

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	60MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	49
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	6K x 16
Voltage - Supply (Vcc/Vdd)	2.25V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8335vfger

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3 Memory

Note: Features in italics are NOT available in the 56F8135 device.

- Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Flash security protection feature
- On-chip memory, including a low-cost, high-volume Flash solution
 - 64KB of Program Flash
 - 4KB of Program RAM
 - 8KB of Data Flash
 - 8KB of Data RAM
 - 8KB of Boot Flash
- EEPROM emulation capability

1.1.4 Peripheral Circuits

Note: Features in italics are NOT available in the 56F8135 device.

- Pulse Width Modulator module:
 - In the 56F8335, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense inputs, and four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
 - In the 56F8135, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
- Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels 2 and 3
- Quadrature Decoder:
 - In the 56F8335, two four-input Quadrature Decoders or two additional Quad Timers
 - In the 56F8135, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A
- Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip temperature
- Quad Timer:
 - In the 56F8335, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with two pins and Timer D with four pins
 - In the 56F8135, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO
- Optional On-Chip Regulator
- FlexCAN (CAN Version 2.0 B-compliant) module with 2-pin port for transmit and receive
- Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)
- Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO lines); SPI 1 can also be used as Quadrature Decoder 1 or Quad Timer B
- Computer Operating Properly (COP)/Watchdog timer
- Two dedicated external interrupt pins

56F8335 Technical Data, Rev. 5

Signal Name	Pin No.	Туре	State During Reset	Signal Description
V _{SSA_ADC}	95	Supply		ADC Analog Ground — This pin supplies an analog ground to the ADC modules.
OCR_DIS	71	Input	Input On-Chip Regulator Disable — Tie this pin to V _{SS} to enable the on-chip regulator Tie this pin to V _{DD} to disable the on-chip regulator This pin is intended to be a static DC signal from power-u	
				to shut down. Do not try to toggle this pin for power savings during operation.
V _{CAP} 1	49	Supply	Supply	$V_{CAP}1 - 4$ — When OCR_DIS is tied to V_{SS} (regulator enabled),
V _{CAP} 2	122			connect each pin to a $2.2\mu F$ or greater bypass capacitor in order to bypass the core logic voltage regulator, required for proper
V _{CAP} 3	75			chip operation. When OCR_DIS is tied to V_{DD} (regulator disabled), these pins become $V_{DD_{correct}}$ and should be
V _{CAP} 4	13		connected to a regulated 2.5V power supply.	connected to a regulated 2.5V power supply.
				Note: This bypass is required even if the chip is powered with an external supply.
V _{PP} 1	119	Input	Input	V _{PP} 1 - 2 — These pins should be left unconnected as an open
V _{PP} 2	5			
CLKMODE	79	Input	Input	Clock Input Mode Selection — This input determines the function of the XTAL and EXTAL pins.
				1 = External clock input on XTAL is used to directly drive the input clock of the chip. The EXTAL pin should be grounded.
				0 = A crystal or ceramic resonator should be connected between XTAL and EXTAL.
EXTAL	74	Input	Input	External Crystal Oscillator Input — This input can be connected to an 8MHz external crystal. Tie this pin low if XTAL is driven by an external clock source.
XTAL	73	Input/ Output	Chip-driven	Crystal Oscillator Output — This output connects the internal crystal oscillator output to an external crystal.
				If an external clock is used, XTAL must be used as the input and EXTAL connected to GND.
				The input clock can be selected to provide the clock directly to the core. This input clock can also be selected as the input clock for the on-chip PLL.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
RXD1	41	Input	Input,	Receive Data — SCI1 receive data input
(GPIOD7)		Input/ Output	pull-up enabled	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI input.
				To deactivate the internal pull-up resistor, clear bit 7 in the GPIOD_PUR register.
тск	115	Schmitt Input	Input, pulled low internally	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pull-down resistor.
TMS	116	Schmitt Input	Input, pulled high internally Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.	
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
				Note: Always tie the TMS pin to V_{DD} through a 2.2K resistor.
TDI	117	Schmitt Input	Input, pulled high internally	Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
TDO	118	Output	In reset, output is disabled, pull-up is enabled	Test Data Output — This tri-stateable output pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and changes on the falling edge of TCK.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
TRST	114	Schmitt Input	Input, Test Reset — As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET, but do not assert TRST. To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register. Note:	
				design is to be used in a debugging environment, \overline{TRST} may be tied to V_{SS} through a 1K resistor.
PHASEA0	127	Schmitt Input	Input, pull-up	Phase A — Quadrature Decoder 0, PHASEA input
(TA0)		Schmitt Input/ Output	enableu	TA0 — Timer A, Channel 0
(GPIOC4)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is PHASEA0.
				To deactivate the internal pull-up resistor, clear bit 4 of the GPIOC_PUR register.
PHASEB0	128	Schmitt Input	Input, pull-up	Phase B — Quadrature Decoder 0, PHASEB input
(TA1)		Schmitt Input/ Output	enabled	TA1 — Timer A, Channel 1
(GPIOC5)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is PHASEB0.
				To deactivate the internal pull-up resistor, clear bit 5 of the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
INDEX0	1	Schmitt Input	Input, pull-up	Index — Quadrature Decoder 0, INDEX input
(TA2)		Schmitt Input/ Output	enabled	TA2 — Timer A, Channel 2
(GPIOC6)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		·		After reset, the default state is INDEX0.
				To deactivate the internal pull-up resistor, clear bit 6 of the GPIOC_PUR register.
HOME0	2	Schmitt Input	Input, pull-up	Home — Quadrature Decoder 0, HOME input
(TA3)		Schmitt Input/ Output	enabled	TA3 — Timer A ,Channel 3
(GPIOC7)		Schmitt Input/		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		After reset, the default state is HOME0.
				To deactivate the internal pull-up resistor, clear bit 7 of the GPIOC_PUR register.
SCLK0	124	Schmitt Input/ Output	Input, pull-up enabled	SPI 0 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.
(GPIOE4)		Schmitt Input/ Output		Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Calput		After reset, the default state is SCLK0.
				To deactivate the internal pull-up resistor, clear bit 4 in the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
PHASEA1	9	Schmitt Input	Input, pull-up	Phase A1 — Quadrature Decoder 1, PHASEA input for decoder 1.
(<i>TB0</i>)		Schmitt Input/ Output	enabled	TB0 — Timer B, Channel 0
(SCLK1)		Schmitt Input/ Output		SPI 1 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. To activate the SPI function, set the PHSA_ALT bit in the SIM_GPS register. For details, see Part 6.5.8.
(GFICCO)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		In the 56F8335, the default state after reset is PHASEA1.
				In the 56F8135, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pull-up resistor, clear bit 0 in the GPIOC_PUR register.
PHASEB1	10	Schmitt Input	Input, pull-up enabled	Phase B1 — Quadrature Decoder 1, PHASEB input for decoder 1.
(<i>TB1</i>)		Schmitt Input/ Output	enabled	TB1 — Timer B, Channel 1
(MOSI1)		Schmitt Input/ Output		SPI 1 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data. To activate the SPI function, set the PHSB_ALT bit in the SIM_GPS register. For details, see Part 6.5.8.
(GPIOC1)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Carpor		In the 56F8335, the default state after reset is PHASEB1.
				In the 56F8135, the default state is not one of the functions offered and must be reconfigured.
				To deactivate the internal pull-up resistor, clear bit 1 in the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
ANB0	96	Input	Analog	ANB0 - 3 — Analog inputs to ADC B, channel 0
ANB1	97		Input	
ANB2	98			
ANB3	99			
ANB4	100	Input	Analog	ANB4 - 7 — Analog inputs to ADC B, channel 1
ANB5	101		Input	
ANB6	102			
ANB7	103			
TEMP_ SENSE	88	Output	Analog Output	Temperature Sense Diode — This signal connects to an on-chip diode that can be connected to one of the ADC inputs and is used to monitor the temperature of the die. Must be bypassed with a 0.01 μ F capacitor.
CAN_RX	121	Schmitt Input	Input, pull-up enabled	FlexCAN Receive Data — This is the CAN input. This pin has an internal pull-up resistor. To deactivate the internal pull-up resistor, set the CAN bit in the SIM_PUDR register.
CAN_TX	120	Open Drain Output	Open Drain Output FlexCAN Transmit Data — CAN output with internal pull-up enable at reset.* * Note: If a pin is configured as open drain output mode, internal pull-up will automatically be disabled when it outputs low. Internal pull-up will be enabled unless it has been manually disabled by clearing the corresponding bit in the PUREN register of the GPIO module, when it outputs high. If a pin is configured as push-pull output mode, internal pull-up will automatically be disabled, whether it outputs low or high.	
TC0	111	Schmitt Input/ Output	Input, pull-up enabled	TC0 - 1 — Timer C, Channels 0 and 1
(GPIOE8)		Schmitt Input/		Port E GPIO — These GPIO pins can be individually programmed as input or output pins.
TC1 (GPIOE9)	113	Output		At reset, these pins default to Timer functionality.
				To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOE_PUR register. See Part 6.5.6 for details.

interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority level, the lowest vector number has the highest priority.

The location of the vector table is determined by the Vector Base Address (VBA) register. Please see **Part 5.6.11** for the reset value of the VBA.

In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

Note: *PWMA*, *FlexCAN*, *Quadrature Decoder 1*, and *Quad Timers B and D are NOT available on the* 56F8135 device.

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function	
				Reserved for Reset Overlay ²	
				Reserved for COP Reset Overlay ²	
core	2	3	P:\$04	Illegal Instruction	
core	3	3	P:\$06	SW Interrupt 3	
core	4	3	P:\$08	HW Stack Overflow	
core	5	3	P:\$0A	Misaligned Long Word Access	
core	6	1-3	P:\$0C	OnCE Step Counter	
core	7	1-3	P:\$0E	OnCE Breakpoint Unit 0	
				Reserved	
core	9	1-3	P:\$12	OnCE Trace Buffer	
core	10	1-3	P:\$14	OnCE Transmit Register Empty	
core	11	1-3	P:\$16	OnCE Receive Register Full	
				Reserved	
core	14	2	P:\$1C	SW Interrupt 2	
core	15	1	P:\$1E	SW Interrupt 1	
core	16	0	P:\$20	SW Interrupt 0	
core	17	0-2	P:\$22	IRQA	
core	18	0-2	P:\$24	IRQB	
				Reserved	
LVI	20	0-2	P:\$28	Low Voltage Detector (power sense)	
PLL	21	0-2	P:\$2A	PLL	
FM	22	0-2	P:\$2C	FM Access Error Interrupt	
FM	23	0-2	P:\$2E	FM Command Complete	

Table 4-5 Interrupt Vector Table Contents¹

Table 4-11	Quad Timer	A Registers	Address	Map (Co	ntinued)
	(TMRA	A_BASE = \$	00 F040)	• •	,

Register Acronym	Address Offset	Register Description
TMRA0_CNTR	\$5	Counter Register
TMRA0_CTRL	\$6	Control Register
TMRA0_SCR	\$7	Status and Control Register
TMRA0_CMPLD1	\$8	Comparator Load Register 1
TMRA0_CMPLD2	\$9	Comparator Load Register 2
TMRA0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRA1_CMP1	\$10	Compare Register 1
TMRA1_CMP2	\$11	Compare Register 2
TMRA1_CAP	\$12	Capture Register
TMRA1_LOAD	\$13	Load Register
TMRA1_HOLD	\$14	Hold Register
TMRA1_CNTR	\$15	Counter Register
TMRA1_CTRL	\$16	Control Register
TMRA1_SCR	\$17	Status and Control Register
TMRA1_CMPLD1	\$18	Comparator Load Register 1
TMRA1_CMPLD2	\$19	Comparator Load Register 2
TMRA1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRA2_CMP1	\$20	Compare Register 1
TMRA2_CMP2	\$21	Compare Register 2
TMRA2_CAP	\$22	Capture Register
TMRA2_LOAD	\$23	Load Register
TMRA2_HOLD	\$24	Hold Register
TMRA2_CNTR	\$25	Counter Register
TMRA2_CTRL	\$26	Control Register
TMRA2_SCR	\$27	Status and Control Register
TMRA2_CMPLD1	\$28	Comparator Load Register 1
TMRA2_CMPLD2	\$29	Comparator Load Register 2
TMRA2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved

Table 4-16 Pulse Width Modulator B Registers Address Map (Continued) (PWMB_BASE = \$00 F160)

Register Acronym	Address Offset	Register Description
PWMB_PWMVAL2	\$8	Value Register 2
PWMB_PWMVAL3	\$9	Value Register 3
PWMB_PWMVAL4	\$A	Value Register 4
PWMB_PWMVAL5	\$B	Value Register 5
PWMB_PMDEADTM	\$C	Dead Time Register
PWMB_PMDISMAP1	\$D	Disable Mapping Register 1
PWMB_PMDISMAP2	\$E	Disable Mapping Register 2
PWMB_PMCFG	\$F	Configure Register
PWMB_PMCCR	\$10	Channel Control Register
PWMB_PMPORT	\$11	Port Register
PWMB_PMICCR	\$12	PWM Internal Correction Control Register

Table 4-17 Quadrature Decoder 0 Registers Address Map (DEC0_BASE = \$00 F180)

Register Acronym	Address Offset	Register Description
DEC0_DECCR	\$0	Decoder Control Register
DEC0_FIR	\$1	Filter Interval Register
DEC0_WTR	\$2	Watchdog Time-out Register
DEC0_POSD	\$3	Position Difference Counter Register
DEC0_POSDH	\$4	Position Difference Counter Hold Register
DEC0_REV	\$5	Revolution Counter Register
DEC0_REVH	\$6	Revolution Hold Register
DEC0_UPOS	\$7	Upper Position Counter Register
DEC0_LPOS	\$8	Lower Position Counter Register
DEC0_UPOSH	\$9	Upper Position Hold Register
DEC0_LPOSH	\$A	Lower Position Hold Register
DEC0_UIR	\$B	Upper Initialization Register
DEC0_LIR	\$C	Lower Initialization Register
DEC0_IMR	\$D	Input Monitor Register

Table 4-21 Analog-to-Dig	gital Converter	Registers Address	Map (Continued)
C C	(ADCB_BASE	= \$00 F240)	

Register Acronym	Address Offset	Register Description
ADCB_HLMT 2	\$1B	High Limit Register 2
ADCB_HLMT 3	\$1C	High Limit Register 3
ADCB_HLMT 4	\$1D	High Limit Register 4
ADCB_HLMT 5	\$1E	High Limit Register 5
ADCB_HLMT 6	\$1F	High Limit Register 6
ADCB_HLMT 7	\$20	High Limit Register 7
ADCB_OFS 0	\$21	Offset Register 0
ADCB_OFS 1	\$22	Offset Register 1
ADCB_OFS 2	\$23	Offset Register 2
ADCB_OFS 3	\$24	Offset Register 3
ADCB_OFS 4	\$25	Offset Register 4
ADCB_OFS 5	\$26	Offset Register 5
ADCB_OFS 6	\$27	Offset Register 6
ADCB_OFS 7	\$28	Offset Register 7
ADCB_POWER	\$29	Power Control Register
ADCB_CAL	\$2A	ADC Calibration Register

Table 4-22 Temperature Sensor Register Address Map (TSENSOR_BASE = \$00 F270) Temperature Sensor is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
TSENSOR_CNTL	\$0	Control Register

Table 4-23 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = \$00 F280)

Register Acronym	Address Offset	Register Description
SCI0_SCIBR	\$0	Baud Rate Register

Table 4-38 FlexCAN Registers Address Map (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
FCMCR	\$0	Module Configuration Register
		Reserved
FCCTL0	\$3	Control Register 0 Register
FCCTL1	\$4	Control Register 1 Register
FCTMR	\$5	Free-Running Timer Register
FCMAXMB	\$6	Maximum Message Buffer Configuration Register
		Reserved
FCRXGMASK_H	\$8	Receive Global Mask High Register
FCRXGMASK_L	\$9	Receive Global Mask Low Register
FCRX14MASK_H	\$A	Receive Buffer 14 Mask High Register
FCRX14MASK_L	\$B	Receive Buffer 14 Mask Low Register
FCRX15MASK_H	\$C	Receive Buffer 15 Mask High Register
FCRX15MASK_L	\$D	Receive Buffer 15 Mask Low Register
		Reserved
FCSTATUS	\$10	Error and Status Register
FCIMASK1	\$11	Interrupt Masks 1 Register
FCIFLAG1	\$12	Interrupt Flags 1 Register
FCR/T_ERROR_CNTRS	\$13	Receive and Transmit Error Counters Register
		Reserved
		Reserved
		Reserved
FCMB0_CONTROL	\$40	Message Buffer 0 Control / Status Register
FCMB0_ID_HIGH	\$41	Message Buffer 0 ID High Register
FCMB0_ID_LOW	\$42	Message Buffer 0 ID Low Register
FCMB0_DATA	\$43	Message Buffer 0 Data Register
FCMB0_DATA	\$44	Message Buffer 0 Data Register
FCMB0_DATA	\$45	Message Buffer 0 Data Register
FCMB0_DATA	\$46	Message Buffer 0 Data Register
		Reserved
FCMSB1_CONTROL	\$48	Message Buffer 1 Control / Status Register
FCMSB1_ID_HIGH	\$49	Message Buffer 1 ID High Register

5.3.2 Interrupt Nesting

Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be serviced. The following tables define the nesting requirements for each priority level.

SR[9] ¹	SR[8] ¹	Permitted Exceptions	Masked Exceptions
0	0	Priorities 0, 1, 2, 3	None
0	1	Priorities 1, 2, 3	Priority 0
1	0	Priorities 2, 3	Priorities 0, 1
1	1	Priority 3	Priorities 0, 1, 2

Table 5-1 Interrupt Mask Bit Definition

1. Core status register bits indicating current interrupt mask within the core.

IPIC_LEVEL[1:0] ¹	Current Interrupt Priority Level	Required Nested Exception Priority
00	No Interrupt or SWILP	Priorities 0, 1, 2, 3
01	Priority 0	Priorities 1, 2, 3
10	Priority 1	Priorities 2, 3
11	Priorities 2 or 3	Priority 3

Table 5-2. Interrupt Priority Encoding

1. See IPIC field definition in Part 5.6.30.2

5.3.3 Fast Interrupt Handling

Fast interrupts are described in the **DSP56F800E Reference Manual**. The interrupt controller recognizes fast interrupts before the core does.

A fast interrupt is defined (to the ITCN) by:

- 1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers
- 2. Setting the FIMn register to the appropriate vector number
- 3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt

When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an offset from the VBA.

The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts its fast interrupt handling.

5.6.10.7 ADC A Conversion Complete Interrupt Priority Level (ADCA_CC IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.8 ADC B Conversion Complete Interrupt Priority Level (ADCB_CC IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.11 Vector Base Address Register (VBA)

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0					V	ECTOR			ç				
Write					VECTOR BASE ADDRESS											
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-13 Vector Base Address Register (VBA)

5.6.11.1 Reserved—Bits 15–13

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)— Bits 12–0

The contents of this register determine the location of the Vector Address Table. The value in this register is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting the full interrupt address to the 56800E core; see **Part 5.3.1** for details.

• 1 = No IRQ pending for this vector number

5.6.23 IRQ Pending 5 Register (IRQP5)

Base + \$16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-25 IRQ Pending Register 5 (IRQP5)

5.6.23.1 Reserved—Bits 96-82

This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.

5.6.23.2 IRQ Pending (PENDING)—Bit 81

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number
- 5.6.24 Reserved—Base + 17
- 5.6.25 Reserved—Base + 18
- 5.6.26 Reserved—Base + 19
- 5.6.27 Reserved—Base + 1A
- 5.6.28 Reserved—Base + 1B
- 5.6.29 Reserved—Base + 1C

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1
Write																
RESET	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1

Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)

6.5.6 SIM Pull-up Disable Register (SIM_PUDR)

Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See Table 2-2 to identify which pins can deactivate the internal pull-up resistor.

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0		CAN	EMI_	RESET	IRO	YBOOT	DW/MB	P\WMA0	0	CTRI	0	ITAG	0	0	0
Write			CAN	MODE	NEOL I	iitte	ABOOT		1 WINAU		OTIL		3170			
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)

6.5.6.1 Reserved—Bit 15

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.6.2 **PWMA1—Bit 14**

This bit controls the pull-up resistors on the FAULTA3 pin.

6.5.6.3 CAN—Bit 13

This bit controls the pull-up resistors on the CAN_RX pin.

6.5.6.4 EMI_MODE—Bit 12

This bit controls the pull-up resistors on the EMI_MODE pin.

Note: In this package, this input pin is double-bonded with the adjacent V_{SS} pin and this bit should be changed to a 1 in order to reduce power consumption.

6.5.6.5 **RESET**—Bit 11

This bit controls the pull-up resistors on the $\overline{\text{RESET}}$ pin.

6.5.6.6 IRQ—Bit 10

This bit controls the pull-up resistors on the \overline{IRQA} and \overline{IRQB} pins.

6.5.7.1 Reserved—Bits 15–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7.2 Alternate GPIO_B Peripheral Function for A23 (A23)—Bit 9

- 0 = Peripheral output function of GPIOB[7] is defined to be A[23]
- 1 = Peripheral output function of GPIOB[7] is defined to be the oscillator clock (MSTR_OSC, see Figure 3-4)

6.5.7.3 Alternate GPIO_B Peripheral Function for A22 (A22)—Bit 8

- 0 = Peripheral output function of GPIOB[6] is defined to be A[22]
- 1 = Peripheral output function of GPIOB[6] is defined to be SYS_CLK2

6.5.7.4 Alternate GPIO_B Peripheral Function for A21 (A21)—Bit 7

- 0 = Peripheral output function of GPIOB[5] is defined to be A[21]
- 1 = Peripheral output function of GPIOB[5] is defined to be SYS_CLK

6.5.7.5 Alternate GPIO_B Peripheral Function for A20 (A20)—Bit 6

- 0 = Peripheral output function of GPIOB[4] is defined to be A[20]
- 1 = Peripheral output function of GPIOB[4] is defined to be the prescaler clock (FREF, see Figure 3-4)

6.5.7.6 Clockout Disable (CLKDIS)—Bit 5

- 0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL
- 1 = CLKOUT is tri-stated

6.5.7.7 CLockout Select (CLKOSEL)—Bits 4–0

Selects clock to be muxed out on the CLKO pin.

- 00000 = SYS_CLK (from OCCS DEFAULT)
- 00001 = Reserved for factory test—56800E clock
- 00010 = Reserved for factory test—XRAM clock
- 00011 = Reserved for factory test—PFLASH odd clock
- 00100 = Reserved for factory test—PFLASH even clock
- 00101 = Reserved for factory test—BFLASH clock
- 00110 = Reserved for factory test—DFLASH clock
- 00111 = Oscillator output
- $01000 = F_{out}$ (from OCCS)
- 01001 = Reserved for factory test—IPB clock
- 01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)
- 01011 = Reserved for factory test—Prescaler clock (from OCCS)
- 01100 = Reserved for factory test—Postscaler clock (from OCCS)
- 01101 = Reserved for factory test—SYS_CLK2 (from OCCS)

10.7 Crystal Oscillator Timing

Characteristic	Symbol	Min	Тур	Max	Unit
Crystal Start-up time	T _{CS}	4	5	10	ms
Resonator Start-up time	T _{RS}	0.1	0.18	1	ms
Crystal ESR	R _{ESR}	—	—	120	ohms
Crystal Peak-to-Peak Jitter	Τ _D	70	—	250	ps
Crystal Min-Max Period Variation	T _{PV}	0.12	—	1.5	ns
Resonator Peak-to-Peak Jitter	T _{RJ}	—	—	300	ps
Resonator Min-Max Period Variation	T _{RP}	—	—	300	ps
Bias Current, high-drive mode	I _{BIASH}	—	250	290	μΑ
Bias Current, low-drive mode	I _{BIASL}	—	80	110	μΑ
Quiescent Current, power-down mode	I _{PD}		0	1	μΑ

Table 10-15 Crystal Oscillator Parameters

10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing

Table 10-16 Rese	t, Stop, Wa	it, Mode Select	, and Interrup	t Timing ^{1,2}
------------------	-------------	-----------------	----------------	-------------------------

Characteristic	Symbol	Typical Min	Typical Max	Unit	See Figure
Minimum RESET Assertion Duration	t _{RA}	16T	_	ns	10-4
Edge-sensitive Interrupt Request Width	t _{IRW}	1.5T		ns	10-5
IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction execution in the interrupt service routine	t _{IG}	18T		ns	10-6
	t _{IG} - FAST	14T			
IRQA Width Assertion to Recover from Stop State ³	t _{IW}	1.5T	_	ns	10-8

1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop modes), T = 125ns.

2. Parameters listed are guaranteed by design.

3. The interrupt instruction fetch is visible on the pins only in Mode 3.

Table 10-23 ADC Parameters (Continued)

Characteristic	Symbol	Min	Тур	Мах	Unit
Signal-to-noise plus distortion ratio	SINAD	_	59.1	_	db
Total Harmonic Distortion	THD	_	60.6	_	db
Spurious Free Dynamic Range	SFDR	_	61.1	_	db
Effective Number Of Bits ⁸	ENOB		9.6		Bits

1. INL measured from V_{in} = .1V_{REFH} to V_{in} = .9V_{REFH} 10% to 90% Input Signal Range

2. LSB = Least Significant Bit

3. ADC clock cycles

4. Assumes each voltage reference pin is bypassed with $0.1 \mu F$ ceramic capacitors to ground

5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.

6. Absolute error includes the effects of both gain error and offset error.

7. Please see the 56F8300 Peripheral User's Manual for additional information on ADC calibration.

8. ENOB = (SINAD - 1.76)/6.02

C, the internal [dynamic component], is classic $C^*V^{2*}F$ CMOS power dissipation corresponding to the 56800E core and standard cell logic.

D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading on the external pins of the chip. This is also commonly described as $C*V^{2*}F$, although simulations on two of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero Y-intercept.

	Intercept	Slope
PDU08DGZ_ME	1.3	0.11mW / pF
PDU04DGZ_ME	1.15mW	0.11mW / pF

Table 10-24 IO Loading Coefficients at 10MHz