

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	104
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 66x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10fx512vmd12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage1	-0.3	3.8	V
I _{DD}	Digital supply current	—	300	mA
V _{DIO}	Digital input voltage (except $\overline{\text{RESET}}$, EXTAL0/XTAL0, and EXTAL1/XTAL1) 2	-0.3	5.5	V
V _{AIO}	Analog ³ , RESET , EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. It applies for all port pins.

- 2. It covers digital pins.
- 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage (digital pins)				
		$0.7 \times V_{DD}$	_	v	

Table continues on the next page ...

General

5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
V _{LVW1H} V _{LVW2H} V _{LVW3H} V _{LVW4H}	Low-voltage warning thresholds — high range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10)	2.62 2.72 2.82 2.92	2.70 2.80 2.90 3.00	2.78 2.88 2.98 3.08	V V V V	1
V _{HYSH}	Level 4 falling (LVWV=11) Low-voltage inhibit reset/recover hysteresis — high range		±80		mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
V _{LVW1L}	Low-voltage warning thresholds — low range	1.74	1.80	1.86	V	1
V _{LVW2L}	Level 1 falling (LVWV=00)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 2 falling (LVVV=01)	1.94	2.00	2.06	V	
V _{LVW4L}	 Level 4 falling (LVWV=10) Level 4 falling (LVWV=11) 	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±60	—	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors

 Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} – 0.5	—		V	

Table continues on the next page...

- 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 6. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies.
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

Figure 3. Run mode supply current vs. core frequency

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF
C _{IN_D_io60}	Input capacitance: fast digital pins		9	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9			
f _{SYS}	System and core clock	_	120	MHz	
f _{BUS}	Bus clock	—	60	MHz	
FB_CLK	FlexBus clock	_	50	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock	—	25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	—	4	MHz	
f _{BUS}	Bus clock	—	4	MHz	
FB_CLK	FlexBus clock	—	4	MHz	
f _{FLASH}	Flash clock	—	0.5	MHz	
f _{LPTMR}	LPTMR clock	—	4	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

- 3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air)* with the board horizontal.
- 4. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*.

6.1 Core modules

6.1.1 Debug trace timing specifications

 Table 12.
 Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	MHz	
T _{wl}	Low pulse width	2		ns
T _{wh}	High pulse width	2		ns
Tr	Clock and data rise time	—	3	ns
T _f	Clock and data fall time	—	3	ns
T _s	Data setup	3		ns
T _h	Data hold	2		ns

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	2, 3
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS=01)	40	41.94	50	MHz	
		$1280 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		$1920 \times f_{fll_ref}$					
		High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					
f _{dco_t_DMX32}	DCO output	Low range (DRS=00)	_	23.99	—	MHz	4, 5
	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS=01)	_	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	_	71.99	—	MHz	
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)		95.98	_	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180		ps	
	• f _{VCO} = 48 MI	Hz	_	150	_		
	• f _{VCO} = 98 MI	Hz					
t _{fll_acquire}	FLL target frequen	cy acquisition time	-	_	1	ms	6
f	RLL reference free		.0, I		16		
^I pll_ref	VCO output freque		0		10		
¹ vcoclk_2x		псу	180		360		
f _{vcoclk}	PLL output freque	псу	90	—	180	MHz	
f _{vcoclk_90}	PLL quadrature ou	tput frequency	90	_	180	MHz	
I _{pll}	PLL0 operating cu • VCO @ 184 = 8 MHz. VD	rrent MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} DV multiplier = 23)	_	2.8	_	mA	
I _{pli}	PLL0 operating cu • VCO @ 360 = 8 MHz, VD	rrent MHz ($f_{osc_hi_1} = 32$ MHz, f_{pll_ref} DIV multiplier = 45)	_	4.7	_	mA	7
I _{pli}	PLL1 operating cu • VCO @ 184 = 8 MHz, VD	rrent MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} NV multiplier = 23)	_	2.3	_	mA	7
I _{pll}	PLL1 operating cu • VCO @ 360 = 8 MHz, VD	rrent MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} NV multiplier = 45)	_	3.6	_	mA	7
t _{pll_lock}	Lock detector dete	ction time	_	-	$\begin{array}{c} 100 \times 10^{-6} \\ + 1075(1/ \\ f_{\text{pll_ref}}) \end{array}$	S	8
J _{cvc pll}	PLL period jitter (F	IMS)					9

Table 15. MCG specifications (continued)

Table continues on the next page ...

Num	Description	Min.	Max.	Unit
t _{WP}	NFC_WP pulse width	T _L – 1		ns
t _{ALS}	NFC_ALE setup time	2T _H + T _L	-	ns
t _{ALH}	NFC_ALE hold time	T _H + T _L	—	ns
t _{DS}	Data setup time	T _L – 1		ns
t _{DH}	Data hold time	T _H – 1	-	ns
t _{WC}	Write cycle time	T _H + T _L – 1	—	ns
t _{WH}	NFC_WE hold time	T _H – 1	_	ns
t _{RR}	Ready to NFC_RE low	4T _H + 3T _L + 90	_	ns
t _{RP}	NFC_RE pulse width	T _L + 1	—	ns
t _{RC}	Read cycle time	T _L + T _H – 1	_	ns
t _{REH}	NFC_RE high hold time	T _H – 1		ns
t _{IS}	Data input setup time	11		ns

Figure 13. Command latch cycle timing

Peripheral operating requirements and behaviors

Figure 19. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

6.6.1.3 16-bit ADC with PGA operating conditions Table 30. 16-bit ADC with PGA operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
V _{REFPGA}	PGA ref voltage		VREF_OU T	VREF_OU T	VREF_OU T	V	2, 3
V _{ADIN}	Input voltage		V _{SSA}	_	V _{DDA}	V	
V _{CM}	Input Common Mode range		V _{SSA}	—	V _{DDA}	V	
R _{PGAD}	Differential input	Gain = 1, 2, 4, 8	_	128	—	kΩ	IN+ to IN- ⁴
	impedance	Gain = 16, 32	_	64	—		
		Gain = 64	_	32	—		
R _{AS}	Analog source resistance		_	100	—	Ω	5
T _S	ADC sampling time		1.25	—	—	μs	6
C _{rate}	ADC conversion rate	 ≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 	18.484	_	450	Ksps	7
		16 bit modes	37.037	—	250	Ksps	8

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 30. 16-bit ADC with PGA operating conditions

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is $R_{PGAD}/2$
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics Table 31. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	_	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\text{PGAD}}} \left(\frac{1}{2}\right)$	V _{REFPGA} ×0.5 (Gain+	$\frac{83)-V_{\rm CM}}{1}$	A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	_	1.54		μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V	—	0.57		μA	
G	Gain ⁴	PGAG=0	0.95	1	1.05		R _{AS} < 100Ω
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	—	—	4	kHz	
	bandwidth	• < 16-bit modes	_	—	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	—	-84	_	dB	V _{DDA} = 3V ±100mV,

Table continues on the next page ...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		Gain=1, Average=32	11.0	14.3	—	bits	
		Gain=2, Average=32	7.9	13.8	—	bits	
		• Gain=4, Average=32	7.3	13.1	—	bits	
		Gain=8, Average=32	6.8	12.5	—	bits	
		Gain=16, Average=32	6.8	11.5	—	bits	
		• Gain=32, Average=32	7.5	10.6	—	bits	
		• Gain=64, Average=32					
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 31. 16-bit ADC with PGA characteristics (continued)

- 1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.
- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 32. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	—	20	mV
V _H	Analog comparator hysteresis ¹				
	 CR0[HYSTCTR] = 00 	_	5	_	mV
	 CR0[HYSTCTR] = 01 	_	10	_	mV
	CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	—	—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	—	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA

Table continues on the next page...

Table 32. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6 V.
- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB = V_{reference}/64

Figure 23. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 26. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 35.	VREF full-range operating requirements
-----------	--

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Num	Description	Min.	Max.	Unit	Notes
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	—	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

 Table 41. Master mode DSPI timing (full voltage range) (continued)

- 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
- 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 29. DSPI classic SPI timing — master mode

Table 42. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation		7.5	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid		20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7		ns
DS15	DSPI_SS active to DSPI_SOUT driven		19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		19	ns

device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.

7. C_b = total capacitance of the one bus line in pF.

Figure 31. Timing definition for fast and standard mode devices on the I²C bus

6.8.5 UART switching specifications

See General switching specifications.

6.8.6 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

 Table 44.
 SDHC switching specifications over a limited operating voltage range

Num	Symbol	Description	Min.	Max.	Unit			
		Operating voltage	2.7	3.6	V			
		Card input clock	•					
SD1	fpp	Clock frequency (low speed)	0	400	kHz			
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz			
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz			
	f _{OD}	Clock frequency (identification mode)	0	400	kHz			
SD2	t _{WL}	Clock low time	7	—	ns			
SD3	t _{WH}	Clock high time	7	—	ns			
SD4	t _{TLH}	Clock rise time	—	3	ns			
SD5	t _{THL}	Clock fall time	—	3	ns			
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)				
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns			
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)						
SD7	t _{ISU}	SDHC input setup time	5	—	ns			
SD8	t _{IH}	SDHC input hold time	0	—	ns			

Num	Symbol	Description	Min.	Max.	Unit	
		Operating voltage	1.71	3.6	V	
	Card input clock					
SD1	fpp	Clock frequency (low speed)	0	400	kHz	
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz	
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz	
	f _{OD}	Clock frequency (identification mode)	0	400	kHz	
SD2	t _{WL}	Clock low time	7	—	ns	
SD3	t _{WH}	Clock high time	7	—	ns	
SD4	t _{TLH}	Clock rise time	_	3	ns	
SD5	t _{THL}	Clock fall time	_	3	ns	
	SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)					
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns	
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)					
SD7	t _{ISU}	SDHC input setup time	5	—	ns	
SD8	t _{IH}	SDHC input hold time	1.3	—	ns	

Table 45. SDHC switching specifications over the full operating voltage range

Figure 32. SDHC timing

6.8.7 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]

is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

6.8.7.1 Normal Run, Wait and Stop mode performance over a limited operating voltage range

This section provides the operating performance over a limited operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	15	-	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

 Table 46.
 I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range)

Figure 37. I2S/SAI timing — master modes

Table 51. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	3	-	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	63	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear