

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	112
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100zct6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 46.	LQFP64 marking example (package top view)	99
Figure 47.	LQFP100 P _D max vs. T _A	102

TIM2, TIM3, TIM4, TIM5

STM32F100xx devices feature four synchronizable 4-channel general-purpose timers. These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM12 has two independent channels, whereas TIM13 and TIM14 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

Their counters can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation

Their counters can be frozen in debug mode.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated for OS, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.2.18 I²C bus

The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes.

It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.

2.2.19 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F100xx value line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

The available USART interfaces communicate at up to 3 Mbit/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART interfaces can be served by the DMA controller.

2.2.20 Universal asynchronous receiver transmitter (UART)

The STM32F100xx value line embeds 2 universal asynchronous receiver transmitters (UART4, and UART5).

The available UART interfaces support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability.

The UART interfaces can be served by the DMA controller.

2.2.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 12 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits.

The SPIs can be served by the DMA controller.

DocID15081 Rev 10

	Pins						Alternate functions ⁽⁴⁾	
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
14	-	-	PF4	I/O	FT	PF4	FSMC_A4	-
15	-	-	PF5	I/O	FT	PF5	FSMC_A5	-
16	10	-	V _{SS_5}	S	-	V _{SS_5}	-	-
17	11	-	V _{DD_5}	S	-	V _{DD_5}	-	-
18	-	-	PF6	I/O	-	PF6	-	-
19	-	-	PF7	I/O	-	PF7	-	-
20	-	-	PF8	I/O	-	PF8	-	-
21	-	-	PF9	I/O	-	PF9	-	-
22	-	-	PF10	I/O	-	PF10	-	-
23	12	5	OSC_IN	Ι	-	OSC_IN	-	PD0 ⁽⁷⁾
24	13	6	OSC_OUT	0	-	OSC_OUT	-	PD1 ⁽⁷⁾
25	14	7	NRST	I/O	-	NRST	-	-
26	15	8	PC0	I/O	-	PC0	ADC_IN10	-
27	16	9	PC1	I/O	-	PC1	ADC_IN11	-
28	17	10	PC2	I/O	-	PC2	ADC_IN12	-
29	18	11	PC3	I/O	-	PC3	ADC_IN13	-
30	19	12	V _{SSA}	S	-	V _{SSA}	-	-
31	20	-	V _{REF-}	S	-	V _{REF-}	-	-
32	21	-	V _{REF+}	S	-	V _{REF+}	-	-
33	22	13	V _{DDA}	S	-	V _{DDA}	-	-
34	23	14	PA0-WKUP	I/O	-	PA0	WKUP/USART2_CTS ⁽⁸⁾ ADC_IN0 TIM2_CH1_ETR TIM5_CH1	-
35	24	15	PA1	I/O	-	PA1	USART2_RTS ⁽⁸⁾ ADC_IN1/ TIM5_CH2/TIM2_CH2 ⁽⁸⁾	-
36	25	16	PA2	I/O	-	PA2	USART2_TX ⁽⁸⁾ /TIM5_CH3 ADC_IN2/ TIM15_CH1 TIM2_CH3 ⁽⁸⁾	-
37	26	17	PA3	I/O	-	PA3	USART2_RX ⁽⁸⁾ /TIM5_CH4 ADC_IN3/TIM2_CH4 ⁽⁸⁾ / TIM15_CH2	-
38	27	18	V _{SS_4}	S	-	V _{SS_4}	-	-
39	28	19	V _{DD_4}	S	-	V _{DD_4}	-	-

Table 4. High-density STM32F100xx pin definitions (continued)

	F							
Pins	NOR/PSRAM/SRAM	NOR/PSRAM Mux	LQFP100(')					
PG0	A10	-	-					
PG1	A11	-	-					
PE7	D4	DA4	Yes					
PE8	D5	DA5	Yes					
PE9	D6	DA6	Yes					
PE10	D7	DA7	Yes					
PE11	D8	DA8	Yes					
PE12	D9	DA9	Yes					
PE13	D10	DA10	Yes					
PE14	D11	DA11	Yes					
PE15	D12	DA12	Yes					
PD8	D13	DA13	Yes					
PD9	D14	DA14	Yes					
PD10	D15	DA15	Yes					
PD11	A16	A16	Yes					
PD12	A17	A17	Yes					
PD13	A18	A18	Yes					
PD14	D0	DA0	Yes					
PD15	D1	DA1	Yes					
PG2	A12	-	-					
PG3	A13	-	-					
PG4	A14	-	-					
PG5	A15	-	-					
PG6	-	-	-					
PG7	-	-	-					
PD0	D2	DA2	Yes					
PD1	D3	DA3	Yes					
PD3	CLK	CLK	Yes					
PD4	NOE	NOE	Yes					
PD5	NWE	NWE	Yes					
PD6	NWAIT	NWAIT	Yes					
PD7	NE1	NE1	Yes					
PG9	NE2	NE2	-					

Table 5. FSMC pin definition (continued)

Symphol	Doromotor	Conditions	£	Ма	Unit		
Symbol	Parameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit	
			24 MHz	14.1	14.3		
		External clock ⁽²⁾ all peripherals enabled	16 MHz	9.7	10.3		
			8 MHz	5.9	6.2		
	Supply current in Sleep mode	External clock ⁽²⁾ , all peripherals disabled	24 MHz	4.2	4.6	mA	
			16 MHz	3.7	4.1		
			8 MHz	2.9	3.4		
'DD		HSI clock ⁽²⁾ , all	24 MHz	12.5	12.7		
			16 MHz	8.2	8.5		
		F -	8 MHz	6.4	6.6		
		(2)	24 MHz	2.3	2.5		
		HSI clock ⁽²⁾ , all peripherals disabled	16 MHz	1.7	2		
		r - r	8 MHz	1.4	1.7		

Table 15. STM32F100xxB maximum current consumption in Sleep mode, code running from Flash or RAM

1. Based on characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock or HSI frequency is 8 MHz and PLL is on when $\rm f_{HCLK}$ > 8 MHz.

Per	ripheral	Typical consumption at 25 °C	Unit
	APB2-Bridge	4.17	
	GPIOA	6.67	
	GPIOB	6.25	
	GPIOC	6.67	
	GPIOD	6.67	
	GPIOE	6.67	
	GPIOF	5.42	
APB2 (up to 24 MHz)	GPIOG	6.67	µA/MHz
	SPI1	4.17	
	USART1	12.08	
	TIM1	22.08	
	TIM15	14.17	
	TIM16	10.00	
	TIM17	10.00	
	ADC1 ⁽³⁾	15.83	

Table 19. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON.(CPU, DMA1 or DMA2).

2. When DAC_OUT1 or DAC_OUT2 is enabled, there is an additional current consumption equal to 0,42 mA

Specific conditions for measuring ADC current consumption: f_{HCLK} = 24 MHz, f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/2. When ADON bit in the ADC_CR2 register is set to 1, a current consumption of analog part equal to 0.82 mA must be added.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 20* result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 9*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$C_{L1} \\ C_{L2}^{(3)}$	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(4)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V _{DD} = 3.3 V V _{IN} = V _{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	2	-	ms

 Table 22. HSE 4-24 MHz oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

- 2. Based on characterization, not tested in production.
- 3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.
- 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Note: For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which

DocID15081 Rev 10

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Figure 18. Asynchronous multiplexed PSRAM/NOR write waveforms

			(4)(0)
Table 33.	Asynchronous multiple	exed PSRAM/NOR	write timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	5T _{HCLK} – 1	5T _{HCLK} + 2	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	2T _{HCLK}	2T _{HCLK} + 1	ns
t _{w(NWE)}	FSMC_NWE low time	2T _{HCLK} – 1	2T _{HCLK} + 2	ns
$t_{h(NE_NWE)}$	FSMC_NWE high to FSMC_NE high hold time	T _{HCLK} – 1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	7	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 1	T _{HCLK} + 1	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	T _{HCLK} – 3	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	4T _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.6	ns
$t_{h(BL_NWE)}$	FSMC_BL hold time after FSMC_NWE high	T _{HCLK} – 1.5	-	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid	-	T _{HCLK} + 1.5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	T _{HCLK} – 5	-	ns

1. C_L = 15 pF.

2. Preliminary values.

Figure 20. Synchronous multiplexed PSRAM write timings

Figure 35. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. $V_{\text{REF+}}$ is available on 100-pin packages and on TFBGA64 packages. $V_{\text{REF-}}$ is available on 100-pin packages only.

Figure 36. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.19 DAC electrical specifications

Symbol	Parameter		Тур	Max ⁽¹⁾	Unit	Comments
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	-
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V _{REF+} must always be below V _{DDA}
V _{SSA}	Ground	0	-	0	V	-
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5	-	-	kΩ	-
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xE1C) at
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{REF+} = 3.6 V \text{ and } (0x155) \text{ and} (0xEAB) \text{ at } V_{REF+} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs
		-	-	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA}	DAC DC current consumption in quiescent mode ⁽²⁾	-	-	480	μA	With no load, worst code ($0xF1C$) at $V_{REF+} = 3.6$ V in terms of DC consumption on the inputs
DNL ⁽¹⁾	Differential non linearity Difference	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	between two consecutive code-1LSB)		-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between measured value at Code i	-	-	±1	LSB	Given for the DAC in 10-bit configuration
	and the value at Code i on a line drawn between Code 0 and last Code 1023)		-	±4	LSB	Given for the DAC in 12-bit configuration

Table 55. DAC characteristics

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments
	Offset error	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽¹⁾	(difference between measured value at Code (0x800) and the ideal value =	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V_{REF+} = 3.6 V
Gain error ⁽¹⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽¹⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	$C_{LOAD} \le 50 \text{ pF}, \text{ R}_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽¹⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} ⁽¹⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$\label{eq:loss} \begin{array}{l} C_{LOAD} \leq 50 \text{ pF}, \ R_{LOAD} \geq 5 \ k\Omega \\ \text{input code between lowest and} \\ \text{highest possible ones.} \end{array}$
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V_{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 55. DAC characteristics (continued)

1. Preliminary values.

2. Quiescent mode refer to the state of the DAC keeping steady value on the output, so no dynamic consumption is involved.

Figure 37. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.2 LQFP144 package information

Figure 38. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

1. Dimensions are expressed in millimeters.

Device marking for LQFP144

The following figure shows the device marking for the LQFP144 package.

Figure 40.LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol		millimeters		inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
K	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ccc	-	-	0.080	-	-	0.0031

Table 59. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat packagemechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

Using the values obtained in *Table 60* T_{Jmax} is calculated as follows:

- For LQFP100, 40 °C/W

$$T_{Jmax} = 115 \text{ °C} + (40 \text{ °C/W} \times 134 \text{ mW}) = 115 \text{ °C} + 5.4 \text{ °C} = 120.4 \text{ °C}$$

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 61: Ordering information scheme*).

Date	Revision	Changes
08-Jun-2012	6	Updated Table 7: Current characteristics on page 38 Corrected "CLKL-NOEL" in Section 5.3.10: FSMC characteristics on page 56 Updated Table 48: I2C characteristics on page 79 Corrected note "non-robust " in Section 5.3.18: 12-bit ADC characteristics on page 83 Updated Figure 1: STM32F100xx value line block diagram on page 11 Updated Section 5.3.14: I/O port characteristics on page 71 Updated Section 2.2.22: GPIOs (general-purpose inputs/outputs) on page 20 Updated Table 4: High-density STM32F100xx pin definitions on page 24 Updated Section 5.3.1: General operating conditions on page 38 Updated PD0 and PD1 in Table 4: High-density STM32F100xx pin definitions on page 24
17-Sep-2012	7	Updated P _D max specifications in <i>Table 9: General operating conditions</i> Added footnote to IDDA parameter description in <i>Table 55: DAC characteristics</i>
10-Mar-2015	8	Updated Table 57: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data, Table 58: LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data, Table 59: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data Updated Figure 38: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline on page 91, Figure 39: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package recommended footprint on page 93, Figure 41: LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline on page 94, Figure 42: LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint on page 95, Figure 44: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline on page 97, Figure 45: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint on page 98 Added Figure 40: LQFP144 marking example (package top view) on page 93, Figure 43: LQFP100 marking example (package top view) on page 96, Figure 46: LQFP64 marking example (package top view) on page 99
23-Sep-2015	9	Updated Table 19: Peripheral current consumption Updated Section 6: Package characteristics
29-Mar-2016	10	Updated Table 14: Maximum current consumption in Run mode, code with data processing running from RAM

Table 62. Document revision history (continued)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID15081 Rev 10

