E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100vet6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Fig	ure 1.	STM32F100xx value line block diagram	. 12
Fig	ure 2.	Clock tree	. 13
Fig	ure 3.	STM32F100xx value line LQFP144 pinout	23
Fig	ure 4.	STM32F100xx value line LQFP100 pinout	. 24
Fig	ure 5.	STM32F100xx value line in LQFP64 pinout	25
Fig	ure 6.	Memory map.	. 34
Fig	ure 7.	Pin loading conditions.	. 36
Fig	ure 8.	Pin input voltage	. 36
Fig	ure 9.	Power supply scheme.	36
Fig	ure 10.	Current consumption measurement scheme	. 37
Fig	ure 11.	High-speed external clock source AC timing diagram	. 51
Fig	ure 12.	Low-speed external clock source AC timing diagram	. 51
Fig	ure 13.	Typical application with an 8 MHz crystal	52
Fig	ure 14.	Typical application with a 32.768 kHz crystal	. 54
Fig	ure 15.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	57
Fig	ure 16.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	59
Fig	ure 17.	Asynchronous multiplexed PSRAM/NOR read waveforms.	60
Fig	ure 18.	Asynchronous multiplexed PSRAM/NOR write waveforms	61
Fig	ure 19.	Synchronous multiplexed NOR/PSRAM read timings	62
Fig	ure 20.	Synchronous multiplexed PSRAM write timings.	. 64
Fig	ure 21.	Synchronous non-multiplexed NOR/PSRAM read timings	66
Fig	ure 22.	Synchronous non-multiplexed PSRAM write timings	. 67
Fig	ure 23.	Standard I/O input characteristics - CMOS port	. 72
Fig	ure 24.	Standard I/O input characteristics - TTL port	72
Fig	ure 25.	5 V tolerant I/O input characteristics - CMOS port	73
Fig	ure 26.	5 V tolerant I/O input characteristics - TTL port	73
Fig	ure 27.	I/O AC characteristics definition	. 76
Fig	ure 28.	Recommended NRST pin protection	. 77
Fig	ure 29.	I ² C bus AC waveforms and measurement circuit	. 80
Fig	ure 30.	SPI timing diagram - slave mode and CPHA = 0	82
Fig	ure 31.	SPI timing diagram - slave mode and CPHA = 1	82
Fig	ure 32.	SPI timing diagram - master mode	. 83
Fig	ure 33.	ADC accuracy characteristics	. 86
Fig	ure 34.	Typical connection diagram using the ADC	86
Fig	ure 35.	Power supply and reference decoupling ($V_{\text{REF}+}$ not connected to V_{DDA})	. 87
Fig	ure 36.	Power supply and reference decoupling ($V_{\text{REF}+}$ connected to V_{DDA})	. 87
Fig	ure 37.	12-bit buffered /non-buffered DAC	. 89
Fig	ure 38.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat	
0		package outline	. 91
Fig	ure 39.	LQFP144 - 144-pin, 20 x 20 mm low-profile guad flat package	
0		recommended footprint	. 93
Fig	ure 40.	LQFP144 marking example (package top view)	. 93
Fig	ure 41.	LQFP100 – 14 x 14 mm 100 pin low-profile guad flat package outline	. 94
Fia	ure 42.	LQFP100 - 100-pin, 14 x 14 mm low-profile guad flat	
5		recommended footprint	95
Fiar	ure 43.	LQFP100 marking example (package top view)	96
Fia	ure 44.	LQFP64 – 10 x 10 mm 64 pin low-profile guad flat package outline	. 97
Fig	ure 45.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint	98

Figure 46.	LQFP64 marking example (package top view)	99
Figure 47.	LQFP100 P _D max vs. T _A	102

Figure 1. STM32F100xx value line block diagram

- 1. AF = alternate function on I/O port pin.
- T_A = -40 °C to +85 °C (junction temperature up to 105 °C) or T_A = -40 °C to +105 °C (junction temperature up to 125 °C).

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1	16-bit	Up, down, up/down	16 bits	Yes	4	Yes
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	Yes
TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	Yes
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 3. Timer feature comparison

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIM2..5, TIM12..17)

There are ten synchronizable general-purpose timers embedded in the STM32F100xx devices (see *Table 3* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

DocID15081 Rev 10

TIM2, TIM3, TIM4, TIM5

STM32F100xx devices feature four synchronizable 4-channel general-purpose timers. These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM12 has two independent channels, whereas TIM13 and TIM14 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

Their counters can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation

Their counters can be frozen in debug mode.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

	Pins						Alternate functions ⁽⁴⁾	
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²	Main function ⁽³⁾ (after reset)	Default	Remap
66	44	-	PE13	I/O	FT	PE13	FSMC_D10	TIM1_CH3
67	45	-	PE14	I/O	FT	PE14	FSMC_D11	TIM1_CH4
68	46	-	PE15	I/O	FT	PE15	FSMC_D12	TIM1_BKIN
69	47	29	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX ⁽⁸⁾	TIM2_CH3 / HDMI_CEC
70	48	30	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX ⁽⁸⁾	TIM2_CH4
71	49	31	V _{SS_1}	S	-	V _{SS_1}	-	-
72	50	32	V _{DD_1}	S	-	V _{DD_1}	-	-
73	51	33	PB12	I/O	FT	PB12	SPI2_NSS/ I2C2_SMBA/ USART3_CK ⁽⁸⁾ / TIM1_BKIN ⁽⁸⁾	TIM12_CH1
74	52	34	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS ⁽⁸⁾ / TIM1_CH1N	TIM12_CH2
75	53	35	PB14	I/O	FT	PB14	SPI2_MISO/TIM1_CH2N USART3_RTS ⁽⁸⁾ /	TIM15_CH1
76	54	36	PB15	I/O	FT	PB15	SPI2_MOSI/ TIM1_CH3N ^{(8)/} TIM15_CH1N	TIM15_CH2
77	55	-	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX
78	56	-	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX
79	57	-	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK
80	58	-	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS
81	59	-	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1 / USART3_RTS
82	60	-	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2
83	-	-	V _{SS_8}	S	-	V _{SS_8}	-	-
84	-	-	V _{DD_8}	S	-	V _{DD_8}	-	-
85	61	-	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3
86	62	-	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4
87	-	-	PG2	I/O	FT	PG2	FSMC_A12	-
88	-	-	PG3	I/O	FT	PG3	FSMC_A13	-
89	-	-	PG4	I/O	FT	PG4	FSMC_A14	-
90	-	-	PG5	I/O	FT	PG5	FSMC_A15	-

Table 4. High-density STM32F100xx pin definitions (continued)

	Pins				0		Alternate functions ⁽⁴⁾	
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²	Main function ⁽³⁾ (after reset)	Default	Remap
91	-	-	PG6	I/O	FT	PG6	-	-
92	-	-	PG7	I/O	FT	PG7	-	-
93	-	-	PG8	I/O	FT	PG8	-	-
94	-	-	V _{SS_9}	S	-	V _{SS_9}	-	-
95	-	-	V _{DD_9}	S	-	V _{DD_9}	-	-
96	63	37	PC6	I/O	FT	PC6	-	TIM3_CH1
97	64	38	PC7	I/O	FT	PC7	-	TIM3_CH2
98	65	39	PC8	I/O	FT	PC8	TIM13_CH1	TIM3_CH3
99	66	40	PC9	I/O	FT	PC9	TIM14_CH1	TIM3_CH4
100	67	41	PA8	I/O	FT	PA8	USART1_CK/ TIM1_CH1 ⁽⁸⁾ /MCO	-
101	68	42	PA9	I/O	FT	PA9	USART1_TX ⁽⁸⁾ / TIM1_CH2 ⁽⁸⁾ / TIM15_BKIN	-
102	69	43	PA10	I/O	FT	PA10	USART1_RX ⁽⁸⁾ / TIM1_CH3 ⁽⁸⁾ / TIM17_BKIN	-
103	70	44	PA11	I/O	FT	PA11	USART1_CTS / TIM1_CH4 ⁽⁸⁾	-
104	71	45	PA12	I/O	FT	PA12	USART1_RTS / TIM1_ETR ⁽⁸⁾	-
105	72	46	PA13	I/O	FT	JTMS-SWDIO	-	-
106	73	-				Not connected		-
107	74	47	V _{SS_2}	S	-	V _{SS_2}	-	-
108	75	48	V _{DD_2}	S	-	V _{DD_2}	-	-
109	76	49	PA14	I/O	FT	JTCK-SWCLK	-	-
110	77	50	PA15	I/O	FT	JTDI	SPI3_NSS	TIM2_CH1_ETR / SPI1_NSS
111	78	51	PC10	I/O	FT	PC10	UART4_TX	USART3_TX
112	79	52	PC11	I/O	FT	PC11	UART4_RX	USART3_RX
113	80	53	PC12	I/O	FT	PC12	UART5_TX	USART3_CK
114	81	-	PD0	I/O	FT	PD0	FSMC_D2 ⁽⁹⁾	-
115	82	-	PD1	I/O	FT	PD1	FSMC_D3 ⁽⁹⁾	-
116	83	54	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX	-
117	84	-	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS
118	85	-	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS
119	86	-	PD5	I/O	FT	PD5	FSMC_NWE	USART2_TX

Table 4. High-density STM32F100xx pin definitions (continued)

	Pins		-		_		Alternate functions ⁽⁴⁾		
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²	Main function ⁽³⁾ (after reset)	Default	Remap	
120	-	-	V _{SS_10}	S	-	V _{SS_10}	-	-	
121	-	-	V _{DD_10}	S	-	V _{DD_10}	-	-	
122	87	-	PD6	I/O	FT	PD6	FSMC_NWAIT	USART2_RX	
123	88	-	PD7	I/O	FT	PD7	FSMC_NE1	USART2_CK	
124	-	-	PG9	I/O	FT	PG9	FSMC_NE2	-	
125	-	-	PG10	I/O	FT	PG10	FSMC_NE3	-	
126	-	-	PG11	I/O	FT	PG11	-	-	
127	-	-	PG12	I/O	FT	PG12	FSMC_NE4	-	
128	-	-	PG13	I/O	FT	PG13	FSMC_A24	-	
129	-	-	PG14	I/O	FT	PG14	FSMC_A25	-	
130	-	-	V _{SS_11}	S	-	V _{SS_11}	-	-	
131	-	-	V _{DD_11}	S	-	V _{DD_11}	-	-	
132	-	-	PG15	I/O	FT	PG15	-	-	
133	89	55	PB3/	I/O	FT	JTDO	SPI3_SCK	PB3/TRACESWO TIM2_CH2 / SPI1_SCK	
134	90	56	PB4	I/O	FT	NJTRST	SPI3_MISO	TIM3_CH1 SPI1_MISO	
135	91	57	PB5	I/O	-	PB5	I2C1_SMBA/ SPI3_MOSI TIM16_BKIN	TIM3_CH2 / SPI1_MOSI	
136	92	58	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁸⁾ / TIM4_CH1 ⁽⁸⁾ / TIM16_CH1N	USART1_TX	
137	93	59	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁸⁾ / FSMC_NADV / TIM4_CH2 ⁽⁸⁾ / TIM17_CH1N	USART1_RX	
138	94	60	BOOT0	Ι	-	BOOT0	-	-	
139	95	61	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁸⁾ /TIM16_CH1 / HDMI_CEC	I2C1_SCL	
140	96	62	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁸⁾ / TIM17_CH1	I2C1_SDA	
141	97	-	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0	-	
142	98	-	PE1	I/O	FT	PE1	FSMC_NBL1	-	
143	99	63	V _{SS_3}	S	-	V _{SS_3}	-	-	
144	100	64	V _{DD_3}	S	-	V _{DD_3}	-	-	

Table 4. High-density STM32F100xx pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

Figure 11. High-speed external clock source AC timing diagram

Figure 12. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	24	MHz
R _F	Feedback resistor	-	-	200	-	kΩ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$C_{L1} \\ C_{L2}^{(3)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(4)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V _{DD} = 3.3 V V _{IN} = V _{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	2	-	ms

 Table 22. HSE 4-24 MHz oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

- 2. Based on characterization, not tested in production.
- 3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which

DocID15081 Rev 10

Figure 14. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 24* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

High-speed internal (HSI) RC oscillator

Table 24. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
ACC _{HSI}		$T_A = -40$ to 105 °C ⁽²⁾	-2.4	-	2.5	%
	Accuracy of HSI oscillator	$T_A = -10$ to 85 °C ⁽²⁾	-2.2	-	1.3	%
		$T_A = 0$ to 70 °C ⁽²⁾	-1.9	-	1.3	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI)} ⁽³⁾	HSI oscillator startup time	-	1	-	2	μs
I _{DD(HSI)} ⁽³⁾	HSI oscillator power consumption	_	-	80	100	μA

1. V_{DD} = 3.3 V, T_A = –40 to 105 °C °C unless otherwise specified.

2. Based on characterization, not tested in production.

3. Guaranteed by design. Not tested in production

Low-speed internal (LSI) RC oscillator

Table 25.	LSI	oscillator	characteristics	(1)
-----------	-----	------------	-----------------	----	---

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

Figure 18. Asynchronous multiplexed PSRAM/NOR write waveforms

				(1)(1	••
Table 33.	Asynchronous r	multiplexed	PSRAM/NOR	write timings ⁽¹⁾)

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	5T _{HCLK} – 1	5T _{HCLK} + 2	ns
$t_{v(NWE_NE)}$	FSMC_NEx low to FSMC_NWE low	2T _{HCLK}	2T _{HCLK} + 1	ns
t _{w(NWE)}	FSMC_NWE low time	2T _{HCLK} – 1	2T _{HCLK} + 2	ns
$t_{h(NE_NWE)}$	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK} – 1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	7	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 1	T _{HCLK} + 1	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK} – 3	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	4T _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.6	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} – 1.5	-	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid	-	T _{HCLK} + 1.5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} – 5	-	ns

1. C_L = 15 pF.

2. Preliminary values.

Synchronous waveforms and timings

Figure 19 through *Figure 22* represent synchronous waveforms and *Table 35* through *Table 37* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

Figure 20. Synchronous multiplexed PSRAM write timings

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Paramotor	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol Fai	Falameter	Conditions	frequency band	8/24 MHz	Onic
		evel $V_{DD} = 3.6 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C},$ LQFP144 package compliant with SAE J1752/3	0.1 MHz to 30 MHz	16	
6	Peak level		30 MHz to 130 MHz	25	dBµV
SEMI			130 MHz to 1GHz	25	
			SAE EMI Level	4	-

Table 39. EMI characteristics	Table 3	39. E	EMI	chara	acter	istics
-------------------------------	---------	-------	-----	-------	-------	--------

5.3.12 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 40. ESD absolute maximum rati

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \ ^{\circ}C$ conforming to JESD22-C101	Ш	500	v

1. Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD78 IC latch-up standard.

Symbol	Parameter	Conditions	Class	
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78}$	II level A	

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 45*, respectively.

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

MODEx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	2 ⁽³⁾	MHz
10	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 2 GV	125 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	C _L = 30 μr, v _{DD} = 2 v to 3.0 v	125 ⁽³⁾	ns
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	10 ⁽³⁾	MHz
01	t _{f(IO)out}	Output high to low level fall time		25 ⁽³⁾	- ns
	t _{r(IO)out}	Output low to high level rise time	CL- 30 pr, VDD - 2 V 10 3.0 V	25 ⁽³⁾	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	24	MHz
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	
	t _{f(IO)out}	Output high to low level fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾	
11			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	
		Output low to high level rise	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	ns
	t _{r(IO)out}	time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	ns

Table 45. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F100xx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure* 27.

3. Guaranteed by design, not tested in production.

Figure 27. I/O AC characteristics definition

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 43*).

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V	
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	V	
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV	
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ	
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns	
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	_	300	_	-	ns	

Table 46. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
е	-	0.500	-	-	0.0197	-	
K	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ccc	-	-	0.080	-	-	0.0031	

Table 59. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

7 Ordering information scheme

Example:	STM32 F 100 V	с т	6	В	xxx
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type					
F = General-purpose					
Device subfamily					
100 = value line					
Pin count					
R = 64 pins					
V = 100 pins					
Z = 144 pins					
Flash memory size					
C = 256 Kbytes of Flash memory					
D = 384 Kbytes of Flash memory					
E = 512 Kbytes of Flash memory					
Package					
T = LQFP			J		
Temperature range					
6 = Industrial temperature range, -40 to 85 °C					
7 = Industrial temperature range, –40 to 105 °C					
·					
Internal code					
В					
Options					
xxx = programmed parts					

Table 61. Ordering information scheme

TR = tape and real

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

8 Revision history

Date	Revision	Changes		
09-Oct-2008	1	Initial release.		
31-Mar-2009	2	 I/O information clarified on page 1. Table 5: High-density STM32F100xx pin definitions modified. Figure 5: Memory map on page 26 modified. Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Table 20: High-speed external user clock characteristics and Table 21: Low-speed user external clock characteristics modified. ACCHSI max values modified in Table 24: HSI oscillator characteristics. Note modified in Table 13: Maximum current consumption in Run 		
		mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 10, Figure 11 and Figure 12 show typical curves (titles changed). Small text changes.		
01-Sep-2010	3	Major revision of whole document. Added LQFP144 package and additional peripherals (SPI3, UART4, UART, TIM5, 12, 14, 13, FSMC).		
18-Oct-2010	4	Updated Power consumption data in <i>Table 13</i> to <i>Table 16</i> Updated <i>Section 5.3.11: EMC characteristics on page 68</i>		
11-Apr-2011	5	Added Section 2.2.6: LCD parallel interface on page 13 In Table 4 on page 24 moved TIM15_BKIN and TIM17_BKIN from remap to default column. Updated description of PA3, PA5 and PF6 to PF10. Updated footnotes below Table 6: Voltage characteristics on page 37 and Table 7: Current characteristics on page 38 Added VBAT values in Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 44 Updated tw min in Table 20: High-speed external user clock characteristics on page 50 Updated startup time in Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 53 Added HSI clock accuracy values in Table 24: HSI oscillator characteristics on page 54 Updated FSMC Synchronous waveforms and timings on page 62 Updated Table 43: I/O static characteristics on page 71 Added Section 5.3.13: I/O current injection characteristics on page 70 Corrected TTL and CMOS designations in Table 44: Output voltage characteristics on page 74		

Table	62.	Document	revision	history
-------	-----	----------	----------	---------

