
NXP USA Inc. - MC68360ZP25VLR2 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor CPU32+

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 25MHz

Co-Processors/DSP Communications; CPM

RAM Controllers DRAM

Graphics Acceleration No

Display & Interface Controllers -

Ethernet 10Mbps (1)

SATA -

USB -

Voltage - I/O 3.3V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 357-BGA

Supplier Device Package 357-PBGA (25x25)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68360zp25vlr2

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68360zp25vlr2-4473686
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Table of Contents

Paragraph Title Page
Number Number

MC68360 USER’S MANUAL

7.11.7.7.2 Receive Commands.. 7-280
7.11.7.8 Send Break (Transmitter) .. 7-280
7.11.7.9 Sending a Preamble (Transmitter) .. 7-280
7.11.7.10 SMC UART Error-Handling Procedure.. 7-281
7.11.7.10.1 Overrun Error .. 7-281
7.11.7.10.2 Parity Error .. 7-281
7.11.7.10.3 Idle Sequence Receive ... 7-281
7.11.7.10.4 Framing Error .. 7-281
7.11.7.10.5 Break Sequence.. 7-281
7.11.7.11 SMC UART Mode Register (SMCMR) .. 7-281
7.11.7.12 SMC UART Receive Buffer Descriptor (Rx BD).................................. 7-283
7.11.7.13 SMC UART Transmit Buffer Descriptor (Tx BD) 7-286
7.11.7.14 SMC UART Event Register (SMCE) ... 7-288
7.11.7.15 SMC UART Mask Register (SMCM) ... 7-290
7.11.8 SMC UART Example... 7-290
7.11.9 SMC Interrupt Handling... 7-291
7.11.10 SMC as a Transparent Controller.. 7-291
7.11.10.1 SMC Transparent Controller KEY Features .. 7-291
7.11.10.2 SMC Transparent Comparison.. 7-292
7.11.10.3 SMC Transparent Memory Map.. 7-292
7.11.10.4 SMC Transparent Transmission Processing....................................... 7-292
7.11.10.5 SMC Transparent Reception Processing.. 7-293
7.11.10.6 Using the SMSYNx Pin for Synchronization.. 7-293
7.11.10.7 Using the TSA for Synchronization ... 7-295
7.11.10.8 SMC Transparent Command Set .. 7-297
7.11.10.8.1 Transmit Commands... 7-297
7.11.10.8.2 Receive Commands.. 7-297
7.11.10.9 SMC Transparent Error-Handling Procedure 7-298
7.11.10.9.1 Transmission Error (Underrun).. 7-298
7.11.10.9.2 Reception Error (Overrun)... 7-298
7.11.10.10 SMC Transparent Mode Register (SMCMR)....................................... 7-298
7.11.10.11 SMC Transparent Receive Buffer Descriptor (Rx BD) 7-299
7.11.10.12 SMC Transparent Transmit Buffer Descriptor (Tx BD)........................ 7-300
7.11.10.13 SMC Transparent Event Register (SMCE).. 7-302
7.11.10.14 SMC Transparent Mask Register (SMCM).. 7-303
7.11.11 SMC Transparent NMSI Example ... 7-303
7.11.12 SMC Transparent TSA Example ... 7-304
7.11.13 SMC Interrupt Handling... 7-305
7.11.14 SMC as a GCI Controller... 7-305
7.11.14.1 SMC GCI Memory Map... 7-306
7.11.14.1.1 SMC Monitor Channel Transmission... 7-306
7.11.14.1.2 SMC Monitor Channel Reception.. 7-307
7.11.14.2 SMC C/I Channel Handling ... 7-307
7.11.14.2.1 SMC C/I Channel Transmission .. 7-307
7.11.14.2.2 SMC C/I Channel Reception ... 7-307

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Introduction

1-6

MC68360 USER’S MANUAL

1.2.3 Communications Processor Module (CPM)

The CPM contains features that allow the QUICC to excel in communications and control
applications. These features may be divided into three sub-groups:

• Communications Processor (CP)

• Two IDMA Controllers

• Four General-Purpose Timers

The CP provides the communication features of the QUICC. Included are a RISC processor,
four SCCs, two SMCs, one SPI, 2.5 Kbytes of dual-port RAM, an interrupt controller, a time
slot assigner, three parallel ports, a parallel interface port, four independent baud rate gen-
erators, and fourteen serial DMA channels to support the SCCs, SMCs, and SPI.

The IDMAs provide two channels of general-purpose DMA capability. They offer high-
speed transfers, 32-bit data movement, buffer chaining, and independent request and
acknowledge logic. The RISC controller may access the IDMA registers directly in the buffer
chaining modes. The QUICC IDMAs are similar to, yet enhancements of, the two DMA chan-
nels found on the MC68340 and the one IDMA channel found on the MC68302.

The four general-purpose timers on the QUICC are functionally similar to the two general-
purpose timers found on the MC68302. However, they offer some minor enhancements,
such as the internal cascading of two timers to form a 32-bit timer. The QUICC also contains
a periodic interval timer in the SIM60, bringing the total to five on-chip timers.

1.3 UPGRADING DESIGNS FROM THE MC68302

Since the QUICC is a next-generation MC68302, many designers currently using the
MC68302 may wish to use the QUICC in a follow-on design. The following paragraphs
briefly discuss this endeavor in terms of architectural approach, hardware issues, and soft-
ware issues. See Section 9 Applications for further information.

1.3.1 Architectural Approach

The QUICC is the logical extension of the MC68302, but the overall architecture and philos-
ophy of the MC68302 design remains intact in the QUICC. The QUICC keeps the best fea-
tures of the MC68302, while making the changes required to provide for the increased
flexibility, integration, and performance requested by customers. Because the CPM is prob-
ably the most difficult module to learn, anyone who has used the MC68302 can easily
become familiar with the QUICC since the CPM architectural approach remains intact.

The most significant architectural change made on the QUICC was the translation of the
design into the standard M68300 family IMB architecture, resulting in a faster CPU and dif-
ferent system integration features.

Although the features of the SIM60 do not exactly correspond to those of the MC68302 SIM,
they are very similar. The QUICC SIM60 combines the best MC68302 SIM features with the
best MC68340 SIM features for improved performance.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Signal Descriptions

2-17 MC68360 USER’S MANUAL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Bus Operation

4-6

MC68360 USER’S MANUAL

appropriate timing described in this section and in Section 10 Electrical Characteristics.
Additionally, BERR and HALT can be asserted together to indicate a retry termination. Refer
to 4.5 Bus Exception Control Cycles for additional information on the use of these signals.

See the memory controller description in Section 6 System Integration Module (SIM60) for
precautions about asserting BERR externally too early during DRAM and SRAM cycles con-
trolled by the memory controller.

The internal bus monitor can be used to generate the BERR signal for internal and external
transfers in all the following descriptions.

4.1.9.3 AUTOVECTOR (AVEC).

This signal can be used to terminate interrupt acknowl-
edge cycles, indicating that the QUICC should internally generate a vector (autovector)
number to locate an interrupt handler routine. AVEC can be generated either externally or
internally by the SIM60 (refer to Section 6 System Integration Module (SIM60) for additional
information). AVEC is ignored during all other bus cycles.

4.2 DATA TRANSFER MECHANISM

The QUICC supports byte, word, and long-word operands, allowing access to 8-,16-, and
32-bit data ports through the use of asynchronous cycles controlled by DSACK1 and
DSACK0. The QUICC also supports byte, word, and long-word operands, allowing access
to 8-, 16, and 32-bit data ports through the use of synchronous cycles controlled by the fast-
termination capability of the SIM60.

4.2.1 Dynamic Bus Sizing

The QUICC dynamically interprets the port size of the addressed device during each bus
cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an operand
transfer cycle, the slave device signals its port size (byte, word, or long word) and indicates
completion of the bus cycle to the QUICC through the use of the DSACKx inputs. Refer to
Table 4-2 for DSACKx encoding.

For example, if the QUICC is executing an instruction that reads a long-word operand from
a long-word aligned address, it attempts to read 32 bits during the first bus cycle. (Refer to
4.2.2 Misaligned Operands for the case of a word or byte address.) If the port responds that
it is 32 bits wide, the QUICC latches all 32 bits of data and continues with the next operation.
If the port responds that it is 16 bits wide, the QUICC latches the 16 bits of valid data and
runs another bus cycle to obtain the other 16 bits. The operation for an 8-bit port is similar,
but requires four read cycles. The addressed device uses the DSACKx signals to indicate

Table 4-2. DSACKx Encoding

DSACK1 DSACK0 Result

1 1 Insert Wait States in Current Bus Cycle

1 0 Complete Cycle—Data Bus Port Size is 8 Bits

0 1 Complete Cycle—Data Bus Port Size is 16 Bits

0 0 Complete Cycle—Data Bus Port Size is 32 Bits

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Bus Operation

MC68360 USER’S MANUAL

asserted in any asynchronous system. If this maximum delay time is violated, the QUICC
may exhibit erratic behavior.

4.2.5 Synchronous Operation with DSACKx
Although cycles terminated with DSACKx are classified as asynchronous, cycles terminated
with DSACKx can also operate synchronously in that signals are interpreted relative to clock
edges. The devices that use these cycles must synchronize the response to the QUICC
clock (CLKO1) to be synchronous. Since the devices terminate bus cycles with DSACKx,
the dynamic bus sizing capabilities of the QUICC are available. The minimum cycle time for
these cycles is also three clocks. To support systems that use the system clock to generate
DSACKx and other asynchronous inputs, the asynchronous input setup time and the asyn-
chronous input hold time are given. If the setup and hold times are met for the assertion or
negation of a signal, such as DSACKx, the QUICC is guaranteed to recognize that signal
level on that specific falling edge of the system clock. If the assertion of DSACKx is recog-
nized on a particular falling edge of the clock, valid data is latched into the QUICC (for a read
cycle) on the next falling clock edge if the data meets the data setup time. In this case, the
parameter for asynchronous operation can be ignored. The timing parameters are described
in Section 10 Electrical Characteristics.

If a system asserts DSACKx for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACKx (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACKx (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACKx is recognized. This setup time is critical,
and the QUICC may exhibit erratic behavior if it is violated. When operating synchronously,
the data-in setup and hold times for synchronous cycles may be used instead of the timing
requirements for data relative to DS.

4.2.6 Fast Termination Cycles
With an external device that has a fast access time, the memory controller circuits can pro-
vide a two-clock external bus transfer. Since the memory controller circuits are driven from
the system clock, the bus cycle termination is inherently synchronized with the system clock.
Refer to Section 6 System Integration Module (SIM60) for more information on chip selects
and the DRAM controller. To use the fast termination (cycle length is two clocks) option, an
external device should be fast enough to have data ready, within the specified setup time,
by the falling edge of S4. Figure 4-14 shows the DSACKx timing for a read with two wait
states, followed by a fast termination read and write.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

MC68360 USER’S MANUAL

5.3.3.6 BIT MANIPULATION INSTRUCTIONS. Bit manipulation operations are accom-
plished using the following instructions: bit test (BTST), bit test and set (BSET), bit test and
clear (BCLR), and bit test and change (BCHG). All bit manipulation operations can be per-
formed on either registers or memory. The bit number is specified as immediate data or in
a data register. Register operands are 32 bits, and memory operands are 8 bits. Table 5-8
is a summary of bit manipulation instructions.

Table 5-7. Shift and Rotate Operations

Instruction
Operand
Syntax

Operand
Size Operation

ASL
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

ASR
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

LSL
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

LSR
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

ROL
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

ROR
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

ROXL
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

ROXR
Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

SWAP Dn 16

 X/C 0

 X/C

 X/C 0

 X/C0

C

C

XC

X C

MSW LSW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

5-36 MC68360 USER’S MANUAL

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the SR
and PC are restored to the values saved on the supervisor stack, and execution resumes at
the restored PC address, with access level determined by the S-bit of the restored SR.

If the frame was generated by a bus error or an address error exception, the entire processor
state is restored from the stack.

5.5 EXCEPTION PROCESSING
An exception is a special condition that pre-empts normal processing. Exception processing
is the transition from normal mode program execution to execution of a routine that deals
with an exception. The following paragraphs discuss system resources related to exception
handling, exception processing sequence, and specific features of individual exception pro-
cessing routines.

5.5.1 Exception Vectors
An exception vector is the address of a routine that handles an exception. The VBR contains
the base address of a 1024-byte exception vector table, which consists of 256 exception
vectors. Sixty-four vectors are defined by the processor, and 192 vectors are reserved for
user definition as interrupt vectors. Except for the reset vector, which is two long words, each
vector in the table is one long word. Refer to Table 5-16 for information on vector assign-
ment.

All exception vectors, except the reset vector, are located in supervisor data space. The
reset vector is located in supervisor program space. Only the initial reset vector is fixed in
the processor memory map. When initialization is complete, there are no fixed assignments.
Since the VBR stores the vector table base address, the table can be located anywhere in
memory. It can also be dynamically relocated for each task executed by an operating sys-
tem.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are obtained
from an external device; others are supplied by the processor. The processor multiplies the
vector number by 4 to calculate vector offset, then adds the offset to the contents of the VBR.
The sum is the memory address of the vector.

5.5.1.1 TYPES OF EXCEPTIONS. An exception can be caused by internal or external
events.

An internal exception can be generated by an instruction or by an error. The TRAP, TRAPcc,
TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause exceptions during normal
execution. Illegal instructions, instruction fetches from odd addresses, word or long-word
operand accesses from odd addresses, and privilege violations also cause internal excep-
tions.

Sources of external exception include interrupts, breakpoints, bus errors, and reset
requests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access control
and processor restart.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

MC68360 USER’S MANUAL

TP—BERR Frame Type
The TP field defines the class of the faulted bus operation. Two bus error exception frame
types are defined. One is for faults on prefetch and operand accesses, and the other is
for faults during exception frame stacking.

0 = Operand or prefetch bus fault
1 = Exception processing bus fault

MV—MOVEM in Progress
MV is set when the operand transfer portion of the MOVEM instruction is in progress at
the time of a bus fault. If a prefetch bus fault occurs while prefetching the MOVEM opcode
and extension word, both the MV and IN bits will be set.

0 = MOVEM was not in progress when fault occurred
1 = MOVEM was in progress when fault occurred

SZC1,SCZ0—Original Operand Size
The SZC1,SZC0 field specifies the size of the original bus cycle (i.e., the size bits of the
first cycle, when a transaction is divided into two or three cycles due to bus size or operand
address).

00 = Original operand size was long word
01 = Original operand size was byte
10 = Original operand size was word
11 = Unused, reserved

TR—Trace Pending
TR indicates that a trace exception was pending when a bus error exception was pro-
cessed. The instruction that generated the trace will not be restarted upon return from the
exception handler. This includes MOVEM and released write bus errors indicated by the
assertion of either MV or RR in the SSW.

0 = Trace not pending
1 = Trace pending

B1—Breakpoint Channel 1 Pending
B1 indicates that a breakpoint exception was pending on channel 1 (external breakpoint
source) when a bus error exception was processed. Pending breakpoint status is stacked,
regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

B0—Breakpoint Channel 0 Pending
B0 indicates that a breakpoint exception was pending on channel 0 (internal breakpoint
source) when the bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

MC68360 USER’S MANUAL

5.5.3.1 TYPES OF FAULTS. An efficient implementation of instruction restart dictates that
faults on some bus cycles be treated differently than faults on other bus cycles. The CPU32+
defines four fault types: released write faults, faults during exception processing, faults dur-
ing MOVEM operand transfer, and faults on any other bus cycle.

5.5.3.1.1 Type I—Released Write Faults. CPU32+ instruction pipelining can cause a final
instruction write to overlap the execution of a following instruction. A write that is overlapped
is called a released write. A released write fault occurs when a bus error or some other fault
occurs on the released write.

Released write faults are taken at the next instruction boundary. The stacked PC is that of
the next unexecuted instruction. If a subsequent instruction attempts an operand access
while a released write fault is pending, the instruction is aborted and the write fault is
acknowledged. This action prevents the instruction from using stale data.

The SSW for a released write fault contains the following bit pattern:

TR , B1, and B0 are set if the corresponding exception is pending when the bus error excep-
tion is taken. Status regarding the faulted bus cycle is reflected in the SZCx, SIZ, and FUNC
fields.

The remainder of the stack contains the PC of the next unexecuted instruction, the current
SR, the address of the faulted memory location, and the contents of the data buffer that was
to be written to memory. This data is written on the stack in the format depicted in Figure 5-
15. When a released write fault exception handler executes, the machine will complete the
faulted write and then continue executing instructions wherever the PC indicates.

5.5.3.1.2 Type II—Prefetch, Operand, RMW, and MOVEP Faults. The majority of bus
error exceptions are included in this category—all instruction prefetches, all operand reads,
all RMW cycles, and all operand accesses resulting from execution of MOVEP (except the
last write of a MOVEP Rn,〈ea〉 or the last write of MOVEM, which are type I faults). The TAS,
MOVEP, and MOVEM instructions account for all operand writes not considered released
write faults.

All type II faults cause an immediate exception that aborts the current instruction. Any reg-
isters that were altered as the result of an EA calculation (i.e., postincrement or predecre-
ment) are restored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

The trace pending bit is always cleared since the instruction will be restarted upon return
from the handler. Saving a pending exception on the stack causes a trace exception to be

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 SZC1 TR B1 B0 1 0 0 0 SZC0 SIZ FUNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 SZC1 0 B1 B0 0 RM IN RW SZC0 SIZ FUNC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

5-56 MC68360 USER’S MANUAL

exception frame on top of the stack, and resume execution at the exception handler
address.

5.5.4 CPU32+ Stack Frames
The CPU32+ generates three different stack frames: four-word frames, six-word frames,
and twelve-word bus error frames.

5.5.4.1 FOUR-WORD STACK FRAME. This stack frame is created by interrupt, format
error, TRAP #n, illegal instruction, A-line and F-line emulator trap, and privilege violation
exceptions. Depending on the exception type, the PC value is either the address of the next
instruction to be executed or the address of the instruction that caused the exception (see
Figure 5-12).

5.5.4.2 SIX-WORD STACK FRAME. This stack frame (see Figure 5-13) is created by
instruction-related traps, which include CHK, CHK2, TRAPcc, TRAPV, and divide-by-zero,
and by trace exceptions. The faulted instruction PC value is the address of the instruction
that caused the exception. The next PC value (the address to which RTE returns) is the
address of the next instruction to be executed.

Hardware breakpoints also utilize this format. The faulted instruction PC value is the address
of the instruction executing when the breakpoint was sensed. Usually this is the address of
the instruction that caused the breakpoint, but, because released writes can overlap follow-
ing instructions, the faulted instruction PC may point to an instruction following the instruc-
tion that caused the breakpoint. The address to which RTE returns is the address of the next
instruction to be executed.

5.5.4.3 BUS ERROR STACK FRAME. This stack frame is created when a bus cycle fault
is detected. The CPU32+ bus error stack frame differs significantly from the equivalent stack

15 0

SP ⇒ STATUS REGISTER

+$02 PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

+$06 0 0 0 0 VECTOR OFFSET

Figure 5-12. Format $0—Four-Word Stack Frame

15 0

SP ⇒ STATUS REGISTER

+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

+$06 0 0 1 0 VECTOR OFFSET

+$08 FAULTED INSTRUCTION PROGRAM COUNTER HIGH

FAULTED INSTRUCTION PROGRAM COUNTER LOW

Figure 5-13. Format $2—Six-Word Stack Frame

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

MC68360 USER’S MANUAL

frames of other M68000 family members. The only internal machine state required in the
CPU32+ stack frame is the bus controller state at the time of the error and a single register.

Bus operation in progress at the time of a fault is conveyed by the SSW.

The bus error stack frame is 12 words in length. There are three variations of the frame, each
distinguished by different values in the SSW TP and MV fields.

An internal transfer count register appears at location SP + $14 in all bus error stack frames.
The register contains an 8-bit microcode revision number and, for type III faults, an 8-bit
transfer count. Register format is shown in Figure 5-14.

The microcode revision number is checked before a bus error stack frame is restored via
RTE. In a multiprocessor system, this check ensures that a processor using stacked infor-
mation is at the same revision level as the processor that created it.

The transfer count is ignored unless the MV bit in the stacked SSW is set. If the MV bit is
set, the least significant byte of the internal register is reloaded into the MOVEM transfer
counter during RTE execution.

For faults occurring during normal instruction execution (both prefetches and non-MOVEM
operand accesses), SSW TP,MV = 00. Stack frame format is shown in Figure 5-15.

Faults that occur during the operand portion of the MOVEM instruction are identified by SSW
TP,MV = 01. Stack frame format is shown in Figure 5-16.

When a bus error occurs during exception processing, SSW TP,MV = 10. The frame shown
in Figure 5-17 is written below the faulting frame. Stacking begins at the address pointed to
by SP – 6 (SP value is the value before initial stacking on the faulted frame).

The frame can have either four or six words, depending on the type of error. Four-word stack
frames do not include the faulted instruction PC. (The internal transfer count register is
located at SP + $10 and the SSW is located at SP + $12.)

The fault address of a dynamically sized bus cycle is the address of the upper byte, regard-
less of the byte that caused the error.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TP MV SZC1 TR B1 B0 RR RM IN RW SZC0 SIZ FUNC

15 8 7 0

MICROCODE REVISION NUMBER TRANSFER COUNT

Figure 5-14. Internal Transfer Count Register

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

5-62 MC68360 USER’S MANUAL

5.6.2.2.1 External BKPT Signal. Once enabled, BDM is initiated whenever assertion of
BKPT is acknowledged. If BDM is disabled, a breakpoint exception (vector $0C) is acknowl-
edged. The BKPT input has the same timing relationship to the data strobe trailing edge as
read cycle data. There is no breakpoint acknowledge bus cycle when BDM is entered.

5.6.2.2.2 BGND Instruction. An illegal instruction, $4AFA, is reserved for use by develop-
ment tools. The CPU32+ defines $4AFA (BGND) to be a BDM entry point when BDM is
enabled. If BDM is disabled, an illegal instruction trap is acknowledged. Illegal instruction
traps are discussed in 5.5.2.8 Illegal or Unimplemented Instructions.

5.6.2.2.3 Double Bus Fault. The CPU32+ normally treats a double bus fault (two bus faults
in succession) as a catastrophic system error and halts. When this condition occurs during
initial system debug (a fault in the reset logic), further debugging is impossible until the prob-
lem is corrected. In BDM, the fault can be temporarily bypassed so that its origin can be iso-
lated and eliminated.

5.6.2.3 ENTERING BDM. When the processor detects a BKPT or a double bus fault or
decodes a BGND instruction, it suspends instruction execution and asserts the FREEZE
output. FREEZE assertion is the first indication that the processor has entered BDM. Once
FREEZE has been asserted, the CPU enables the serial communication hardware and
awaits a command.

The CPU writes a unique value indicating the source of BDM transition into temporary reg-
ister A (ATEMP) as part of the process of entering BDM. A user can poll ATEMP and deter-
mine the source (see Table 5-20) by issuing a read system register command (RSREG).
ATEMP is used in most debugger commands for temporary storage—it is imperative that
the RSREG command be the first command issued after transition into BDM.

*SSW is described in detail in 5.5.3 Fault Recovery.

A double bus fault during initial SP/PC fetch sequence is distinguished by a value of
$FFFFFFFF in the current instruction PC. At no other time will the processor write an odd
value into this register.

5.6.2.4 COMMAND EXECUTION. Figure 5-21 summarizes BDM command execution.
Commands consist of one 16-bit operation word and can include one or more 16-bit exten-
sion words. Each incoming word is read as it is assembled by the serial interface. The micro-
code routine corresponding to a command is executed as soon as the command is
complete. Result operands are loaded into the output shift register to be shifted out as the
next command is read. This process is repeated for each command until the CPU returns to
normal operating mode.

Table 5-20. Polling the BDM Entry Source

Source ATEMP 31–16 ATEMP 15–0

Double Bus Fault SSW* $FFFF

BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CPU32+

MC68360 USER’S MANUAL

5.7.2.6 IMMEDIATE ARITHMETIC/LOGIC INSTRUCTIONS. The immediate arithmetic/
logic instruction table indicates the number of clock periods needed for the processor to
fetch the source immediate data value and to perform the specified arithmetic/logic instruc-
tion using the specified addressing mode. Footnotes indicate when to account for the appro-
priate fetch effective or fetch immediate EA times. The total number of clock cycles is
outside the parentheses. The numbers inside parentheses (r/p/w) are included in the total
clock cycle number. All timing data assumes two-clock reads and writes.

5.7.2.7 BINARY-CODED DECIMAL AND EXTENDED INSTRUCTIONS. The BCD and
extended instruction table indicates the number of clock periods needed for the processor
to perform the specified operation using the specified addressing mode. No additional tables
are needed to calculate total effective execution time for these instructions. The total number
of clock cycles is outside the parentheses. The numbers inside parentheses (r/p/w) are
included in the total clock cycle number. All timing data assumes two-clock reads and writes.

X = There is one bus cycle for byte and word operands and two bus cycles for long operands.
For long bus cycles, add two clocks to the tail and to the number of cycles.
Timing is calculated with the CPU32+ in 16-bit mode.

< = Maximum time (certain data or mode combinations may execute faster).
su = The execution time is identical for signed or unsigned operands.

* = These instructions have an additional save operation that other instructions do not have.
To calculate total instruction time, calculate save, 〈ea〉, and operation execution times,
then combine in the order listed, using equations in 5.7.1.6 Instruction Execution Time
Calculation. A save operation is not run for long-word divide and multiply instructions
when 〈FEA〉 = Dn.

Instruction Head Tail Cycles

MOVEQ#, Dn 0 0 2(0/1/0)

ADDQ #, Rn 0 0 2(0/1/0)

ADDQ #, 〈FEA〉 0 3 5(0/1/x)

SUBQ #, Rn 0 0 2(0/1/0)

SUBQ #, 〈FEA〉 0 3 5(0/1/x)

ADDI #, Rn 0 0 2(0/1/0)∗

ADDI #, 〈FEA〉 0 3 5(0/1/x)∗

ANDI #, Rn 0 0 2(0/1/0)∗

ANDI #, 〈FEA〉 0 3 5(0/1/x)∗

EORI #, Rn 0 0 2(0/1/0)∗

EORI #, 〈FEA〉 0 3 5(0/1/x)∗

ORI #, Rn 0 0 2(0/1/0)∗

ORI #, 〈FEA〉 0 3 5(0/1/x)∗

SUBI #, Rn 0 0 2(0/1/0)∗

SUBI #, 〈FEA〉 0 3 5(0/1/x)∗

CMPI #, Rn 0 0 2(0/1/0)∗

CMPI #, 〈FEA〉 0 3 5(0/1/x)∗

X = There is one bus cycle for byte and word operands and two bus cycles for long-word op-
erands. For long-word bus cycles, add two clocks to the tail and to the number of cycles.
Timing is calculated with the CPU32+ in 16-bit mode.

∗ = An # fetch EA time must be added for this instruction: 〈FEA〉 + 〈FEA〉 + 〈OPER〉

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Introduction

7-2

MC68360 USER’S MANUAL

• Serial Peripheral Interface (SPI) for Synchronous Interchip Communication

• Fourteen Serial Direct Memory Access (SDMA) Channels Support the SCC, SMCs,
and SPI

• Two Independent Direct Memory Access (IDMA) Channels Support External Memory
and Peripherals

• A Command Set Register Supports the RISC, IDMA, SCCs, SMCs, and SPI

• Four General-Purpose 16-Bit Timers or Two 32-Bit Timers

• Internal Timers to Implement Up to 16 Additional Timers

• General-Purpose Parallel Port for Parallel Protocols such as Centronics (Can Also Be
Used as Standard Parallel I/O)

• CPM Interrupt Controller

• 2.5-kbyte Dual-Port RAM

• Twelve Parallel I/O Lines with Interrupt Capability

Figure 7-1. CPM Block Diagram

NOTE: The term "CP" refers to the nonshaded portion of the CPM.

32-BIT RISC

SERIAL INTERFACE

TIME SLOT ASSIGNER

INTERNAL TIMER

PERIPHERAL BUS

PA
R

AL
LE

L
IN

TE
R

FA
C

E
PO

R
T

(P
IP

)
SC

C
1

SC
C

2

SC
C

3

SC
C

4

SM
C

1

SM
C

2

SP
I

CPM

PAR
I/O

BRG
DUAL-PORT

RAM
INTERRUPT

CONTROLLER
 FOUR
TIMERS

TWO
IDMAs

FOURTEEN
SDMAs

IMB

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SDMA Channels

MC68360 USER’S MANUAL

NOTE

An interrupt will only be generated if the SDMA bit is set in the
CP interrupt mask register.

INTB—Interrupt Breakpoint
This bit is the enable bit for the SBKP status bit in the SDSR.

0 = A zero masks the interrupt generated by the corresponding bit in the SDSR. When
a breakpoint is recognized while the SDMA is bus master, the channel does not
generate an interrupt to the QUICC interrupt controller. The SBKP bit is still set in
the SDSR.

1 = When a breakpoint is recognized while the SDMA is bus master, the channel gen-
erates an interrupt to the QUICC interrupt controller and sets the SBKP bit in the
SDSR.

NOTE

An interrupt will only be generated if the SDMA bit is set in the
CP interrupt mask register. The interrupt can suspend SDMA ac-
tivity immediately if it is programmed to be at a higher level than
the SDMA channels. Alternatively, the interrupt can be pro-
cessed after the SDMA transfer is complete.

7.7.2.2 SDMA STATUS REGISTER (SDSR). Shared by all 14 SDMA channels, the SDSR
is an 8-bit register used to report events recognized by the SDMA controller. On recognition
of an event, the SDMA sets its corresponding bit in the SDSR (regardless of the INTE, INTB,
and INTR bits in the SDCR). The SDSR is a memory-mapped register that may be read at
any time. A bit is reset by writing a one and is left unchanged by writing a zero. More than
one bit may be reset at a time, and the register is cleared by reset.

Bits 7–3—Reserved

RINT—Reserved Interrupt
This status bit is reserved for factory testing. RINT is cleared by writing a one; writing a
zero has no effect.

SBER—SDMA Channel Bus Error
This bit indicates that the SDMA channel terminated with an error during a read or write
cycle. The SDMA bus error address can be read from the SDAR. SBER is cleared by writ-
ing a one; writing a zero has no effect.

SBKP—SDMA Breakpoint
This bit indicates that the breakpoint signal was asserted during an SDMA transfer. SBKP
is cleared by writing a one; writing a zero has no effect.

7.7.2.3 SDMA ADDRESS REGISTER (SDAR). The 32-bit read-only SDAR shows the sys-
tem address that was accessed during an SDMA bus error. It is undefined at reset.

7 6 5 4 3 2 1 0

— RINT SBER SBKP

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Serial Communication Controllers (SCCs)

7-228 MC68360 USER’S MANUAL

7.10.21.7.2 Reception Errors. The following paragraphs describe various types of recep-
tion errors.

Overrun Error. The SCC maintains an internal FIFO for receiving data. The CP begins pro-
gramming the SDMA channel (if the data buffer is in external memory) and updating the
CRC when 8 or 32 bits (according to the RFW bit in the GSMR) are received in the FIFO. If
a FIFO overrun occurs, the SCC writes the received data byte to the internal FIFO over the
previously received byte. The previous character and its status bits are lost. Following this,
the channel closes the buffer, sets the OV bit in the BD, and generates the RX interrupt (if
enabled). The receiver then enters hunt mode immediately.

CD Lost During Message Reception. When this error occurs, the channel terminates mes-
sage reception, closes the buffer, sets the CD bit in the BD, and generates the RX interrupt
(if enabled). This error has the highest priority; the rest of the message is lost, and no other
errors are checked in the message. The receiver then enters hunt mode immediately.

7.10.21.8 TRANSPARENT MODE REGISTER (PSMR). The PSMR is called the transpar-
ent mode register when an SCC is programmed for transparent mode. However, since all
transparent mode selections are in the GSMR, this register is not used by the transparent
controller. If transparent mode is only selected for the transmitter/receiver, then the trans-
mitter/receiver may be programmed to support another protocol. In such a case, the PSMR
may be used for that other protocol.

7.10.21.9 TRANSPARENT RECEIVE BUFFER DESCRIPTOR (RX BD). •The CP reports
information about the received data for each buffer using an Rx BD. The CP closes the
current buffer, generates a maskable interrupt, and starts to receive data into the next
buffer after one of the following events:

1. Detecting an error

2. Detecting a full receive buffer

3. Issuing the ENTER HUNT MODE command

4. Issuing the CLOSE Rx BD command

NOTE: Entries in boldface must be initialized by the user.

E—Empty
0 = The data buffer associated with this Rx BD has been filled with received data, or

data reception has been aborted due to an error condition. The CPU32+ core is
free to examine or write to any fields of this Rx BD. The CP will not use this BD
again while the E-bit remains zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET + 0 E — W I L F CM — DE — — NO — CR OV CD

OFFSET + 2 DATA LENGTH

OFFSET + 4
RX DATA BUFFER POINTER*

OFFSET + 6

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Applications

9-47 MC68360 USER’S MANUAL

Figure 9-15. 4-Mbyte DRAM Bank—36 Bits Wide

MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9

RAS1
RAS1DD

CAS0
CAS1
CAS2
CAS3

R/W

D7–D0
PRTY3

D15–D8
PRTY2

D23–D16
PRTY1

D31–D24
PRTY0

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

RAS0
RAS2

CAS0
CAS1
CAS2
CAS3

W

DQ7–DQ0
DQ8
DQ16–DQ9

DQ17
DQ25–DQ18
DQ26
DQ34–DQ27
DQ35

A0
A1
A2
A3
B0
B1

B2
B3

Y0
Y1
Y2
Y3

OE

SEL

A0
A1
A2
A3
B0
B1
B2
B3

Y0
Y1
Y2

Y3

OE

SEL

A0
A1
A2
A3
B0
B1
B2
B3

Y0
Y1
Y2
Y3

OE

SEL
AMUX

BADD2
BADD3

A7
A9
A4
A5
A6
A8

A11
A13
A15
A17
A10
A12
A14
A16

A19
A21
A23
A25
A18
A20
A22
A24

MA0
MA1
MA2
MA3

MA4
MA5
MA6
MA7

MA8
MA9
MA10
MA11

COLUMN = A ROW = B

MUXED ADDRESS BUS

NOTE: MA11–MA10 not required but allows future expansion.

MC74F157 MC74F157 MC74F157

MCM36100S
1M 36

DRAM

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

1M 4×

×

SYSTEM BUS AND
QUICC-GENERATED SIGNALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Applications

9-66 MC68360 USER’S MANUAL

9.6.7.2 CONFIGURING THE MEMORY CONTROLLER. The following paragraphs
describe configuring the memory controller.

For information on configuring the global memory register (GMR), refer to 9.1 Minimum Sys-
tem Configuration.

The memory controller status register (MSTAT) is used for reporting parity errors and does
not require initialization.

Eight base registers (BRs) exist, one for each memory bank. BR6 and BR7 for CS6 and CS7
will be specified with the 53C90 address being $04001000. Please refer to 9.1 Minimum
System Configuration for DRAM and other memory configurations.

BR7 = $0400104D. Address decoded is $04001xxx, function codes are xxxx (don't care,
will be masked in OR7), TRLXQ and CSNTQ are set, parity is enabled, read and write ac-
cesses are allowed, and this base register is valid.

BR6 = $04001805. Same as BR7, except TRLXQ and CSNTQ are not set and the next
consecutive 2K memory block is selected.

Eight option registers (ORs) exist, one for each memory bank. The following information is
valid for registers OR6 and OR7:

DSSEL should be 0.

SPS1–SPS0 should be 10 (indicating port size is 8 bits).

PGME should be 0 since this is not DRAM.

BCYC1–BCYC0 are not used and should be cleared.

FCM3–FCM0 may be cleared to zeros to allow the chip select or RAS line to assert on all
function codes, except CPU space (interrupt acknowledge). It is advisable to program
FCM3–FCM0 to zeros, at least during the initial stages of debugging.

The AM27–AM11 bits will mask the address if they are cleared. In this application, they
are all set to allow decoding.

The TCYC bits should be set to determine the number of wait states required—one wait
state on CS7 (0010) and no wait states on CS6 (0001).

Therefore, OR7 = $2FFFF804 and OR6 = $1FFFF804.

9.7 USING THE QUICC AS A TAP CONTROLLER FOR BOARD SELF-TEST
An assembled board is often tested with complex test equipment using a unique test port or
a bed-of-nails fixture. This procedure becomes more difficult as device packages and fea-
tures become smaller. The objective of the JTAG standard is to define a boundary scan
architecture that can be adopted as a part of an integrated circuit to perform both an in-circuit
test and a verification of the interconnection between different devices.

The JTAG standard defines test logic that can be integrated into a device to perform:

1. Testing of the interconnection between devices once they have been mounted on a
printed circuit board or any other substrate.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Applications

9-86 MC68360 USER’S MANUAL

This design also uses the RAS1 double-drive capability, whereby the RAS1DD signal is out-
put by the QUICC on the BCLRI pin to increase the effective drive capability of the RAS1
signal. The RAS1 line should be programmed to respond to a 4-Mbyte address space.

After power-on reset, the software must wait the required time before accessing the DRAM.
The required eight read cycles must then be performed either in software or by waiting for
the refresh controller to perform these accesses.

9.8.2.6 DRAM DEVICES. Figure 9-33 shows the interface to a standalone DRAM device. In
this case the MCM54260 256K × 16 DRAM device is chosen. This allows a full 32-bit wide
DRAM solution using only two DRAM devices, with byte writes still supported using the
upper and lower CAS pins. Both the MC68EC030 and the QUICC can access the DRAM
array. The RAS1 line should be programmed to respond to a 1-Mbyte address space.

The address multiplexing scheme shown is the same as that for the DRAM SIMM. No parity
support is provided in this case. The RAS1DD signal is not used in this case, since only two
devices are supported.

After power-on reset, the software must wait the required time before accessing the DRAM,
and then perform the required eight read cycles, either in software or by waiting for the
refresh controller to perform these accesses.

9.8.3 Software Configuration
The following paragraphs discuss a number of key points for a software engineer desiring
to initialize the system. The only items discussed are those that are required to allow the pre-
viously discussed hardware configuration.

9.8.3.1 BASIC INITIALIZATION. The following register initializations are basic to all types
of applications.

The module base address register (MBAR) should be set as desired. However, the QUICC
8-Kbyte block should not overlap any memory array.

The module base address register enable (MBARE) should not be accessed.

In the module configuration register (MCR), ASTM and BSTM should be set to indicate syn-
chronous operation. SHEN1–SHEN0 should be cleared.

In the system protection control register (SYPCR), DBFE should be cleared. BME should be
set. If the software watchdog is used, the SWRI bit should be set.

The periodic interrupt control register (PICR) may be set as desired.

The port E pin assignment register (PEPAR) should be set to $51C0. This configures three
IOUTx lines to go out on the unused parity pins, the RAS1DD pin, WE lines instead of the
A31–A28 lines, the AMUX pin (assuming DRAM is used in the system; otherwise, the OE
function should be programmed), four CASx lines, CS7, and AVECO.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Index

INDEX-2

MC68356 USER’S MANUAL

BISYNC Channel Frame Transmission
7-201

BISYNC Command Set 7-204
BISYNC Control Character Recognition

7-206
BISYNC Controller 7-200
BISYNC Frames 7-200
BISYNC Memory Map 7-203
Data Length 7-213
Error-Handling 7-209
LRC 7-210
Nibblesync 7-201
Parity 7-211
Programming the BISYNC Controller 7-

217
Reverse Data 7-211
SCC BISYNC Example 7-218
Sum Check 7-210
Transmitting and Receiving 7-208

BISYNC Channel Frame Reception 7-202
BISYNC Channel Frame transmission 7-

201
BISYNC Command Set 7-204
BISYNC Control Character Recognition 7-

206
BISYNC Controller 7-200
BISYNC Frames 7-200
BISYNC Memory Map 7-203
BISYNC Receive Buffer Descriptor 7-212
BISYNC Transmit Buffer Descriptor 7-213
Bit Manipulation Instructions 5-23
Bit Manipulation Timing Table 5-97
BKAR 6-44
BKCR 6-44
BKPT 2-11, 4-31
BKPT Instruction 5-61
BKPT Signal 5-60, 5-63, 5-66, 5-67
BKPT_TAG 5-68
BKPTO 6-26
BR 2-9, 2-10, 4-49, 4-52, 6-26, 6-31, 6-32,

6-56, 6-70, 7-44, 9-12, 9-50
BR040ID 6-30
Break 7-166
Break Support 7-151
Breakpoint 4-31
Breakpoint Exception 5-39, 5-42, 5-43
Breakpoint Exception 5-49

Breakpoint Instruction 5-59
Breakpoint Instruction 5-26, 5-43
Breakpoint Logic 6-20
BRG 7-86, 7-101
BRGC 7-106
BRGCLK 6-17, 7-104, 7-314
BRGO 7-101, 7-108, 7-364
Broadcast Address 7-257
BSTM 6-30, 6-68
BSYNC 7-204
BSYNC-BISYNC SYNC Register 7-207
Buffer

Auto Buffer 7-34
BISYNC Receive Buffer Descriptor 7-

212
BISYNC Transmit Buffer Descriptor 7-

213
Buffer Chaining 7-34
CP 7-123
Ethernet Receive Buffer Descriptor 7-

258
Ethernet Transmit Buffer Descriptor 7-

261
HDLC Receive Buffer Descriptor 7-179
HDLC Transmit Buffer Descriptor 7-183
PIP 7-341
SCC Bufer Descriptors 7-122
Single Buffer 7-34
SMC Transparent Receive Buffer

Descriptor 7-299
SMC Transparent Transmit Buffer

Descriptor 7-300
SMC UART Receiver Buffer Descriptor

7-283
SMC UART Transmit Buffer Descriptor

7-286
SPI Buffer Descriptor Ring 7-324
SPI Receive Buffer Descriptor 7-324
SPI Transmit Buffer Descriptor 7-326
Transfer Receive Buffer Descriptor 7-

228
Transparent Transmit Buffer Descriptor

7-230
UART Receiver Buffer Descriptor 7-159
UART Transmit Buffer Descriptor 7-163

Buffer Chaining 7-34
Buffer Descriptors 7-10

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

