


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

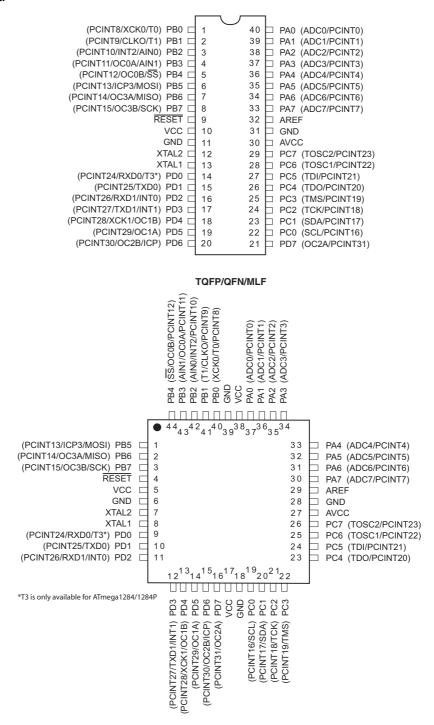
E·XFI

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | AVR                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 32                                                                       |
| Program Memory Size        | 64KB (32K x 16)                                                          |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | 2K x 8                                                                   |
| RAM Size                   | 4K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                              |
| Data Converters            | A/D 8x10b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 44-VFQFN Exposed Pad                                                     |
| Supplier Device Package    | 44-VQFN (7x7)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atmega644pa-mu |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
  - Power-on Reset and Programmable Brown-out Detection
  - Internal Calibrated RC Oscillator
  - External and Internal Interrupt Sources
  - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
- I/O and Packages
  - 32 Programmable I/O Lines
  - 40-pin PDIP, 44-lead TQFP, 44-pad VQFN/QFN/MLF
  - 44-pad DRQFN
- 49-ball VFBGA
  - Operating Voltages
    - 1.8 5.5V
  - Speed Grades
    - 0 4MHz @ 1.8 5.5V
    - 0 10MHz @ 2.7 5.5V
    - 0 20MHz @ 4.5 5.5V
  - Power Consumption at 1MHz, 1.8V, 25°C
    - Active: 0.4mA
    - Power-down Mode: 0.1µA
    - Power-save Mode: 0.6µA (Including 32kHz RTC)

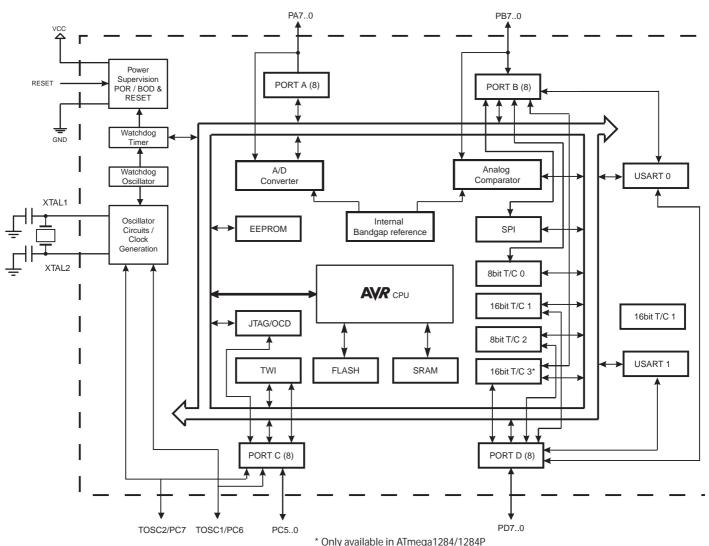

Note: 1. See "Data retention" on page 9 for details.



#### 1. Pin configurations

#### 1.1 Pinout - PDIP/TQFP/VQFN/QFN/MLF for ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P

| Figure 1-1. | Pinout. |
|-------------|---------|
|-------------|---------|




Note: The large center pad underneath the VQFN/QFN/MLF package should be soldered to ground on the board to ensure good mechanical stability.



#### 2.1 Block diagram

Figure 2-1. Block diagram.



The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P provide the following features:

16/32/64/128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K/2K/4Kbytes EEPROM, 1/2/4/16Kbytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), three (four for ATmega1284/1284P) flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented two-wire Serial Interface, a 8-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a



timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

Atmel offers the QTouch<sup>®</sup> library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression<sup>®</sup> (AKS<sup>™</sup>) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

# 2.2 Comparison between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA, ATmega644A, ATmega644PA, ATmega1284 and ATmega1284P

| -           |       | -      |     |       |
|-------------|-------|--------|-----|-------|
| Device      | Flash | EEPROM | RAM | Units |
| ATmega164A  | 16K   | 512    | 1K  |       |
| ATmega164PA | 16K   | 512    | 1K  |       |
| ATmega324A  | 32K   | 1K     | 2К  |       |
| ATmega324PA | 32K   | 1K     | 2К  | butee |
| ATmega644A  | 64K   | 2K     | 4K  | bytes |
| ATmega644PA | 64K   | 2K     | 4K  |       |
| ATmega1284  | 128K  | 4K     | 16K |       |
| ATmega1284P | 128K  | 4K     | 16K |       |

Table 2-1.Differences between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA, ATmega644A,<br/>ATmega644PA, ATmega1284 and ATmega1284P.

#### 2.3 Pin Descriptions11

#### 2.3.1 VC

Digital supply voltage.

#### 2.3.2 GND

Ground.



#### 3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

#### 4. About code examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

The code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

#### 5. Data retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

#### 6. Capacitive touch sensing

The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website.



| Address          | Name                 | Bit 7  | Bit 6  | Bit 5  | Bit 4             | Bit 3               | Bit 2                               | Bit 1   | Bit 0   | Page    |
|------------------|----------------------|--------|--------|--------|-------------------|---------------------|-------------------------------------|---------|---------|---------|
| (0xC0)           | UCSR0A               | RXC0   | TXC0   | UDRE0  | FE0               | DOR0                | UPE0                                | U2X0    | MPCM0   | 185/200 |
| (0xBF)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0xBE)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0xBD)           | TWAMR                | TWAM6  | TWAM5  | TWAM4  | TWAM3             | TWAM2               | TWAM1                               | TWAM0   | -       | 231     |
| (0xBC)           | TWCR                 | TWINT  | TWEA   | TWSTA  | TWSTO             | TWWC                | TWEN                                | -       | TWIE    | 228     |
| (0xBB)           | TWDR                 |        |        |        | two-wire          | Serial Interface    | Data Register                       | _       |         | 230     |
| (0xBA)           | TWAR                 | TWA6   | TWA5   | TWA4   | TWA3              | TWA2                | TWA1                                | TWA0    | TWGCE   | 231     |
| (0xB9)           | TWSR                 | TWS7   | TWS6   | TWS5   | TWS4              | TWS3                | -                                   | TWPS1   | TWPS0   | 229     |
| (0xB8)           | TWBR                 |        |        | -      | two-wire Se       | erial Interface Bit | Rate Register                       | -       |         | 228     |
| (0xB7)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0xB6)           | ASSR                 | -      | EXCLK  | AS2    | TCN2UB            | OCR2AUB             | OCR2BUB                             | TCR2AUB | TCR2BUB | 155     |
| (0xB5)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0xB4)           | OCR2B                |        |        |        |                   | ter2 Output Com     |                                     |         |         | 155     |
| (0xB3)           | OCR2A                |        |        |        |                   | ter2 Output Com     |                                     |         |         | 155     |
| (0xB2)           | TCNT2                | 50004  | 50005  |        |                   | imer/Counter2 (8    | ,                                   | 0001    | 0000    | 154     |
| (0xB1)           | TCCR2B               | FOC2A  | FOC2B  | -      | -                 | WGM22               | CS22                                | CS21    | CS20    | 153     |
| (0xB0)           | TCCR2A               | COM2A1 | COM2A0 | COM2B1 | COM2B0            | -                   | -                                   | WGM21   | WGM20   | 151     |
| (0xAF)           | Reserved<br>Reserved | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0xAE)           | -                    | -      | -      | -      | -                 | -                   | -                                   |         | -       |         |
| (0xAD)<br>(0xAC) | Reserved<br>Reserved | -      | -      | -      | -                 | -                   | -                                   | -       | -       | -       |
| (0xAC)<br>(0xAB) | Reserved             | -      | -      | -      | -                 | -                   | -                                   |         | -       |         |
| (0xAB)<br>(0xAA) | Reserved             |        | -      | -      | -                 | -                   | -                                   |         | -       |         |
| (0xAA)<br>(0xA9) | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       |         |         |
| (0xA9)<br>(0xA8) | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0xA7)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       | -       |
| (0xA6)           | Reserved             | -      | _      | -      | -                 | -                   | -                                   | -       | -       | -       |
| (0xA5)           | Reserved             | -      | _      | _      | -                 | -                   | -                                   | -       | -       |         |
| (0xA4)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       | -       |
| (0xA3)           | Reserved             | -      | _      | _      | _                 | -                   | -                                   | -       | -       | -       |
| (0xA2)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       | -       |
| (0xA1)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       | -       |
| (0xA0)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x9F)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x9E)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x9D)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x9C)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x9B)           | OCR3BH               |        | •      | T      | imer/Counter3 - C | utput Compare I     | Register B High Byte <sup>(7)</sup> |         |         | 132     |
| (0x9A)           | OCR3BL               |        |        | 1      | imer/Counter3 - C | Output Compare I    | Register B Low Byte <sup>(7)</sup>  |         |         | 132     |
| (0x99)           | OCR3AH               |        |        | Т      | imer/Counter3 - C | utput Compare F     | Register A High Byte <sup>(7)</sup> |         |         | 132     |
| (0x98)           | OCR3AL               |        |        | Т      | imer/Counter3 - C | Output Compare I    | Register A Low Byte <sup>(7)</sup>  |         |         | 132     |
| (0x97)           | ICR3H                |        |        |        | Timer/Counter3    | - Input Capture F   | Register High Byte <sup>(7)</sup>   |         |         | 133     |
| (0x96)           | ICR3L                |        |        |        | Timer/Counter3    | - Input Capture F   | Register Low Byte <sup>(7)</sup>    |         |         | 133     |
| (0x95)           | TCNT3H               |        |        |        | Timer/Counte      | r3 - Counter Reg    | gister High Byte <sup>(7)</sup>     |         |         | 132     |
| (0x94)           | TCNT3L               |        |        |        | Timer/Counte      | r3 - Counter Rec    | gister Low Byte <sup>(7)</sup>      |         |         | 132     |
| (0x93)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x92)           | TCCR3C               | FOC3A  | FOC3B  | -      | -                 | -                   | -                                   | -       | -       | 131     |
| (0x91)           | TCCR3B               | ICNC3  | ICES3  | -      | WGM33             | WGM32               | CS32                                | CS31    | CS30    | 130     |
| (0x90)           | TCCR3A               | COM3A1 | COM3A0 | COM3B1 | COM3B0            | -                   | -                                   | WGM31   | WGM30   | 128     |
| (0x8F)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x8E)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x8D)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x8C)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x8B)           | OCR1BH               |        |        |        |                   |                     | Register B High Byte                |         |         | 132     |
| (0x8A)           | OCR1BL               |        |        |        |                   |                     | Register B Low Byte                 |         |         | 132     |
| (0x89)           | OCR1AH               |        |        |        |                   |                     | Register A High Byte                |         |         | 132     |
| (0x88)           | OCR1AL               |        |        |        |                   |                     | Register A Low Byte                 |         |         | 132     |
| (0x87)           | ICR1H                |        |        |        |                   |                     | Register High Byte                  |         |         | 133     |
| (0x86)           | ICR1L                |        |        |        |                   |                     | Register Low Byte                   |         |         | 133     |
| (0x85)           | TCNT1H               |        |        |        |                   |                     | gister High Byte                    |         |         | 132     |
| (0x84)           | TCNT1L               | -      |        |        |                   | er1 - Counter Re    |                                     |         |         | 132     |
| (0x83)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       |         |
| (0x82)           | TCCR1C               | FOC1A  | FOC1B  | -      | -                 | -                   | -                                   | -       | -       | 131     |
| (0x81)           | TCCR1B               | ICNC1  | ICES1  | -      | WGM13             | WGM12               | CS12                                | CS11    | CS10    | 130     |
| (0x80)           | TCCR1A               | COM1A1 | COM1A0 | COM1B1 | COM1B0            | -                   | -                                   | WGM11   | WGM10   | 128     |
| (0x7F)           | DIDR1                | -      | -      | -      | -                 | -                   | -                                   | AIN1D   | AIN0D   | 234     |
| (0x7E)           | DIDR0                | ADC7D  | ADC6D  | ADC5D  | ADC4D             | ADC3D               | ADC2D                               | ADC1D   | ADC0D   | 253     |
| (0x7D)           | Reserved             | -      | -      | -      | -                 | -                   | -                                   | -       | -       | 1       |



| Address                                   | Name               | Bit 7             | Bit 6               | Bit 5                | Bit 4             | Bit 3             | Bit 2              | Bit 1                 | Bit 0            | Page     |
|-------------------------------------------|--------------------|-------------------|---------------------|----------------------|-------------------|-------------------|--------------------|-----------------------|------------------|----------|
| (0x7C)                                    | ADMUX              | REFS1             | REFS0               | ADLAR                | MUX4              | MUX3              | MUX2               | MUX1                  | MUX0             | 249      |
| (0x7B)                                    | ADCSRB             | -                 | ACME                | -                    | -                 | -                 | ADTS2              | ADTS1                 | ADTS0            | 233      |
| (0x7A)                                    | ADCSRA             | ADEN              | ADSC                | ADATE                | ADIF              | ADIE              | ADPS2              | ADPS1                 | ADPS0            | 250      |
| (0x79)                                    | ADCH               |                   |                     |                      |                   | Data Register H   |                    |                       |                  | 251      |
| (0x78)                                    | ADCL               |                   |                     |                      |                   | Data Register L   |                    |                       |                  | 251      |
| (0x77)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x76)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x75)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x74)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x73)                                    | PCMSK3             | PCINT31           | PCINT30             | PCINT29              | PCINT28           | PCINT27           | PCINT26            | PCINT25               | PCINT24          | 70       |
| (0x72)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x71)                                    | TIMSK3             | -                 | -                   | ICIE3                | -                 | -                 | OCIE3B             | OCIE3A                | TOIE3            | 134      |
| (0x70)                                    | TIMSK2             | -                 | -                   | -                    | -                 | -                 | OCIE2B             | OCIE2A                | TOIE2            | 156      |
| (0x6F)                                    | TIMSK1             | -                 | -                   | ICIE1                | -                 | -                 | OCIE1B             | OCIE1A                | TOIE1            | 134      |
| (0x6E)                                    | TIMSK0             | -                 | -                   | -<br>PCINT21         | -<br>PCINT20      | -                 | OCIE0B             | OCIE0A                | TOIE0            | 105      |
| (0x6D)                                    | PCMSK2             | PCINT23           | PCINT22             |                      |                   | PCINT19           | PCINT18            | PCINT17               | PCINT16          | 70       |
| (0x6C)<br>(0x6B)                          | PCMSK1<br>PCMSK0   | PCINT15<br>PCINT7 | PCINT14<br>PCINT6   | PCINT13<br>PCINT5    | PCINT12<br>PCINT4 | PCINT11<br>PCINT3 | PCINT10<br>PCINT2  | PCINT9<br>PCINT1      | PCINT8<br>PCINT0 | 70<br>71 |
| (0x6A)                                    | Reserved           | -                 | -                   | FOINTS               | -                 | -                 | -                  | FOINT                 | FCINTO           |          |
| (0x69)                                    | EICRA              | -                 | -                   | -<br>ISC21           | ISC20             | -<br>ISC11        | -<br>ISC10         | -<br>ISC01            | -<br>ISC00       | 67       |
| (0x69)<br>(0x68)                          | PCICR              | -                 | -                   | -                    | -                 | PCIE3             | PCIE2              | PCIE1                 | PCIE0            | 69       |
| (0x67)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x66)                                    | OSCCAL             |                   |                     |                      |                   | lator Calibration |                    |                       |                  | 40       |
| (0x65)                                    | PRR1               | -                 | -                   | -                    | -                 | -                 | -                  | -                     | PRTIM3           | 49       |
| (0x64)                                    | PRR0               | PRTWI             | PRTIM2              | PRTIM0               | PRUSART1          | PRTIM1            | PRSPI              | PRUSART0              | PRADC            | 48       |
| (0x63)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x62)                                    | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| (0x61)                                    | CLKPR              | CLKPCE            | -                   | -                    | -                 | CLKPS3            | CLKPS2             | CLKPS1                | CLKPS0           | 40       |
| (0x60)                                    | WDTCSR             | WDIF              | WDIE                | WDP3                 | WDCE              | WDE               | WDP2               | WDP1                  | WDP0             | 59       |
| 0x3F (0x5F)                               | SREG               | I                 | Т                   | Н                    | S                 | V                 | Ν                  | Z                     | С                | 11       |
| 0x3E (0x5E)                               | SPH                | SP15              | SP14                | SP13                 | SP12              | SP11              | SP10               | SP9                   | SP8              | 12       |
| 0x3D (0x5D)                               | SPL                | SP7               | SP6                 | SP5                  | SP4               | SP3               | SP2                | SP1                   | SP0              | 12       |
| 0x3C (0x5C)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| 0x3B (0x5B)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                | L        |
| 0x3A (0x5A)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                | -        |
| 0x39 (0x59)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| 0x38 (0x58)<br>0x37 (0x57)                | Reserved<br>SPMCSR | -<br>SPMIE        | -<br>RWWSB          | -<br>SIGRD           | -<br>RWWSRE       | -<br>BLBSET       | -<br>PGWRT         | -<br>PGERS            | -<br>SPMEN       | 285      |
| 0x36 (0x56)                               | Reserved           | -                 | -                   | -                    | -                 | -                 |                    | -                     | -                | 205      |
| 0x35 (0x55)                               | MCUCR              | JTD               | BODS <sup>(6)</sup> | BODSE <sup>(6)</sup> | PUD               | -                 | -                  | IVSEL                 | IVCE             | 89/268   |
| 0x34 (0x54)                               | MCUSR              | -                 | -                   | -                    | JTRF              | WDRF              | BORF               | EXTRF                 | PORF             | 58/268   |
| 0x33 (0x53)                               | SMCR               | -                 | -                   | -                    | -                 | SM2               | SM1                | SM0                   | SE               | 47       |
| 0x32 (0x52)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| 0x31 (0x51)                               | OCDR               |                   |                     |                      | Or                | n-Chip Debug Re   | egister            |                       |                  | 259      |
| 0x30 (0x50)                               | ACSR               | ACD               | ACBG                | ACO                  | ACI               | ACIE              | ACIC               | ACIS1                 | ACIS0            | 250      |
| 0x2F (0x4F)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| 0x2E (0x4E)                               | SPDR               |                   |                     |                      |                   | SPI 0 Data Regi   | ster               |                       |                  | 166      |
| 0x2D (0x4D)                               | SPSR               | SPIF0             | WCOL0               | -                    | -                 | -                 | -                  | -                     | SPI2X0           | 165      |
| 0x2C (0x4C)                               | SPCR               | SPIE0             | SPE0                | DORD0                | MSTR0             | CPOL0             | CPHA0              | SPR01                 | SPR00            | 164      |
| 0x2B (0x4B)                               | GPIOR2             |                   |                     |                      |                   | al Purpose I/O F  | *                  |                       |                  | 29       |
| 0x2A (0x4A)                               | GPIOR1             |                   |                     |                      |                   | al Purpose I/O F  |                    |                       |                  | 29       |
| 0x29 (0x49)                               | Reserved           | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                |          |
| 0x28 (0x48)                               | OCR0B              |                   |                     |                      |                   | ter0 Output Com   |                    |                       |                  | 105      |
| 0x27 (0x47)                               | OCR0A              |                   |                     |                      |                   | ter0 Output Com   |                    |                       |                  | 105      |
| 0x26 (0x46)                               | TCNT0              | =                 |                     |                      |                   | imer/Counter0 (8  | ,                  |                       |                  | 105      |
| 0x25 (0x45)                               | TCCR0B             | FOC0A             | FOCOB               | -                    | -                 | WGM02             | CS02               | CS01                  | CS00             | 104      |
| 0x24 (0x44)                               | TCCR0A             | COM0A1            | COM0A0              | COM0B1               | COM0B0            | -                 | -                  | WGM01                 | WGM00            | 105      |
| 0x23 (0x43)                               | GTCCR              | TSM<br>-          | -                   | -                    | -                 | -                 | -<br>EERPOM Addree | PSRASY                | PSRSYNC          | 157      |
| 0x22 (0x42)<br>0x21 (0x41)                | EEARH              | -                 | -                   | -                    |                   | Address Decid     |                    | ss Register High Byte |                  | 24<br>24 |
| 0x21 (0x41)<br>0x20 (0x40)                | EEARL              | -                 |                     |                      |                   | Address Regist    |                    |                       |                  | 24       |
| 0x20 (0x40)<br>0x1F (0x3F)                | EECR               | -                 | -                   | EEPM1                | EEPM0             | EPROM Data Re     | EEMPE              | EEPE                  | EERE             | 24       |
| 0x1E (0x3E)                               | GPIOR0             | -                 | -                   |                      |                   | al Purpose I/O F  |                    |                       | LLINE            | 24       |
| 0x1D (0x3D)                               | EIMSK              | -                 | -                   | -                    | -                 | -                 | INT2               | INT1                  | INT0             | 68       |
|                                           | EIFR               |                   | -                   | _                    | -                 | -                 | INTE2              | INTF1                 | INTFO            | 68       |
| 0x1C (0x3C)                               |                    |                   |                     | -                    | -                 | PCIF3             | PCIF2              | PCIF1                 | PCIF0            | 69       |
| 0x1C (0x3C)<br>0x1B (0x3B)                | PCIFR              | -                 | -                   | -                    | -                 |                   |                    |                       | FUIFU            |          |
| 0x1C (0x3C)<br>0x1B (0x3B)<br>0x1A (0x3A) | PCIFR<br>Reserved  | -                 | -                   | -                    | -                 | -                 | -                  | -                     | -                | 00       |



| Address     | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Page |
|-------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|------|
| 0x18 (0x38) | TIFR3    | -      | -      | ICF3   | -      | -      | OCF3B  | OCF3A  | TOV3   | 136  |
| 0x17 (0x37) | TIFR2    | -      | -      | -      | -      | -      | OCF2B  | OCF2A  | TOV2   | 156  |
| 0x16 (0x36) | TIFR1    | -      | -      | ICF1   | -      | -      | OCF1B  | OCF1A  | TOV1   | 135  |
| 0x15 (0x35) | TIFR0    | -      | -      | -      | -      | -      | OCF0B  | OCF0A  | TOV0   | 106  |
| 0x14 (0x34) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x13 (0x33) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x12 (0x32) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x11 (0x31) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x10 (0x30) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0F (0x2F) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0E (0x2E) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0D (0x2D) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0C (0x2C) | Reserved | -      | -      | -      | -      | -      | -      | -      | -      |      |
| 0x0B (0x2B) | PORTD    | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTD0 | 90   |
| 0x0A (0x2A) | DDRD     | DDD7   | DDD6   | DDD5   | DDD4   | DDD3   | DDD2   | DDD1   | DDD0   | 90   |
| 0x09 (0x29) | PIND     | PIND7  | PIND6  | PIND5  | PIND4  | PIND3  | PIND2  | PIND1  | PIND0  | 90   |
| 0x08 (0x28) | PORTC    | PORTC7 | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTC0 | 90   |
| 0x07 (0x27) | DDRC     | DDC7   | DDC6   | DDC5   | DDC4   | DDC3   | DDC2   | DDC1   | DDC0   | 90   |
| 0x06 (0x26) | PINC     | PINC7  | PINC6  | PINC5  | PINC4  | PINC3  | PINC2  | PINC1  | PINC0  | 90   |
| 0x05 (0x25) | PORTB    | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTB0 | 89   |
| 0x04 (0x24) | DDRB     | DDB7   | DDB6   | DDB5   | DDB4   | DDB3   | DDB2   | DDB1   | DDB0   | 89   |
| 0x03 (0x23) | PINB     | PINB7  | PINB6  | PINB5  | PINB4  | PINB3  | PINB2  | PINB1  | PINB0  | 90   |
| 0x02 (0x22) | PORTA    | PORTA7 | PORTA6 | PORTA5 | PORTA4 | PORTA3 | PORTA2 | PORTA1 | PORTA0 | 89   |
| 0x01 (0x21) | DDRA     | DDA7   | DDA6   | DDA5   | DDA4   | DDA3   | DDA2   | DDA1   | DDA0   | 89   |
| 0x00 (0x20) | PINA     | PINA7  | PINA6  | PINA5  | PINA4  | PINA3  | PINA2  | PINA1  | PINA0  | 89   |

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 - \$FF, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. USART in SPI Master Mode.
- 6. Only available in the ATmega164PA/324PA/644PA/1284P.
- 7. Only available in the ATmega1284/1284P



| Mnemonics       | Operands                 | Description    | Operation                                | Flags | #Clocks |  |  |  |
|-----------------|--------------------------|----------------|------------------------------------------|-------|---------|--|--|--|
| MCU CONTROL INS | MCU CONTROL INSTRUCTIONS |                |                                          |       |         |  |  |  |
| NOP             |                          | No Operation   |                                          | None  | 1       |  |  |  |
| SLEEP           |                          | Sleep          | (see specific descr. for Sleep function) | None  | 1       |  |  |  |
| WDR             |                          | Watchdog Reset | (see specific descr. for WDR/timer)      | None  | 1       |  |  |  |
| BREAK           |                          | Break          | For On-chip Debug Only                   | None  | N/A     |  |  |  |



### 9. Ordering information

#### 9.1 Atmel ATmega164A

| Speed [MHz] <sup>(3)</sup> | Power supply | Ordering code <sup>(2)</sup>                                                                                                                                                                                                              | Package <sup>(1)</sup>                                             | Operational range             |
|----------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega164A-AU<br>ATmega164A-AUR <sup>(5)</sup><br>ATmega164A-PU<br>ATmega164A-MU<br>ATmega164A-MUR <sup>(5)</sup><br>ATmega164A-MCH <sup>(4)</sup><br>ATmega164A-MCHR <sup>(4)(5)</sup><br>ATmega164A-CU<br>ATmega164A-CUR <sup>(5)</sup> | 44A<br>44A<br>40P6<br>44M1<br>44M1<br>44MC<br>44MC<br>49C2<br>49C2 | Industrial<br>(-40°C to 85°C) |

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed vs.  $V_{CC}$  see "Speed grades" on page 324.

4. NiPdAu Lead Finish.

|      | Package Type                                                                                                 |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 44A  | 44-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)                                             |  |  |  |  |  |
| 40P6 | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)                                                      |  |  |  |  |  |
| 44M1 | 44-pad, 7 × 7 × 1.0mm body, lead pitch 0.50mm, Thermally Enhanced Plastic Very Thin Quad Flat No-Lead (VQFN) |  |  |  |  |  |
| 44MC | 44-lead (2-row Staggered), 5 × 5 × 1.0mm body, 2.60 × 2.60mm Exposed Pad, Quad Flat No-Lead Package (QFN)    |  |  |  |  |  |
| 49C2 | 49-ball, (7 × 7 Array) 0.65mm Pitch, 5 × 5 × 1mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA)      |  |  |  |  |  |



#### 9.2 Atmel ATmega164PA

| Speed [MHz] <sup>(3)</sup> | Power supply | Ordering code <sup>(2)</sup>                                                                                                                                                                                                                       | Package <sup>(1)</sup>                                                     | Operational range              |
|----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega164PA-AU<br>ATmega164PA-AUR <sup>(5)</sup><br>ATmega164PA-PU<br>ATmega164PA-MU<br>ATmega164PA-MUR <sup>(5)</sup><br>ATmega164PA-MCH <sup>(4)</sup><br>ATmega164PA-MCHR <sup>(4)(5)</sup><br>ATmega164PA-CU<br>ATmega164PA-CUR <sup>(5)</sup> | 44A<br>44A<br>40P6<br>44M1<br>44M1<br>44MC<br>44MC<br>49C2<br>49C2<br>49C2 | Industrial<br>(-40°C to 85°C)  |
| 20                         | 1.8 - 5.5V   | ATmega164PA-AN<br>ATmega164PA-ANR <sup>(5)</sup><br>ATmega164PA-PN<br>ATmega164PA-MN<br>ATmega164PA-MNR <sup>(5)</sup>                                                                                                                             | 44A<br>44A<br>40P6<br>44M1<br>44M1                                         | Industrial<br>(-40°C to 105°C) |

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed vs. V<sub>CC</sub> see "Speed grades" on page 324.

4. NiPdAu Lead Finish.

|      | Package Type                                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------|
| 44A  | 44-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)                                             |
| 40P6 | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)                                                      |
| 44M1 | 44-pad, 7 × 7 × 1.0mm body, lead pitch 0.50mm, Thermally Enhanced Plastic Very Thin Quad Flat No-Lead (VQFN) |
| 44MC | 44-lead (2-row Staggered), 5 × 5 × 1.0mm body, 2.60 × 2.60mm Exposed Pad, Quad Flat No-Lead Package (QFN)    |
| 49C2 | 49-ball, (7 × 7 Array) 0.65mm Pitch, 5 × 5 × 1mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA)      |

#### 9.4 Atmel ATmega324PA

| Speed [MHz] <sup>(3)</sup> | Power supply | Ordering code <sup>(2)</sup>                                                                                                                                                                                                                       | Package <sup>(1)</sup>                                             | Operational range              |
|----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega324PA-AU<br>ATmega324PA-AUR <sup>(5)</sup><br>ATmega324PA-PU<br>ATmega324PA-MU<br>ATmega324PA-MUR <sup>(5)</sup><br>ATmega324PA-MCH <sup>(4)</sup><br>ATmega324PA-MCHR <sup>(4)(5)</sup><br>ATmega324PA-CU<br>ATmega324PA-CUR <sup>(5)</sup> | 44A<br>44A<br>40P6<br>44M1<br>44M1<br>44MC<br>44MC<br>49C2<br>49C2 | Industrial<br>(-40°C to 85°C)  |
| 20                         | 1.8 - 5.5V   | ATmega324PA-AN<br>ATmega324PA-ANR <sup>(5)</sup><br>ATmega324PA-PN<br>ATmega324PA-MN<br>ATmega324PA-MNR <sup>(5)</sup>                                                                                                                             | 44A<br>44A<br>40P6<br>44M1<br>44M1                                 | Industrial<br>(-40°C to 105°C) |

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed vs.  $V_{CC}$  see "Speed grades" on page 324.

4. NiPdAu Lead Finish.

| Package Type |                                                                                                              |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| 44A          | 44-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)                                             |  |  |  |
| 40P6         | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)                                                      |  |  |  |
| 44M1         | 44-pad, 7 × 7 × 1.0mm body, lead pitch 0.50mm, Thermally Enhanced Plastic Very Thin Quad Flat No-Lead (VQFN) |  |  |  |
| 44MC         | 44-lead (2-row Staggered), 5 × 5 × 1.0mm body, 2.60 × 2.60mm Exposed Pad, Quad Flat No-Lead Package (QFN)    |  |  |  |
| 49C2         | 49-ball, (7 × 7 Array) 0.65mm Pitch, 5 × 5 × 1mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA)      |  |  |  |



#### 9.7 Atmel ATmega1284

| Speed [MHz] <sup>(3)</sup> | Power supply | Ordering code <sup>(2)</sup>                                                                                      | Package <sup>(1)</sup>             | Operational range             |
|----------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega1284-AU<br>ATmega1284-AUR <sup>(4)</sup><br>ATmega1284-PU<br>ATmega1284-MU<br>ATmega1284-MUR <sup>(4)</sup> | 44A<br>44A<br>40P6<br>44M1<br>44M1 | Industrial<br>(-40°C to 85°C) |

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed vs.  $V_{CC}$  see "Speed grades" on page 324.

| Package Type |                                                                                                     |  |
|--------------|-----------------------------------------------------------------------------------------------------|--|
| 44A          | 44-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)                                    |  |
| 40P6         | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)                                             |  |
| 44M1         | 44-pad, 7 × 7 × 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |  |

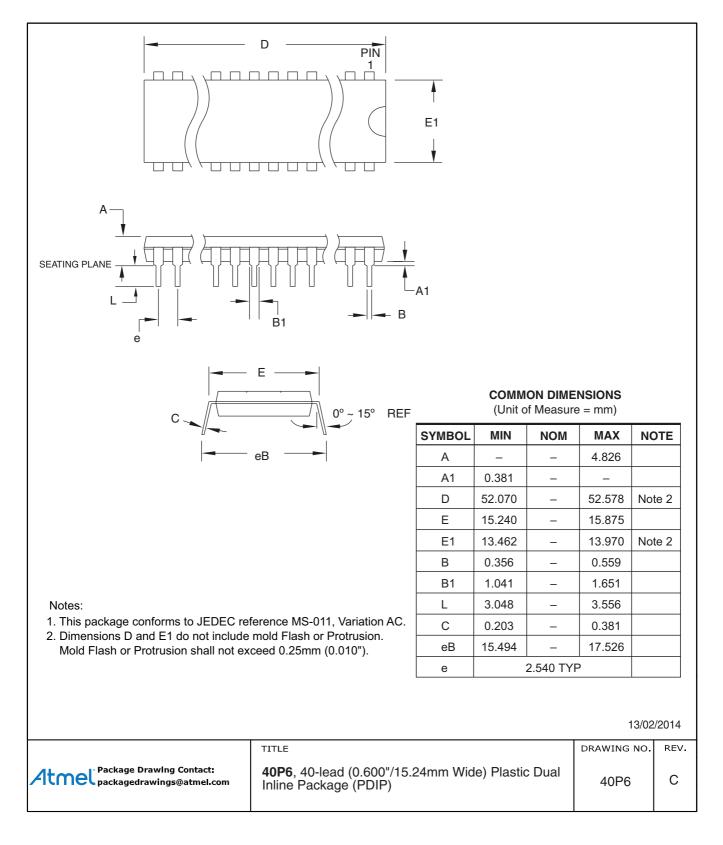


#### 9.8 Atmel ATmega1284P

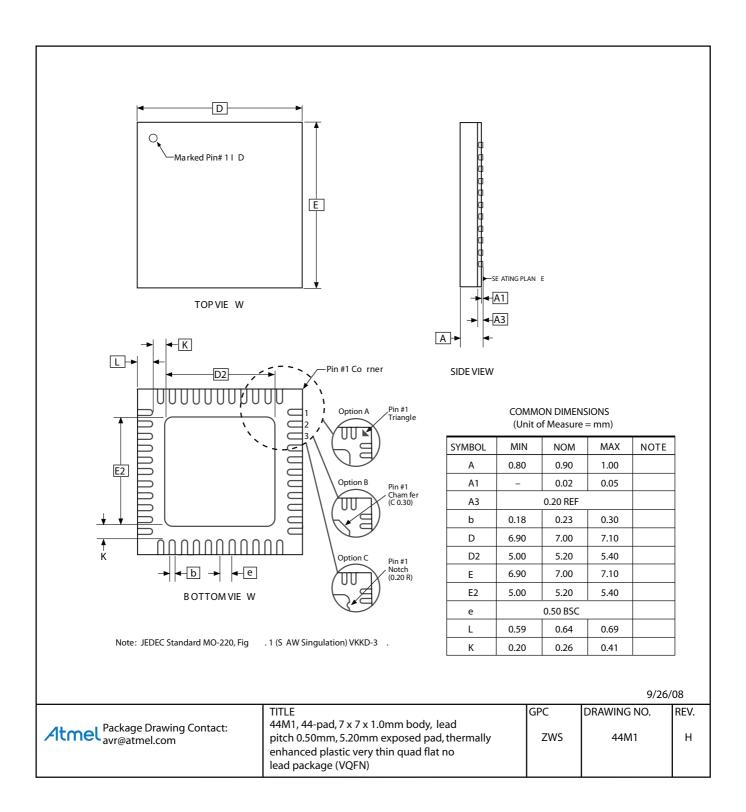
| Speed [MHz] <sup>(3)</sup> | Power supply | Ordering code <sup>(2)</sup>                                                                                           | Package <sup>(1)</sup>             | Operational range              |
|----------------------------|--------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega1284P-AU<br>ATmega1284P-AUR <sup>(4)</sup><br>ATmega1284P-PU<br>ATmega1284P-MU<br>ATmega1284P-MUR <sup>(4)</sup> | 44A<br>44A<br>40P6<br>44M1<br>44M1 | Industrial<br>(-40°C to 85°C)  |
| 20                         | 1.8 - 5.5V   | ATmega1284P-AN<br>ATmega1284P-ANR <sup>(4)</sup><br>ATmega1284P-PN<br>ATmega1284P-MN<br>ATmega1284P-MNR <sup>(4)</sup> | 44A<br>44A<br>40P6<br>44M1<br>44M1 | Industrial<br>(-40°C to 105°C) |

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

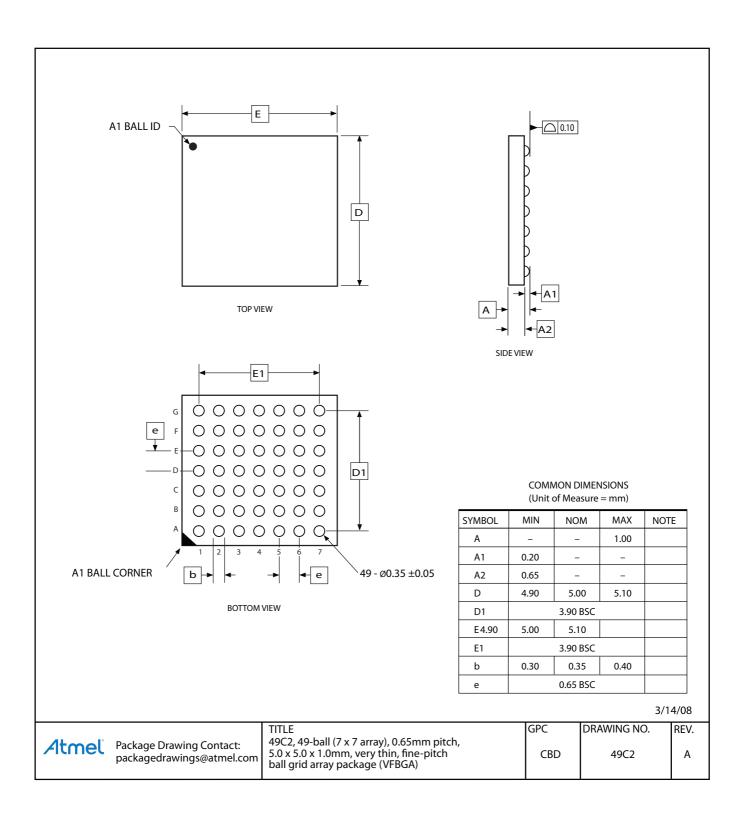

- 3. For Speed vs.  $V_{CC}$  see "Speed grades" on page 324.
- 4. Tape & Reel.

| Package Type |                                                                                                     |  |
|--------------|-----------------------------------------------------------------------------------------------------|--|
| 44A          | 44-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)                                    |  |
| 40P6         | 40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)                                             |  |
| 44M1         | 44-pad, 7 × 7 × 1.0mm body, lead pitch 0.50mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |  |




#### 10.2 40P6

Atmel




Atmel



10.5 49C2

Atmel



## 11. Errata

#### 11.1 Errata for ATmega164A

11.1.1 Rev. E

No known Errata.

#### 11.2 Errata for ATmega164PA

11.2.1 Rev. E

No known Errata.

#### 11.3 Errata for ATmega324A

11.3.1 Rev. F

No known Errata.

#### 11.4 Errata for ATmega324PA

#### 11.4.1 Rev. F

No known Errata.

#### 11.5 Errata for ATmega644A

11.5.1 Rev. F

No known Errata.

#### 11.6 Errata for ATmega644PA

#### 11.6.1 Rev. F

No known Errata.

#### 11.7 Errata for ATmega1284

#### 11.7.1 Rev. B

No known Errata.

#### 11.8 Errata for ATmega1284P

#### 11.8.1 Rev. B

No known Errata.



# Atmel Enabling Unlimited Possibilities<sup>®</sup>



 Atmel Corporation
 1600 Technology Drive, San Jose, CA 95110 USA
 T: (+1)(408) 441.0311
 F: (+1)(408) 436.4200
 www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-8272GS-AVR-ATmega164A/PA/324A/PA/644A/PA/1284/P-Datasheet Summary\_01/2015.

Atmel<sup>®</sup>, Atmel logo and combinations thereof, Enabling Unlimited Possibilities, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR SAND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.