

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betails	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100ret6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration.

2.2.7 Nested vectored interrupt controller (NVIC)

The STM32F100xx value line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving* higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.2.8 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 18 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

2.2.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-24 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 24 MHz.

2.2.10 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

TIM2, TIM3, TIM4, TIM5

STM32F100xx devices feature four synchronizable 4-channel general-purpose timers. These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM12 has two independent channels, whereas TIM13 and TIM14 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

Their counters can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation

Their counters can be frozen in debug mode.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

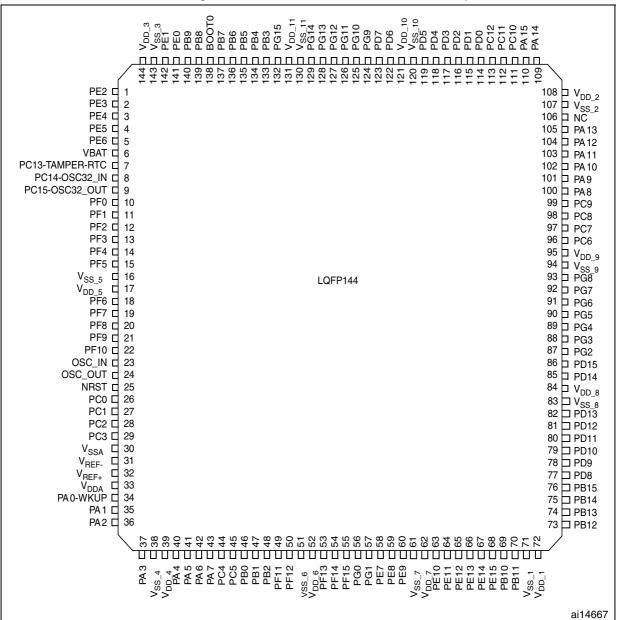
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

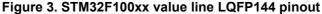
This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- up to 10-bit output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channels' independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

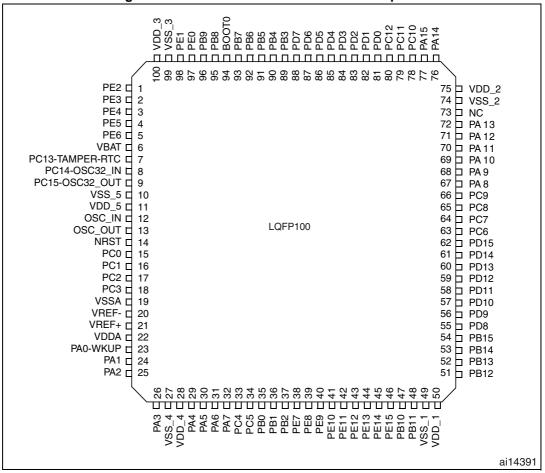
Eight DAC trigger inputs are used in the STM32F100xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.2.26 Temperature sensor


The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.


2.2.27 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.



3 Pinouts and pin descriptions

Figure 4. STM32F100xx value line LQFP100 pinout

	Pins		3				Alternate function	ons ⁽⁴⁾
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
66	44	-	PE13	I/O	FT	PE13	FSMC_D10	TIM1_CH3
67	45	-	PE14	I/O	FT	PE14	FSMC_D11	TIM1_CH4
68	46	-	PE15	I/O	FT	PE15	FSMC_D12	TIM1_BKIN
69	47	29	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX ⁽⁸⁾	TIM2_CH3 / HDMI_CEC
70	48	30	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX ⁽⁸⁾	TIM2_CH4
71	49	31	V _{SS_1}	S	-	V _{SS_1}	-	-
72	50	32	V _{DD_1}	S	-	V _{DD_1}	-	-
73	51	33	PB12	I/O	FT	PB12	SPI2_NSS/ I2C2_SMBA/ USART3_CK ⁽⁸⁾ / TIM1_BKIN ⁽⁸⁾	TIM12_CH1
74	52	34	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS ⁽⁸⁾ / TIM1_CH1N	TIM12_CH2
75	53	35	PB14	I/O	FT	PB14	SPI2_MISO/TIM1_CH2N USART3_RTS ⁽⁸⁾ /	TIM15_CH1
76	54	36	PB15	I/O	FT	PB15	SPI2_MOSI/ TIM1_CH3N ⁽⁸⁾ / TIM15_CH1N	TIM15_CH2
77	55	-	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX
78	56	-	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX
79	57	-	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK
80	58	-	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS
81	59	-	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1 / USART3_RTS
82	60	-	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2
83	-	-	V _{SS_8}	S	-	V _{SS_8}	-	-
84	-	-	V _{DD_8}	S	-	V_{DD_8}	-	-
85	61	-	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3
86	62	-	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4
87	-	-	PG2	I/O	FT	PG2	FSMC_A12	-
88	-	-	PG3	I/O	FT	PG3	FSMC_A13	-
89	-	-	PG4	I/O	FT	PG4	FSMC_A14	-
90	-	-	PG5	I/O	FT	PG5	FSMC_A15	-

Table 4. High-density STM32F100xx pin definitions (continued)

	Pins				_		Alternate function	ons ⁽⁴⁾
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
91	-	-	PG6	I/O	FT	PG6	-	-
92	-	-	PG7	I/O	FT	PG7	-	-
93	-	-	PG8	I/O	FT	PG8	-	-
94	-	-	V _{SS_9}	S	-	V _{SS_9}	-	-
95	-	-	V _{DD_9}	S	-	V _{DD_9}	-	-
96	63	37	PC6	I/O	FT	PC6	-	TIM3_CH1
97	64	38	PC7	I/O	FT	PC7	-	TIM3_CH2
98	65	39	PC8	I/O	FT	PC8	TIM13_CH1	TIM3_CH3
99	66	40	PC9	I/O	FT	PC9	TIM14_CH1	TIM3_CH4
100	67	41	PA8	I/O	FT	PA8	USART1_CK/ TIM1_CH1 ⁽⁸⁾ /MCO	-
101	68	42	PA9	I/O	FT	PA9	USART1_TX ⁽⁸⁾ / TIM1_CH2 ⁽⁸⁾ / TIM15_BKIN	-
102	69	43	PA10	I/O	FT	PA10	USART1_RX ⁽⁸⁾ / TIM1_CH3 ⁽⁸⁾ / TIM17_BKIN	-
103	70	44	PA11	I/O	FT	PA11	USART1_CTS / TIM1_CH4 ⁽⁸⁾	-
104	71	45	PA12	I/O	FT	PA12	USART1_RTS / TIM1_ETR ⁽⁸⁾	-
105	72	46	PA13	I/O	FT	JTMS-SWDIO	-	-
106	73	-				Not connected		-
107	74	47	V _{SS_2}	S	-	V _{SS_2}	-	-
108	75	48	V _{DD_2}	S	-	V _{DD_2}	-	-
109	76	49	PA14	I/O	FT	JTCK-SWCLK	-	-
110	77	50	PA15	I/O	FT	JTDI	SPI3_NSS	TIM2_CH1_ETR / SPI1_NSS
111	78	51	PC10	I/O	FT	PC10	UART4_TX	USART3_TX
112	79	52	PC11	I/O	FT	PC11	UART4_RX	USART3_RX
113	80	53	PC12	I/O	FT	PC12	UART5_TX	USART3_CK
114	81	-	PD0	I/O	FT	PD0	FSMC_D2 ⁽⁹⁾	-
115	82	-	PD1	I/O	FT	PD1	FSMC_D3 ⁽⁹⁾	-
116	83	54	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX	-
117	84	-	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS
118	85	-	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS
119	86	-	PD5	I/O	FT	PD5	FSMC_NWE	USART2_TX

Table 4. High-density STM32F100xx pin definitions (continued)

Table 5. FSMC pin definition (continued)						
Dine	F	SMC	LQFP100 ⁽¹⁾			
Pins	NOR/PSRAM/SRAM	NOR/PSRAM Mux				
PG0	A10	-	-			
PG1	A11	-	-			
PE7	D4	DA4	Yes			
PE8	D5	DA5	Yes			
PE9	D6	DA6	Yes			
PE10	D7	DA7	Yes			
PE11	D8	DA8	Yes			
PE12	D9	DA9	Yes			
PE13	D10	DA10	Yes			
PE14	D11	DA11	Yes			
PE15	D12	DA12	Yes			
PD8	D13	DA13	Yes			
PD9	D14	DA14	Yes			
PD10	D15	DA15	Yes			
PD11	A16	A16	Yes			
PD12	A17	A17	Yes			
PD13	A18	A18	Yes			
PD14	D0	DA0	Yes			
PD15	D1	DA1	Yes			
PG2	A12	-	-			
PG3	A13	-	-			
PG4	A14	-	-			
PG5	A15	-	-			
PG6	-	-	-			
PG7	-	-	-			
PD0	D2	DA2	Yes			
PD1	D3	DA3	Yes			
PD3	CLK	CLK	Yes			
PD4	NOE	NOE	Yes			
PD5	NWE	NWE	Yes			
PD6	NWAIT	NWAIT	Yes			
PD7	NE1	NE1	Yes			
PG9	NE2	NE2	-			

Table 5. FSMC pin definition (continued)

Dine	F	SMC	LQFP100 ⁽¹⁾			
Pins	NOR/PSRAM/SRAM	NOR/PSRAM Mux				
PG10	NE3	NE3	-			
PG11	-	-	-			
PG12	NE4	NE4	-			
PG13	A24	A24	-			
PG14	A25	A25	-			
PB7	NADV	NADV	Yes			
PE0	NBL0	NBL0	Yes			
PE1	NBL1	NBL1	Yes			

Table 5. FSMC pin definition (continued)

1. Ports F and G are not available in devices delivered in 100-pin packages.

Symbol	Ratings	Max.	Unit				
I _{VDD}	Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾	150					
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	150					
I _{IO}	Output current sunk by any I/O and control pin	25					
	Output current source by any I/Os and control pin	-25	mA				
L (2)	Injected current on five volt tolerant pins ⁽³⁾	-5 / +0					
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	± 5					
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25					

Table 7. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See Note: on page 85.

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 6: Voltage characteristics* for the maximum allowed input voltage values.

 A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 6: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 9. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	24	
f _{PCLK1}	Internal APB1 clock frequency	-	0	24	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	24	
V _{DD}	Standard operating voltage	-	2	3.6	V
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V
V DDA` '	Analog operating voltage (ADC used)	as V _{DD}	2.4	3.6	V
V _{BAT}	Backup operating voltage	-	1.8	3.6	V

Symbol	Parameter	Conditions	Min	Мах	Unit			
P _D	Power dissipation at $T_A =$	LQFP144	-	666				
	85 °C for suffix 6 or $T_A =$	LQFP100	-	434	mW			
	105 °C for suffix 7 ⁽²⁾	LQFP64	-	444				
Та	Ambient temperature for 6	Maximum power dissipation	-40	85	°C			
	suffix version	Low power dissipation ⁽³⁾	-40	105	C			
IA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C			
	suffix version	Low power dissipation ⁽³⁾	-40	125	C			
т.	lunction tomporature range	6 suffix version	-40	105	°C			
TJ	Junction temperature range	7 suffix version	-40	125	C			

Table 9. General operating conditions (continued)

1. When the ADC is used, refer to *Table 51: ADC characteristics*.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Section 6.5: Thermal characteristics on page 100).

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Section 6.5: Thermal characteristics on page 100).

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A .

Table 10. Operating conditions at power-up / power-down								
Symbol	Parameter	Min	Мах	Unit				
tunn	V _{DD} rise time rate	0	8	us/V				
t _{VDD}	V _{DD} fall time rate	20	∞	μ5/ν				

Table 10. Operating conditions at power-up / power-down

Note: It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	24	MHz
V _{HSEH}	OSC_IN input pin high level voltage ⁽¹⁾		0.7V _{DD}	-	V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage ⁽¹⁾	-	V _{SS}	-	0.3V _{DD}	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle ⁽¹⁾	-	45	-	55	%
١ _L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 20. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage ⁽¹⁾		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage ⁽¹⁾		V _{SS}	-	0.3V _{DD}	V
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle ⁽¹⁾		30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

1. Guaranteed by design, not tested in production.

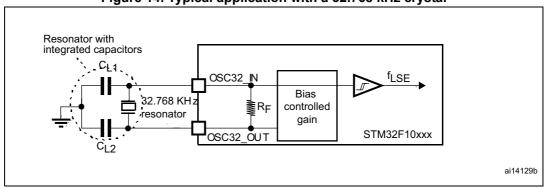


Figure 14. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

High-speed internal (HSI) RC oscillator

Table 24. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
		$T_A = -40$ to 105 °C ⁽²⁾	-2.4	-	2.5	%
ACC	Accuracy of HSI oscillator	$T_A = -10$ to 85 °C ⁽²⁾	-2.2	-	1.3	%
ACC _{HSI}		$T_A = 0$ to 70 °C ⁽²⁾	-1.9	-	1.3	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI)} ⁽³⁾	HSI oscillator startup time	-	1	-	2	μs
I _{DD(HSI)} ⁽³⁾	HSI oscillator power consumption	-	-	80	100	μA

1. V_{DD} = 3.3 V, T_A = –40 to 105 °C °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design. Not tested in production

Low-speed internal (LSI) RC oscillator

Table 25. LS	l oscillator	characteristics (1)
--------------	--------------	--------------------	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI}	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

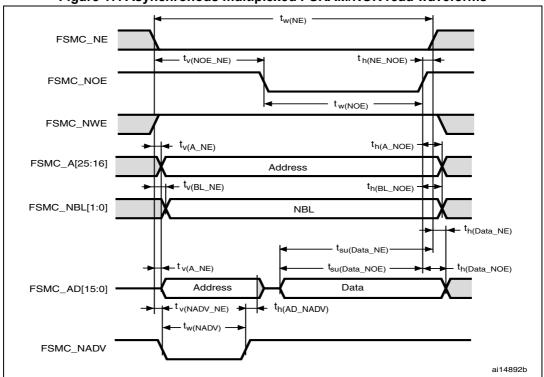


Figure 17. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 32. Asynchronous	multiplexed PSRAM/NOR	read timings ⁽¹⁾⁽²⁾
------------------------	-----------------------	--------------------------------

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	7T _{HCLK} – 2	7T _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3T _{HCLK} – 0.5	3T _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4T _{HCLK} – 1	4T _{HCLK} + 2	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	-1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} –1.5	T _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK}	-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2T _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	2T _{HCLK} + 25	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

1. C_L = 15 pF.

2. Preliminary values.

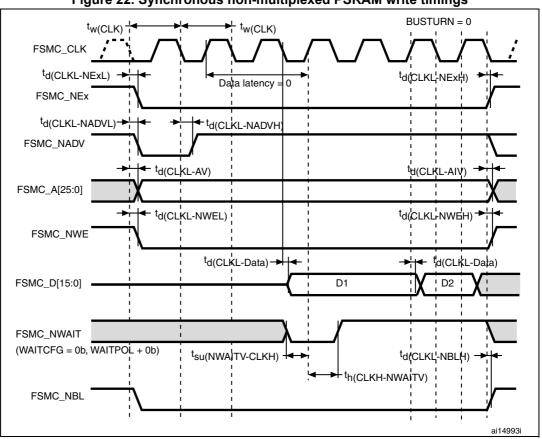


Figure 22. Synchronous non-multiplexed PSRAM write timings

Table 37. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	2	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	2	-	ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low	-	1	ns
t _{d(CLKL-NWEH)}	FSMC_CLK low to FSMC_NWE high	1	-	ns
t _{d(CLKL-Data)}	FSMC_D[15:0] valid data after FSMC_CLK low	-	6	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	1	-	ns

1. C_L = 15 pF.

2. Preliminary values.

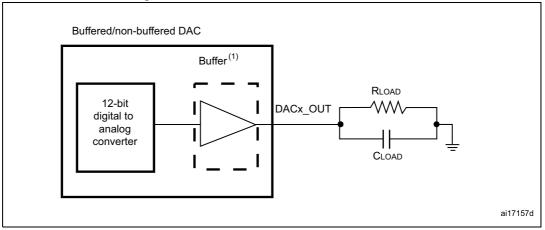
	_	Standard r	node l ² C ⁽¹⁾	Fast mode			
Symbol	Parameter	Min	Мах	Min	Max	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0	-	0	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 48. I²C characteristics

1. Guaranteed by design, not tested in production.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.



				<u> </u>	· · · ·	
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments
	Offset error		-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽¹⁾	(difference between measured value at Code (0x800) and the ideal value =	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽¹⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽¹⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	$C_{LOAD} \le 50 \text{ pF}, \text{ R}_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽¹⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF}, \text{ R}_{LOAD} \ge 5 \text{ k}\Omega$
^t wakeup ⁽¹⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$\label{eq:loss} \begin{array}{l} C_{LOAD} \leq 50 \text{ pF}, \ R_{LOAD} \geq 5 \ k\Omega \\ \text{input code between lowest and} \\ \text{highest possible ones.} \end{array}$
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

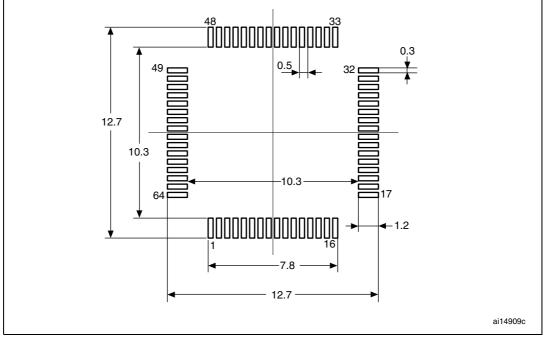
Table 55. DAC characteristics (continued)

1. Preliminary values.

2. Quiescent mode refer to the state of the DAC keeping steady value on the output, so no dynamic consumption is involved.

Figure 37. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

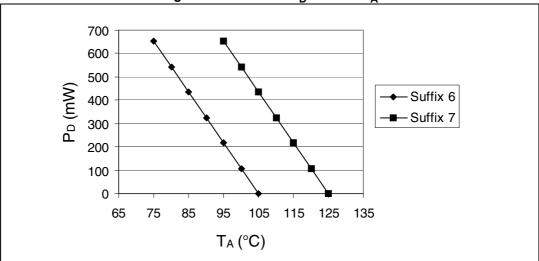


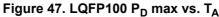
Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 59. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.


Using the values obtained in *Table 60* T_{Jmax} is calculated as follows:


- For LQFP100, 40 °C/W

$$T_{Jmax} = 115 \text{ °C} + (40 \text{ °C/W} \times 134 \text{ mW}) = 115 \text{ °C} + 5.4 \text{ °C} = 120.4 \text{ °C}$$

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 61: Ordering information scheme*).

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID15081 Rev 10

