

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	384KB (384K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100rdt6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

HDMI (high-definition multimedia interface) consumer electronics control (CEC)

The STM32F100xx value line embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead.

2.2.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.2.23 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.

For details refer to *Table 4: High-density STM32F100xx pin definitions*; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the STM32F100xx reference manual for software considerations.

2.2.24 ADC (analog-to-digital converter)

The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

2.2.25 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in noninverting configuration.

	Pins				()		Alternate function	ons ⁽⁴⁾
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²	Main function ⁽³⁾ (after reset)	Default	Remap
40	29	20	PA4	I/O	-	PA4	SPI1_NSS ⁽⁸⁾ / USART2_CK ⁽⁸⁾ DAC_OUT1/ADC_IN4	-
41	30	21	PA5	I/O	-	PA5	SPI1_SCK ⁽⁸⁾ DAC_OUT2/ADC_IN5	-
42	31	22	PA6	I/O	-	PA6	SPI1_MISO ⁽⁸⁾ / ADC_IN6 / TIM3_CH1 ⁽⁸⁾	TIM1_BKIN / TIM16_CH1
43	32	23	PA7	I/O	-	PA7	SPI1_MOSI ^{(8)/} ADC_IN7 / TIM3_CH2 ⁽⁸⁾	TIM1_CH1N/ TIM17_CH1
44	33	24	PC4	I/O	-	PC4	ADC_IN14 / TIM12_CH1	-
45	34	25	PC5	I/O	-	PC5	ADC_IN15 / TIM12_CH2	-
46	35	26	PB0	I/O	-	PB0	ADC_IN8/TIM3_CH3	TIM1_CH2N / TIM13_CH1
47	36	27	PB1	I/O	-	PB1	ADC_IN9/TIM3_CH4 ⁽⁸⁾	TIM1_CH3N / TIM14_CH1
48	37	28	PB2	I/O	FT	PB2/BOOT1	-	-
49	-	-	PF11	I/O	FT	PF11	-	-
50	-	-	PF12	I/O	FT	PF12	FSMC_A6	-
51	-	-	V _{SS_6}	S	-	V_{SS_6}	-	-
52	-	-	V_{DD_6}	S	-	V_{DD_6}	-	-
53	-	-	PF13	I/O	FT	PF13	FSMC_A7	-
54	-	-	PF14	I/O	FT	PF14	FSMC_A8	-
55	-	-	PF15	I/O	FT	PF15	FSMC_A9	-
56	-	-	PG0	I/O	FT	PG0	FSMC_A10	-
57	-	-	PG1	I/O	FT	PG1	FSMC_A11	-
58	38	-	PE7	I/O	FT	PE7	FSMC_D4	TIM1_ETR
59	39	-	PE8	I/O	FT	PE8	FSMC_D5	TIM1_CH1N
60	40	-	PE9	I/O	FT	PE9	FSMC_D6	TIM1_CH1
61	-	-	V _{SS_7}	S	-	V _{SS_7}	-	-
62	-	-	V _{DD_7}	S	-	V _{DD_7}	-	-
63	41	-	PE10	I/O	FT	PE10	FSMC_D7	TIM1_CH2N
64	42	-	PE11	I/O	FT	PE11	FSMC_D8	TIM1_CH2
65	43	-	PE12	I/O	FT	PE12	FSMC_D9	TIM1_CH3N

Table 4. High-density STM32F100xx pin definitions (continued)

5.1.7 Current consumption measurement

Figure 10. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 6: Voltage characteristics*, *Table 7: Current characteristics*, and *Table 8: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit	
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{\left(1\right)}$	-0.3	4.0		
V(2)	Input voltage on five volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V	
VIN' /	Input voltage on any other pin	V _{SS} -0.3	4.0		
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50		
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	-	50	mV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5. maximum rati sensi	3.12: Absolute ngs (electrical tivity)	-	

Table 6. Voltage characteristics

 All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 7: Current characteristics* for the maximum allowed injected current values.

5.3.4 Embedded reference voltage

The parameters given in *Table 12* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.16	1.20	1.26	V
		–40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/°C

Table 12. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}

The parameters given in *Table 13* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

				Typical		
Symbol	Parameter	Conditions	fhclk	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			24 MHz	14.1	9.5	
			16 MHz	10	6.85	
			8 MHz	5.8	4.05	
		Running on high-speed	4 MHz	3.6	2.65	
	Supply current in Run mode	8 MHz crystal ⁽³⁾	2 MHz	2.3	1.85	mA
			1 MHz	1.7	1.46	
			500 kHz	1.4	1.3	
1			125 kHz	1.15	1.1	
'DD			24 MHz	13.4	8.7	
			16 MHz	9.3	6.2	
			8 MHz	5.2	3.45	
		Running on high-speed	4 MHz	2.95	2.1	
		internal RC (HSI)	2 MHz	1.7	1.3	
			1 MHz	1.1	0.9	
			500 kHz	0.8	0.7	
			125 kHz	0.6	0.55	

Table 17. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at $T_A = 25$ °C, $V_{DD} = 3.3$ V.

2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency when $f_{HCLK} < 8$ MHz, the PLL is used when $f_{HCLK} > 8$ MHz.

		Conditions		Typical		
Symbol	Parameter		f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			24 MHz	8.7	2.75	
			16 MHz	6.1	2.1	
			8 MHz	3.3	1.3	
		Running on high-speed	4 MHz	2.25	1.2	
	Supply current in Sleep mode	8 MHz crystal ⁽³⁾	2 MHz	1.65	1.15	mA
			1 MHz	1.35	1.1	
			500 kHz	1.2	1.07	
1			125 kHz	1.1	1.05	
'DD			24 MHz	8	2.15	
			16 MHz	5.5	1.5	
			8 MHz	2.7	0.75	
		Running on high-speed	4 MHz	1.65	0.6	
		internal RC (HSI)	2 MHz	1.1	0.55	
			1 MHz	0.8	0.5	
			500 kHz	0.65	0.49	
			125 kHz	0.53	0.47	

Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at $T_A = 25$ °C, $V_{DD} = 3.3$ V.

2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency when $f_{HCLK} > 8$ MHz, the PLL is used when $f_{HCLK} > 8$ MHz.

Per	ripheral	Typical consumption at 25 °C	Unit
	APB2-Bridge	4.17	
	GPIOA	6.67	
	GPIOB	6.25	
	GPIOC	6.67	
	GPIOD	6.67	
	GPIOE	6.67	
	GPIOF	5.42	
APB2 (up to 24 MHz)	GPIOG	6.67	µA/MHz
	SPI1	4.17	
	USART1	12.08	
	TIM1	22.08	
	TIM15	14.17	
	TIM16	10.00	
	TIM17	10.00	
	ADC1 ⁽³⁾	15.83	

Table 19. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON.(CPU, DMA1 or DMA2).

2. When DAC_OUT1 or DAC_OUT2 is enabled, there is an additional current consumption equal to 0,42 mA

Specific conditions for measuring ADC current consumption: f_{HCLK} = 24 MHz, f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of analog part equal to 0.82 mA must be added.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 20* result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 9*.

Figure 11. High-speed external clock source AC timing diagram

Figure 12. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	24	MHz
R _F	Feedback resistor	-	-	200	-	kΩ

Figure 17. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 32. Asynchronous	multiplexed PSRAM/I	NOR read timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	7T _{HCLK} – 2	7T _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3T _{HCLK} – 0.5	3T _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4T _{HCLK} – 1	4T _{HCLK} + 2	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	-1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} –1.5	T _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK}	-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2T _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	2T _{HCLK} + 25	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

1. C_L = 15 pF.

2. Preliminary values.

Symbol	Parameter	Min	Max	Unit			
t _{w(CLK)}	FSMC_CLK period	27.7	-	ns			
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns			
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns			
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns			
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns			
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns			
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	2	-	ns			
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns			
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	0.5	-	ns			
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	12	ns			
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	ns			
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	6	-	ns			
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns			
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	8	-	ns			
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns			

Table 34. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

1. C_L = 15 pF.

2. Preliminary values.

Figure 20. Synchronous multiplexed PSRAM write timings

Figure 21. Synchronous non-multiplexed NOR/PSRAM read timings

Table 36. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 025)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 025)	4	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1.5	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	6.5	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	7	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_SMCLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

1. C_L = 15 pF.

2. Preliminary values.

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 42

		Functional susceptibility			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	mA	
	Injected current on all FT pins	-5	+0		
	Injected current on any other pin	-5	+5		

Table 42. I/O current injection susceptibility

Figure 27. I/O AC characteristics definition

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 43*).

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	V _{F(NRST)} ⁽¹⁾ NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽¹⁾ NRST Input not filtered pulse		_	300	_	-	ns

Table 46. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Figure 29. I²C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

£ ((-11-)(3)	I2C_CCR value	
	R _P = 4.7 kΩ	
400	0x8011	
300	0x8016	
200	0x8021	
100	0x0064	
50	0x00C8	
20	0x01F4	

Table 49. SCL frequency $(f_{PCLK1} = 24 \text{ MHz}, V_{DD} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed,

2. For speeds around 400 kHz, the tolerance on the achieved speed is of ±2%. For other speed ranges, the tolerance on the achieved speed ±1%. These variations depend on the accuracy of the external components used to design the application.

3. Guaranteed by design, not tested in production.

Figure 30. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽¹⁾	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	12	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 12 MHz	-	-	823	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN} ⁽³⁾	Conversion voltage range	-	0 (V _{SSA} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 52</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
. (2)	Calibratian time	f _{ADC} = 12 MHz	5.9		μs	
'CAL` '		-	83		1/f _{ADC}	
t _{lat} (2)	Injection trigger conversion latency	f _{ADC} = 12 MHz	-	-	0.214	μs
		-	-	-	3 ⁽⁴⁾	1/f _{ADC}
+ (2)	Regular trigger conversion	f _{ADC} = 12 MHz	-	-	- 0.143 µs	μs
^t latr ⁽⁻⁾	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
t _S ⁽²⁾	Compling time	f = 10 MU	0.125	0.125 - 17.1	μs	
	Sampling time		1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	Total conversion time	f _{ADC} = 12 MHz	1.17	-	21	μs
t _{CONV} ⁽²⁾	(including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

Table 51. ADC cha	racteristics
-------------------	--------------

1. Preliminary values.

2. Guaranteed by design, not tested in production.

3. $V_{\mathsf{REF}}\text{+}$ is internally connected to V_{DDA}

4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 51.

Equation 1: R_{AIN} max formula:

$$R_{AIN} < \frac{r_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The above formula (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

DocID15081 Rev 10

1. Dimensions are expressed in millimeters.

Device marking for LQFP144

The following figure shows the device marking for the LQFP144 package.

Figure 40.LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking for LQFP100

The following figure shows the device marking for the LQFP100 package.

Figure 43.LQFP100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 61: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F100xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example: high-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax =} 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW

P_{Dmax =} 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 60* T_{Jmax} is calculated as follows:

- For LQFP64, 49 °C/W

T_{.lmax} = 82 °C + (49 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C

This is within the range of the suffix 6 version parts ($-40 < T_{J} < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 61: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \degree$ C (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$ Thus: $P_{Dmax} = 134 \text{ mW}$

