96		
			120 MHz	67	79	86		
			90 MHz	53	65	73		
		External clock ⁽²⁾	60 MHz	37	49	56		
		all peripherals	30 MHz	20	32	39		
		enabled ⁽³⁾⁽⁴⁾	25 MHz	16	27	35		
			16 MHz	11	23	30		
			8 MHz	6	18	25		
			4 MHz	4	16	23		
	Supply current		2 MHz	3	15	22		
IDD	in Run mode		168 MHz	46	61	69	mA	
			144 MHz	40	52	60	1	
			120 MHz	37	48	56		
			90 MHz	30	42	50		
		External clock ⁽²⁾	60 MHz	22	33	41		
		all peripherals	30 MHz	12	24	31		
		disabled ⁽³⁾⁽⁴⁾	25 MHz	10	21	29		
			16 MHz	7	19	26		
			8 MHz	4	16	23		
			4 MHz	3	15	22		
			2 MHz	2	14	21		

Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption should be considered.

4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON

DocID022152 Rev 8

Symbol	Parameter	Conditions ⁽¹⁾	l/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.02	
		$V_{DD} = 3.3 V^{(2)}$	8 MHz	0.14	
		$C = C_{INT}$	25 MHz	0.51	
			50 MHz	0.86	
			60 MHz	1.30	
			2 MHz	0.10	
		V _{DD} = 3.3 V	8 MHz	0.38	
		C _{EXT} = 0 pF	25 MHz	1.18	
	I/O switching current	$C = C_{INT} + C_{EXT} + C_S$	50 MHz	2.47	
			60 MHz	2.86	
		$V_{DD} = 3.3 V$ $C_{EXT} = 10 pF$ $C = C_{INT} + C_{EXT} + C_{S}$	2 MHz	0.17	mA
			8 MHz	0.66	
I _{DDIO}			25 MHz	1.70	
			50 MHz	2.65	
			60 MHz	3.48	
			2 MHz	0.23	
		V _{DD} = 3.3 V	8 MHz	0.95	
		C _{EXT} = 22 pF	25 MHz	3.20	
		$C = C_{INT} + C_{EXT} + C_{S}$	50 MHz	4.69	
			60 MHz	8.06	
			2 MHz	0.30	
		V _{DD} = 3.3 V	8 MHz	1.22	-
		C _{EXT} = 33 pF	25 MHz	3.90	
		$C = C_{INT} + C_{EXT} + C_S$	50 MHz	8.82	
			60 MHz	_(3)	

Table 27. Switchin	g output I/O cur	rent consumption
--------------------	------------------	------------------

1. C_S is the PCB board capacitance including the pad pin. C_S = 7 pF (estimated value).

2. This test is performed by cutting the LQFP package pin (pad removal).

3. At 60 MHz, C maximum load is specified 30 pF.

Note:

For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 32. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 33*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	-	32.768	-	MHz
R _F	Feedback resistor	-	-	18.4	-	MΩ
I _{DD}	LSE current consumption	-	-	-	1	μA
G _m	Oscillator transconductance	Startup	2.8	-	-	
G _{mcritmax}	Maximum critical crystal G _m	Startup	-	-	0.56	μΑνν
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	S

Table 33. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design.

 Guaranteed by characterization. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

 $md_{quantized} \% = (250 \times 126 \times 100 \times 5) / ((2^{15} - 1) \times 240) = 2.002\%$ (peak)

Figure 35 and *Figure 36* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal. T_{mode} is the modulation period. md is the modulation depth.

Figure 36. PLL output clock waveforms in down spread mode

5.3.12 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.8 V	-	5	-	
I _{DD} Supply current		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

 Table 39. Flash memory characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	

Table 40. Flash memory programming

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	- 0	NA	
	Injected current on NRST pin	- 0	NA	
I _{INJ} ⁽¹⁾	Injected current on PE2, PE3, PE4, PE5, PE6, PI8, PC13, PC14, PC15, PI9, PI10, PI11, PF0, PF1, PF2, PF3, PF4, PF5, PF10, PH0/OSC_IN, PH1/OSC_OUT, PC0, PC1, PC2, PC3, PB6, PB7, PB8, PB9, PE0, PE1, PI4, PI5, PI6, PI7, PDR_ON, BYPASS_REG	- 0	NA	mA
	Injected current on all FT pins	- 5	NA	
	Injected current on any other pin	- 5	+5	

Table 47. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

5.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	FT, TTa and NRST I/O input low		-	-	0.3V _{DD} -0.04 ⁽¹⁾	
V _{IL} BOC volta	level voltage	1.7 v ≤v _{DD} ≤3.0 v	-	-	0.3V _{DD} ⁽²⁾	
	BOOT0 I/O input low level	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	-	-		
	voltage	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	-	-	0.1VDD-+0.1V	V
	FT, TTa and NRST I/O input low	1710 361	0.45V _{DD} +0.3 ⁽¹⁾	-	-	v
	level voltage	1.7 V ≤V _{DD} ≤3.0 V	0.7V _{DD} ⁽²⁾	-	-	
V _{IH}	BOOT0 I/O input low level	1.75 V ≤V _{DD} ≤3.6 V -40 °C≤T _A ≤105 °C	$0.17 V_{-} + 0.7^{(1)}$	-	-	
	voltage	1.7 V ≤V _{DD} ≤3.6 V 0 °C≤T _A ≤105 °C	0.17 VDD+0.7 V	-	-	

Table 48.	I/O	static	characteristics
-----------	-----	--------	-----------------

5.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 48*).

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	TTL ports	-	-	0.8	
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	2.7 V ≤V _{DD} ≤ 3.6 V	2	-	-	V
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	CMOS ports	-	-	0.3V _{DD}	v
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	1.8 V ≤V _{DD} ≤ 3.6 V	$0.7V_{DD}$	-	-	
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 51. NRST pin characteristics

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Figure 38. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 51. Otherwise the reset is not taken into account by the device.

Symbol	Parameter	Conditions	Min	Max	Unit
^t res(TIM)	Timer resolution time	AHB/APB2 prescaler distinct from 1, f _{TIMxCLK} = 168 MHz	1	-	t _{TIMxCLK}
			5.95	-	ns
		AHB/APB2	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 84 MHz	11.9	-	ns
	EXT Timer external clock frequency on CH1 to CH4		0	f _{TIMxCLK} /2	MHz
TEXT			0	84	MHz
Res _{TIM}	Timer resolution	f _{TIMxCLK} = 168 MHz	-	16	bit
t _{COUNTER}	16-bit counter clock period when internal clock is selected	APB2 = 84 MHz	1	65536	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count		-	32768	t _{TIMxCLK}

 Table 53. Characteristics of TIMx connected to the APB2 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

5.3.19 Communications interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0090 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 5.3.16: I/O port characteristics for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 54. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by design.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 78. Asynchronous multiplexed PSRAM/NOR write timings ⁽¹⁾	(2)
---	-----

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	4T _{HCLK} –0.5	4T _{HCLK} +3	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	T _{HCLK} –0.5	T _{HCLK} -0.5	ns
t _{w(NWE)}	FSMC_NWE low tim e	2T _{HCLK} –0.5	2T _{HCLK} +3	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK}	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	1	2	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 2	T _{HCLK} + 1	ns
t _{h(AD_NADV)}	FSMC_AD(address) valid hold time after FSMC_NADV high)	T _{HCLK} –2	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	T _{HCLK}	_	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} –2	-	ns
$t_{v(BL_NE)}$	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid	_	T _{HCLK} –0.5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK}	-	ns

1. C_L = 30 pF.

Symbol	Parameter	Min	Max	Unit
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	0	-	ns
t _{su(NWAIT-} CLKH)	FSMC_NWAIT valid before FSMC_CLK high	4	-	ns
t _{h(CLKH-NWAIT)}	FSMC_NWAIT valid after FSMC_CLK high	0	-	ns

Table 80. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization.

Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings

6.4 LQFP144 package information

Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

Device marking for UFBGA176+25

The following figure gives an example of topside marking and ball A 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

Figure 89. UFBGA176+25 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Figure 95. USB controller configured in dual mode and used in full speed mode

- 1. External voltage regulator only needed when building a $\mathrm{V}_{\mathrm{BUS}}$ powered device.
- The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
- 3. The ID pin is required in dual role only.
- 4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Date	Revision	Changes
Date 04-Jun-2013	Revision 4 (continued)	Changes Updated Table 64: Dynamic characteristics: Eternity MAC signals for SMI. Updated Table 66: Dynamic characteristics: Ethernet MAC signals for MII. Updated Table 79: Synchronous multiplexed NOR/PSRAM read timings. Updated Table 80: Synchronous multiplexed PSRAM write timings. Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read timings. Updated Table 82: Synchronous non-multiplexed PSRAM write timings. Updated Table 82: Synchronous non-multiplexed PSRAM write timings. Updated Section 5.3.27: Camera interface (DCMI) timing specifications including Table 87: DCMI characteristics and addition of Figure 72: DCMI timing diagram. Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO) characteristics including Table 88
		<i>characteristics</i> including <i>Table 88.</i> Updated <i>Chapter Figure 9.</i>

Table 100. Document revision history (continued)

