

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 66x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10fx512vlq12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK10 and MK10

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K10
A	Key attribute	 F = Cortex-M4 w/ DSP and FPU
Μ	Flash memory type	 N = Program flash only X = Program flash and FlexMemory
FFF	Program flash memory size	 512 = 512 KB 1M0 = 1 MB

Table continues on the next page

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage (digital pins)				
		$0.7 \times V_{DD}$	_	v	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Output high voltage — low drive strength					
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OH}} = -2\text{mA}$	V _{DD} – 0.5	—	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	_		V	
І _{ОНТ}	Output high current total for all ports	_		100	mA	
I _{OHT_io60}	Output high current total for fast digital ports	—	_	100	mA	
V _{OL}	Output low voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 10 mA	-		0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 5 \text{ mA}$	-		0.5	V	
	Output low voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2 mA	_		0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 1 \text{ mA}$	_		0.5	v	
I _{OLT}	Output low current total for all ports			100	mA	
I _{OLT_io60}	Output low current total for fast digital ports	—	_	100	mA	
I _{INA}	Input leakage current, analog pins and digital pins configured as analog inputs					1, ²
	• $V_{SS} \le V_{IN} \le V_{DD}$					
	All pins except EXTAL32, XTAL32, EXTAL, XTAL	_	0.002	0.5	μA	
	• EXTAL (PTA18) and XTAL (PTA19)	-	0.004	1.5	μA	
	• EXTAL32, XTAL32	_	0.075	10	μA	
I _{IND}	Input leakage current, digital pins					2, 3
	• $V_{SS} \le V_{IN} \le V_{IL}$					
	All digital pins	_	0.002	0.5	μA	
	• VIN = VDD					
	All digital pins except PTD7	_	0.002	0.5	μA	
	PTD7	_	0.004	1	μA	
	Input leakage current, digital pins					² , ³ , 4
	• VII < VIN < VDD					, ,
	• V _{DD} = 3.6 V	_	18	26	uА	
	• V _{DD} = 3.0 V	_	12	19	uA	
	• $V_{DD} = 2.5 V$	_	8	13	υA	
	• V _{DD} = 1.7 V	_	3	6	μΑ	
	Input leakage current, digital pins					2, 3
	• V _{DD} < V _{IN} < 5.5 V	_	1	50	μA	, -
Z _{IND}	Input impedance examples, digital pins					² , 5
		_	_	48	kΩ	

Table 4. Voltage and current operating behaviors (continued)

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • V_{DD} slew rate ≥ 5.7 kV/s • V_{DD} slew rate < 5.7 kV/s		300 1.7 V / (V _{DD} slew rate)	μs	1
	• VLLS1 → RUN	_	160	μs	
	VLLS2 → RUN		114	μs	
	• VLLS3 → RUN	_	114	μs	
	• LLS \rightarrow RUN		5.0	μs	
	• VLPS → RUN	_	5	μs	
	• STOP \rightarrow RUN		4.8	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFE_FOPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	—	49.28	73.85	mA	
	• @ 3.0V	—	49.08	73.93	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3
	• @ 1.8V	—	74.43	99.97	mA	
	• @ 3.0V	_	74.28	100.41	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	—	34.67	58.5	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	18.03	41.91	mA	4
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	—	1.25	1.62	mA	
		_	2.93	4.39	mA	

Table continues on the next page...

General

Figure 4. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	21	dBµV	1, 2, 3
V _{RE2}	Radiated emissions voltage, band 2	50–150	24	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	29	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	28	dBµV	

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 72 MHz, f_{BUS} = 72 MHz
- 3. Determined according to IEC Standard JESD78, IC Latch-Up Test

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF
C _{IN_D_io60}	Input capacitance: fast digital pins		9	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes			
	Normal run mode							
f _{SYS}	System and core clock	_	120	MHz				
f _{BUS}	Bus clock	—	60	MHz				
FB_CLK	FlexBus clock	_	50	MHz				
f _{FLASH}	Flash clock	—	25	MHz				
f _{LPTMR}	LPTMR clock	—	25	MHz				
	VLPR mode ¹							
f _{SYS}	System and core clock	—	4	MHz				
f _{BUS}	Bus clock	—	4	MHz				
FB_CLK	FlexBus clock	—	4	MHz				
f _{FLASH}	Flash clock	—	0.5	MHz				
f _{LPTMR}	LPTMR clock	—	4	MHz				

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

Peripheral operating requirements and behaviors

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
∆f _{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C		± 4.5		%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external clock minimum frequency — RANGE = 01, 10, or 11	(16/5) x f _{ints_t}			kHz	
	FI	L				
f _{fll_ref}	FLL reference frequency range	31.25		39.0625	kHz	

Table 15. MCG specifications

Table continues on the next page...

6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	1
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	60	MHz	2, 3
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)		1000	_	ms	4, 5
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	500	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Frequencies less than 8 MHz are not in the PLL range.

2. Other frequency limits may apply when external clock is being used as a reference for the FLL

- 3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 4. Proper PC board layout procedures must be followed to achieve specifications.
- 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz oscillator electrical characteristics

6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor		100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation		0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	_	kHz	
t _{start}	Crystal start-up time	—	1000		ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700	—	V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- 3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT} .

6.4 Memories and memory interfaces

6.4.1 Flash (FTFE) electrical specifications

This section describes the electrical characteristics of the FTFE module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm8}	Program Phrase high-voltage time	—	7.5	18	μs	
t _{hversscr}	Erase Flash Sector high-voltage time		13	113	ms	1
t _{hversblk128k}	Erase Flash Block high-voltage time for 128 KB	—	104	1808	ms	1
t _{hversblk256k}	Erase Flash Block high-voltage time for 256 KB	—	208	3616	ms	1

Table 20. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{eewr8b128k}	64 KB EEPROM backup	—	450	1800	μs	
t _{eewr8b256k}	128 KB EEPROM backup	—	525	2000	μs	
	256 KB EEPROM backup					
t eewr16bers	16-bit write to erased FlexRAM location execution time	_	140	225	μs	
	16-bit write to FlexRAM execution time:					
t _{eewr16b64k}	64 KB EEPROM backup	_	400	1700	μs	
t _{eewr16b128k}	128 KB EEPROM backup	_	450	1800	μs	
t _{eewr16b256k}	256 KB EEPROM backup	_	525	2000	μs	
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	180	275	μs	
	32-bit write to FlexRAM execution time:					
t _{eewr32b64k}	64 KB EEPROM backup	—	475	1850	μs	
t _{eewr32b128k}	128 KB EEPROM backup	—	525	2000	μs	
t _{eewr32b256k}	256 KB EEPROM backup	_	600	2200	μs	

Table 21. Flash command timing specifications (continued)

1. Assumes 25MHz or greater flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	3.5	7.5	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

6.4.1.4 Reliability specifications Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes	
Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50		years		

Table continues on the next page ...

- T_H is the flash clock high time and
- T_L is flash clock low time,

which are defined as:

$$T_{NFC} = T_L + T_H = \frac{T_{input clock}}{SCALER}$$

The SCALER value is derived from the fractional divider specified in the SIM's CLKDIV4 register:

SCALER = $\frac{SIM_CLKDIV4[NFCFRAC] + 1}{SIM_CLKDIV4[NFCDIV] + 1}$

In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%, means $T_H = T_L$. In case the reciprocal of SCALER is not an integer:

$$T_{L} = (1 + \text{SCALER} / 2) \times \frac{T_{NFC}}{2}$$
$$T_{H} = (1 - \text{SCALER} / 2) \times \frac{T_{NFC}}{2}$$

T_{NFC}

T_HT_L

For example, if SCALER is 0.2, then $T_H = T_L = T_{NFC}/2$.

NOTE

The reciprocal of SCALER must be a multiple of 0.5. For example, 1, 1.5, 2, 2.5, etc.

Table 25.	NFC s	pecifications
-----------	-------	---------------

Num	Description	Min.	Max.	Unit
t _{CLS}	NFC_CLE setup time	2T _H + T _L – 1	_	ns
t _{CLH}	NFC_CLE hold time	T _H + T _L – 1	_	ns
t _{CS}	NFC_CEn setup time	2T _H + T _L – 1	_	ns
t _{CH}	NFC_CEn hold time	T _H + T _L		ns

Table continues on the next page...

Num	Description	Min.	Max.	Unit
t _{WP}	NFC_WP pulse width	T _L – 1		ns
t _{ALS}	NFC_ALE setup time	2T _H + T _L	-	ns
t _{ALH}	NFC_ALE hold time	T _H + T _L	—	ns
t _{DS}	Data setup time	T _L – 1	_	ns
t _{DH}	Data hold time	T _H – 1	-	ns
t _{WC}	Write cycle time	T _H + T _L – 1	—	ns
t _{WH}	NFC_WE hold time	T _H – 1	_	ns
t _{RR}	Ready to NFC_RE low	4T _H + 3T _L + 90	_	ns
t _{RP}	NFC_RE pulse width	T _L + 1	—	ns
t _{RC}	Read cycle time	T _L + T _H – 1	_	ns
t _{REH}	NFC_RE high hold time	T _H – 1		ns
t _{IS}	Data input setup time	11		ns

Figure 13. Command latch cycle timing

Figure 16. Read data latch cycle timing in non-fast mode

Figure 17. Read data latch cycle timing in fast mode

6.4.4 Flexbus switching specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

Peripheral operating requirements and behaviors

Figure 19. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

Figure 25. Typical INL error vs. digital code

Figure 26. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 35.	VREF full-range operating requirements
-----------	--

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584		1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	1
V _{step}	Voltage reference trim step	—	0.5	_	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	—	80	mV	1
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				mV	1, 2
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time	—		100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	_	mV	1

Table 36. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 37. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 38. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

Figure 34. I2S/SAI timing — slave modes

6.8.7.2 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

 Table 48.
 I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1.0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 36. I2S/SAI timing — slave modes

6.8.7.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 50.I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	-1.6	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	45	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

rmout

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LQFP	MAP Bga											
128	D4	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM3_CH1	FB_CS0_b	I2S1_RXD0		
129	C4	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX	FTM3_CH2	FB_AD4	I2S1_RX_FS		
130	B4	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX	FTM3_CH3	FB_AD3	I2S1_RX_ BCLK		
131	A4	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UART0_ RTS_b	FTM0_CH4	FB_AD2/ NFC_DATA1	EWM_IN		
132	A3	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_ CTS_b/ UART0_ COL_b	FTM0_CH5	FB_AD1/ NFC_DATA0	EWM_OUT_b		
133	A2	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
134	M10	VSS	VSS	VSS								
135	F8	VDD	VDD	VDD								
136	A1	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
137	C9	PTD8	DISABLED		PTD8	I2C0_SCL	UART5_RX			FB_A16/ NFC_CLE		
138	B9	PTD9	DISABLED		PTD9	I2C0_SDA	UART5_TX			FB_A17/ NFC_ALE		
139	B3	PTD10	DISABLED		PTD10		UART5_ RTS_b			FB_A18/ NFC_RE		
140	B2	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_ CTS_b	SDHC0_ CLKIN		FB_A19		
141	B1	PTD12	DISABLED		PTD12	SPI2_SCK	FTM3_FLT0	SDHC0_D4		FB_A20		
142	C3	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5		FB_A21		
143	C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
144	C1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		

8.3 K10 pinouts

The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.