

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100rct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F100xx value line family incorporates the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a 24 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 32 Kbytes), a flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more) and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (up to two I²Cs, three SPIs, one HDMI CEC, up to three USARTs and 2 UARTS), one 12-bit ADC, two 12-bit DACs, up to 9 general-purpose 16-bit timers and an advanced-control PWM timer.

The STM32F100xx high-density value line family operates in the –40 to +85 °C and –40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F100xx value line family includes devices in three different packages ranging from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the STM32F100xx value line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.

2.1 Device overview

	Table 2. 51						Jounto	1		
Peripheral		STM32F100Rx			STM32F100Vx			STM32F100Zx		
Flash - Kbytes		256	384	512	256	384	512	256	384	512
SRAM - Kbytes		24	32	32	24	32	32	24	32	32
FSMC			No			Yes ⁽¹⁾			Yes	
Timers	Advanced-control		1			1			1	
Timers	General-purpose	10				10			10	
	SPI		3			3			3	
	l ² C	2			2			2		
Communication interfaces	USART	3			3		3			
	UART	2			2		2			
	CEC	1			1		1			
12-bit synchroniz		1			1		1			
number of chann	els	16 channels			16 channels			16 channels		
GPIOs		51			80		112			
12-bit DAC		2			2			2		
Number of chann	nels	2			2			2		
CPU frequency		24 MHz								
Operating voltage		2.0 to 3.6 V								
Operating temperatures		Ambient operating temperature: -40 to +85 °C /-40 to +10 Junction temperature: -40 to +125 °C				:o +105 °	С			
Packages			LQFP64		LQFP100		LQFP144			

Table 2. STM32F100xx features and peripheral counts

1. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory.

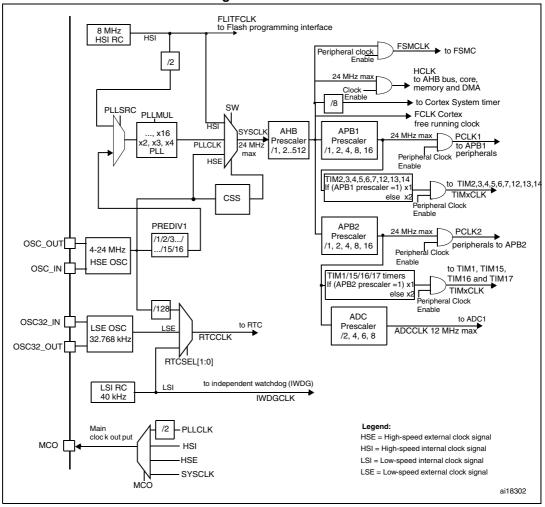


Figure 2. Clock tree

1. To obtain an ADC conversion time of 1.2 $\mu s,$ APB2 must be at 24 MHz.

	Pins		3				Alternate function	ons ⁽⁴⁾
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
66	44	-	PE13	I/O	FT	PE13	FSMC_D10	TIM1_CH3
67	45	-	PE14	I/O	FT	PE14	FSMC_D11	TIM1_CH4
68	46	-	PE15	I/O	FT	PE15	FSMC_D12	TIM1_BKIN
69	47	29	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX ⁽⁸⁾	TIM2_CH3 / HDMI_CEC
70	48	30	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX ⁽⁸⁾	TIM2_CH4
71	49	31	V _{SS_1}	S	-	V _{SS_1}	-	-
72	50	32	V _{DD_1}	S	-	V _{DD_1}	-	-
73	51	33	PB12	I/O	FT	PB12	SPI2_NSS/ I2C2_SMBA/ USART3_CK ⁽⁸⁾ / TIM1_BKIN ⁽⁸⁾	TIM12_CH1
74	52	34	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS ⁽⁸⁾ / TIM1_CH1N	TIM12_CH2
75	53	35	PB14	I/O	FT	PB14	SPI2_MISO/TIM1_CH2N USART3_RTS ⁽⁸⁾ /	TIM15_CH1
76	54	36	PB15	I/O	FT	PB15	SPI2_MOSI/ TIM1_CH3N ⁽⁸⁾ / TIM15_CH1N	TIM15_CH2
77	55	-	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX
78	56	-	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX
79	57	-	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK
80	58	-	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS
81	59	-	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1 / USART3_RTS
82	60	-	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2
83	-	-	V _{SS_8}	S	-	V _{SS_8}	-	-
84	-	-	V _{DD_8}	S	-	V_{DD_8}	-	-
85	61	-	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3
86	62	-	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4
87	-	-	PG2	I/O	FT	PG2	FSMC_A12	-
88	-	-	PG3	I/O	FT	PG3	FSMC_A13	-
89	-	-	PG4	I/O	FT	PG4	FSMC_A14	-
90	-	-	PG5	I/O	FT	PG5	FSMC_A15	-

Table 4. High-density STM32F100xx pin definitions (continued)

	Pins						Alternate functions	ons ⁽⁴⁾
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
120	-	-	V _{SS_10}	S	-	V _{SS_10}	-	-
121	-	-	$V_{DD_{10}}$	S	-	$V_{DD_{10}}$	-	-
122	87	-	PD6	I/O	FT	PD6	FSMC_NWAIT	USART2_RX
123	88	-	PD7	I/O	FT	PD7	FSMC_NE1	USART2_CK
124	-	-	PG9	I/O	FT	PG9	FSMC_NE2	-
125	-	-	PG10	I/O	FT	PG10	FSMC_NE3	-
126	-	-	PG11	I/O	FT	PG11	-	-
127	-	-	PG12	I/O	FT	PG12	FSMC_NE4	-
128	-	-	PG13	I/O	FT	PG13	FSMC_A24	-
129	-	-	PG14	I/O	FT	PG14	FSMC_A25	-
130	-	-	V _{SS_11}	S	-	V _{SS_11}	-	-
131	-	-	V _{DD_11}	S	-	V _{DD_11}	-	-
132	-	-	PG15	I/O	FT	PG15	-	-
133	89	55	PB3/	I/O	FT	JTDO	SPI3_SCK	PB3/TRACESWO TIM2_CH2 / SPI1_SCK
134	90	56	PB4	I/O	FT	NJTRST	SPI3_MISO	TIM3_CH1 SPI1_MISO
135	91	57	PB5	I/O	-	PB5	I2C1_SMBA/ SPI3_MOSI TIM16_BKIN	TIM3_CH2 / SPI1_MOSI
136	92	58	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁸⁾ / TIM4_CH1 ⁽⁸⁾ / TIM16_CH1N	USART1_TX
137	93	59	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁸⁾ / FSMC_NADV / TIM4_CH2 ⁽⁸⁾ / TIM17_CH1N	USART1_RX
138	94	60	BOOT0	Ι	-	BOOT0	-	-
139	95	61	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁸⁾ /TIM16_CH1 / HDMI_CEC	I2C1_SCL
140	96	62	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁸⁾ / TIM17_CH1	I2C1_SDA
141	97	-	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0	-
142	98	-	PE1	I/O	FT	PE1	FSMC_NBL1	-
143	99	63	V _{SS_3}	S	-	V _{SS_3}	-	-
144	100	64	V _{DD_3}	S	-	V _{DD_3}	-	

Table 4. High-density STM32F100xx pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

Symbol	Parameter	Conditions	Min	Мах	Unit		
	Power dissipation at $T_A =$	LQFP144	-	666			
P _D	85 °C for suffix 6 or $T_A =$	LQFP100	-	434	mW		
	105 °C for suffix 7 ⁽²⁾	LQFP64	-	444			
ΤΑ	Ambient temperature for 6	Maximum power dissipation	-40	85	°C		
	suffix version	Low power dissipation ⁽³⁾	-40	105	C		
	Ambient temperature for 7	Maximum power dissipation	-40	105	°C		
	suffix version	Low power dissipation ⁽³⁾	-40	125	°C		
TJ	lunction tomporature range	6 suffix version	-40	105	°C		
	Junction temperature range	7 suffix version	-40	125	C		

Table 9. General operating conditions (continued)

1. When the ADC is used, refer to *Table 51: ADC characteristics*.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Section 6.5: Thermal characteristics on page 100).

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Section 6.5: Thermal characteristics on page 100).

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A .

Table 10. Operating conditions at power-up / power-uown						
Symbol Parameter		Min	Мах	Unit		
tunn	V _{DD} rise time rate	0	8	us/V		
tvdd	V _{DD} fall time rate	20	∞	μ5/ν		

Table 10. Operating conditions at power-up / power-down

Note: It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation

			<u> </u>		M			
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.0 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 ℃	T _A = 105 °C	Unit
Supply current in Stop mode	Supply current	Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	-	31	320	670	
	Regulator in Low-Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	-	24	305	650		
I _{DD}	I _{DD} Supply current in Standby mode	Low-speed internal RC oscillator and independent watchdog ON	-	-	3.2	-	-	μA
in		Low-speed internal RC oscillator ON, independent watchdog OFF	-	-	3.1	-	-	
		Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	-	2.2	3.9	5.7	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1.0	1.2	1.4	2	2.3	

1. Typical values are measured at $T_A = 25$ °C.

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$

The parameters given in *Table 17* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 19*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 6.

Pe	ripheral	Typical consumption at 25 °C	Unit
	DMA1	12.50	
	DMA2	8.33	
AHB (up to 24MHz)	FSMC	28.33	µA/MHz
	CRC	1.25	
	BusMatrix ⁽¹⁾	16.67	

Table 19. Peripheral current consumption

Wakeup time from low-power mode

The wakeup times given in *Table 26* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	μs
t (1)	Wakeup from Stop mode (regulator in run mode)	3.6	110
twustop ⁽¹⁾	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 26. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

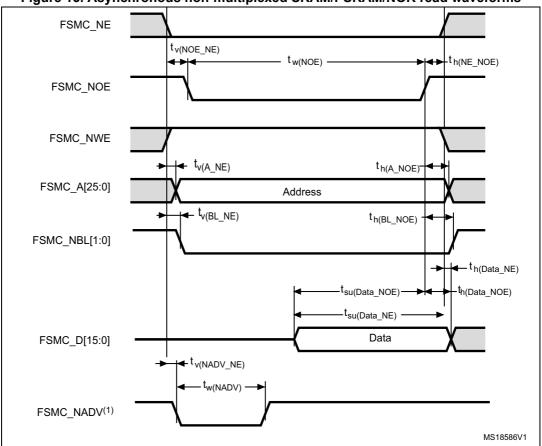
5.3.8 PLL characteristics

The parameters given in *Table 27* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter		Unit		
Symbol	Parameter	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
£	PLL input clock ⁽²⁾	1	8.0	24	MHz
f _{PLL_IN}	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL multiplier output clock	16	-	24	MHz
t _{LOCK}	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

Table 27. PLL characteristics

1. Based on device characterization, not tested in production.


2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

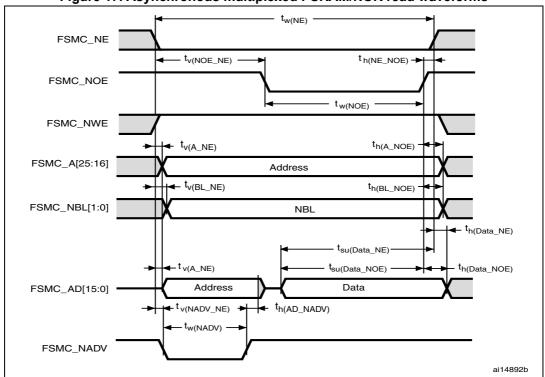
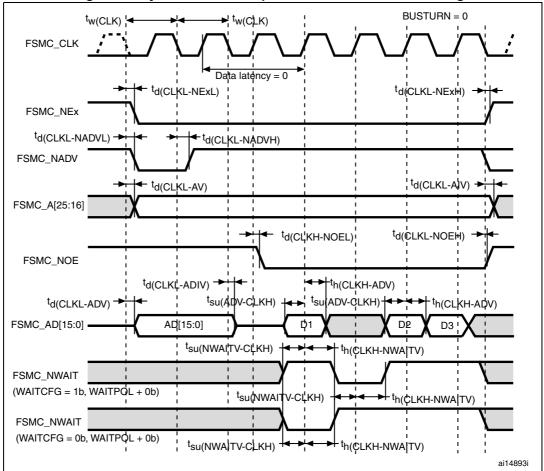


Figure 17. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 32. Asynchronous	multiplexed PSRAM/NOR	read timings ⁽¹⁾⁽²⁾
------------------------	-----------------------	--------------------------------

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	7T _{HCLK} – 2	7T _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3T _{HCLK} – 0.5	3T _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4T _{HCLK} – 1	4T _{HCLK} + 2	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	-1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} –1.5	T _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK}	-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2T _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	2T _{HCLK} + 25	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

1. C_L = 15 pF.


2. Preliminary values.

Synchronous waveforms and timings

Figure 19 through *Figure 22* represent synchronous waveforms and *Table 35* through *Table 37* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

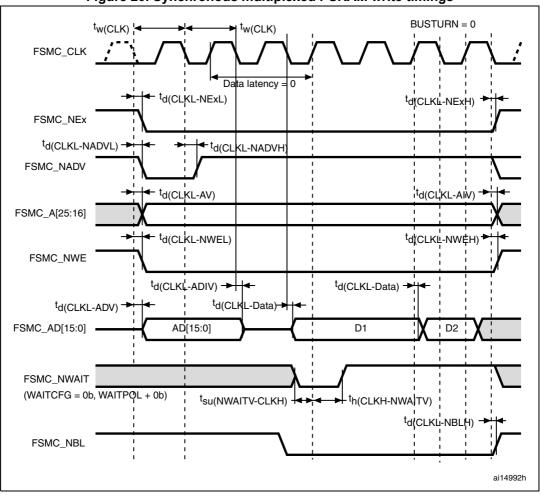


Figure 20. Synchronous multiplexed PSRAM write timings

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 38*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 24 MHz, LQFP144 package, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 ^{\circ}\text{C},$ $f_{HCLK} = 24 \text{ MHz}, \text{LQFP144}$ package, conforms to IEC 61000-4-4	4A

Table 38. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under the conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	Standard I/O input low level voltage		-0.3	-	0.28*(V _{DD} -2 V)+0.8 V	
	I/O FT ⁽¹⁾ input low level voltage	-	-0.3	-	0.32*(V _{DD} -2 V)+0.75 V	
	Standard I/O input high level voltage		0.41*(V _{DD} -2 V) +1.3 V	-	V _{DD} +0.3	V
V _{IH}	I/O FT ⁽¹⁾ input high level voltage	$V_{DD} > 2 V$	0.42*/\/ 2\+1.\/	_	5.5	
		$V_{DD} \leq 2 V$	0.42*(V _{DD} –2)+1 V	-	5.2	
V _{hys}	Standard I/O Schmitt trigger voltage hysteresis ⁽²⁾	-	200	-	-	mV
	I/O FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾	-	-	mV
Input leakage current ⁽⁴⁾	Input leakage	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os	-	-	±1	
	current ⁽⁴⁾	V _{IN} = 5 V I/O FT	-	-	3	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

1. FT = 5V tolerant. To sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by design, not tested in production.

3. With a minimum of 100 mV.

4. Leakage could be higher than max. if negative current is injected on adjacent pins.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 23* and *Figure 24* for standard I/Os, and in *Figure 25* and *Figure 26* for 5 V tolerant I/Os.

Output voltage levels

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ , I _{IO} = +8 mA,	-	0.4	· v
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{O} - 40$ mA, 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾ I _{IO} = +8 mA	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	l _{IO} = +20 mA ⁽⁴⁾	-	1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	v

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 7* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Based on characterization data, not tested in production.

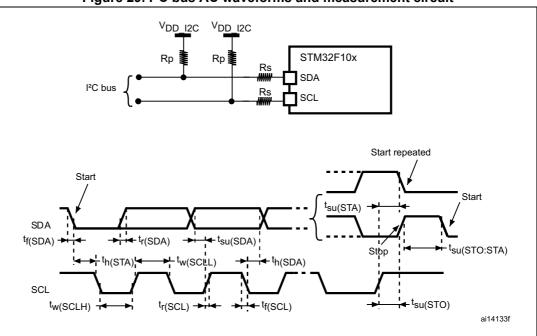


Figure 29. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

f _{SCL} (kHz) ⁽³⁾	I2C_CCR value
	R _P = 4.7 kΩ
400	0x8011
300	0x8016
200	0x8021
100	0x0064
50	0x00C8
20	0x01F4

Table 49. SCL frequency (f_{PCLK1} = 24 MHz, V_{DD} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed,

2. For speeds around 400 kHz, the tolerance on the achieved speed is of ±2%. For other speed ranges, the tolerance on the achieved speed ±1%. These variations depend on the accuracy of the external components used to design the application.

3. Guaranteed by design, not tested in production.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 50* are preliminary values derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

Refer to Section 5.3.13: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{SCK}	ODL ala ala fas musa ava	Master mode	-	12		
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	12	MHz	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}	-		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	2t _{PCLK}	-		
$\begin{array}{c}t_{w(SCKH)}^{(1)}\\t_{w(SCKL)}^{(1)}\end{array}$	SCK high and low time	Master mode, f _{PCLK} = 24 MHz, presc = 4	50	60		
t _{su(MI)} (1) t _{su(SI)} (1)	Data input setup time	Master mode	5	-		
		Slave mode	5	-		
t _{h(MI)} ⁽¹⁾	Data input hold time	Master mode	5	-		
t _{h(SI)} ⁽¹⁾		Slave mode	4	-	ns	
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 24 MHz	0	3t _{PCLK}		
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	2	10		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25		
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5		
t _{h(SO)} ⁽¹⁾		Slave mode (after enable edge)	15	-		
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	2	-		

1. Preliminary values.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

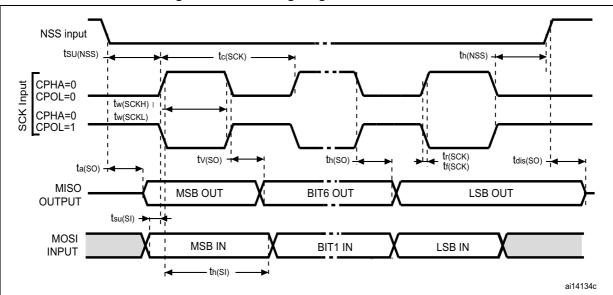
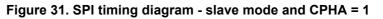
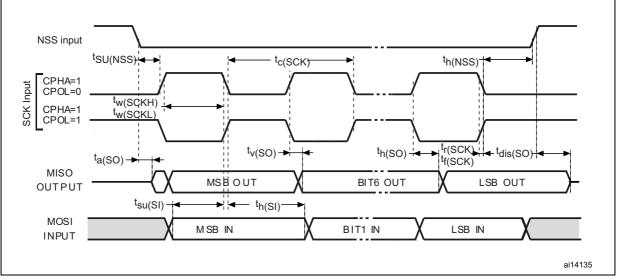




Figure 30. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

7 Ordering information scheme

Example:	STM32 F 100 V	с т	6	В	xxx
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type					
F = General-purpose					
Device subfamily					
100 = value line					
Pin count					
R = 64 pins					
V = 100 pins					
Z = 144 pins					
Flash memory size					
C = 256 Kbytes of Flash memory					
D = 384 Kbytes of Flash memory					
E = 512 Kbytes of Flash memory					
Package					
T = LQFP			1		
Temperature range					
6 = Industrial temperature range, -40 to 85 °C]		
7 = Industrial temperature range, –40 to 105 °C					
Internal code					
В					
Options					
xxx = programmed parts					

Table 61. Ordering information scheme

TR = tape and real

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

