

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	112
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f100zet7b

Contents

2	Des	cription		. 10
	2.1	Device	overview	11
	2.2	Overvi	ew	. 14
		2.2.1	ARM® Cortex®-M3 core with embedded Flash and SRAM	14
		2.2.2	Embedded Flash memory	14
		2.2.3	CRC (cyclic redundancy check) calculation unit	14
		2.2.4	Embedded SRAM	14
		2.2.5	FSMC (flexible static memory controller)	14
		2.2.6	LCD parallel interface	14
		2.2.7	Nested vectored interrupt controller (NVIC)	15
		2.2.8	External interrupt/event controller (EXTI)	15
		2.2.9	Clocks and startup	15
		2.2.10	Boot modes	15
		2.2.11	Power supply schemes	16
		2.2.12	Power supply supervisor	16
		2.2.13	Voltage regulator	16
		2.2.14	Low-power modes	16
		2.2.15	DMA	17
		2.2.16	RTC (real-time clock) and backup registers	17
		2.2.17	Timers and watchdogs	17
		2.2.18	I ² C bus	20
		2.2.19	Universal synchronous/asynchronous receiver transmitter (USART)	20
		2.2.20	Universal asynchronous receiver transmitter (UART)	20
		2.2.21	Serial peripheral interface (SPI)	20
		2.2.22	GPIOs (general-purpose inputs/outputs)	21
		2.2.23	Remap capability	21
		2.2.24	ADC (analog-to-digital converter)	21
		2.2.25	DAC (digital-to-analog converter)	21
		2.2.26	Temperature sensor	22
		2.2.27	Serial wire JTAG debug port (SWJ-DP)	22
3	Pino	outs and	pin descriptions	. 23

List of tables

Table 45.	I/O AC characteristics	75
Table 46.	NRST pin characteristics	
Table 47.	TIMx characteristics	
Table 48.	I ² C characteristics	
Table 49.	SCL frequency (f _{PCLK1} = 24 MHz, V _{DD} = 3.3 V)	
Table 50.	SPI characteristics	
Table 51.	ADC characteristics	
Table 52.	R _{AIN} max for f _{ADC} = 12 MHz	
Table 53.	ADC accuracy - limited test conditions	
Table 54.	ADC accuracy	
Table 55.	DAC characteristics	
Table 56.	TS characteristics	
Table 57.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package	
	mechanical data	92
Table 58.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	94
Table 59.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package	
	mechanical data	97
Table 60.	Package thermal characteristics	
Table 61.	Ordering information scheme	
Table 62	Document revision history	104

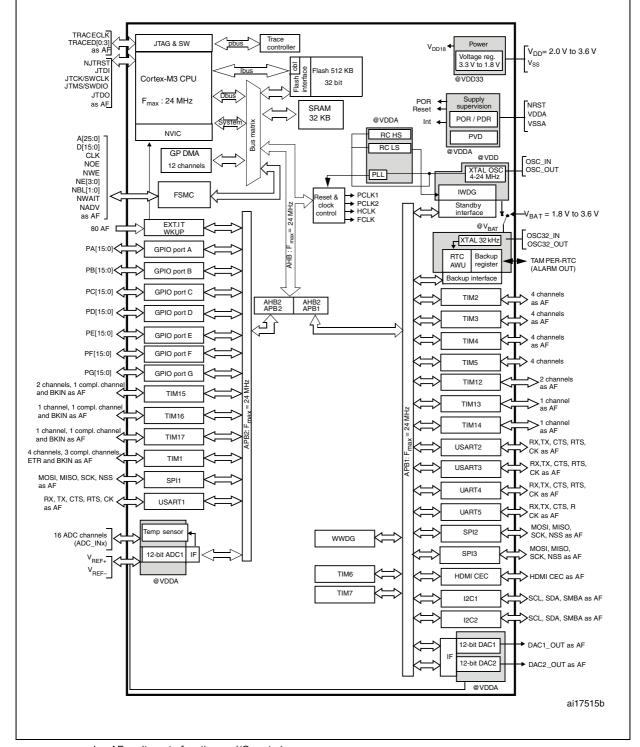


Figure 1. STM32F100xx value line block diagram

- 1. AF = alternate function on I/O port pin.
- 2. $T_A = -40$ °C to +85 °C (junction temperature up to 105 °C) or $T_A = -40$ °C to +105 °C (junction temperature up to 125 °C).

577

2.2 Overview

2.2.1 ARM® Cortex®-M3 core with embedded Flash and SRAM

The ARM Cortex[®]-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The STM32F100xx value line family having an embedded ARM core, is therefore compatible with all ARM tools and software.

2.2.2 Embedded Flash memory

Up to 512 Kbytes of embedded Flash memory is available for storing programs and data.

2.2.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.4 Embedded SRAM

Up to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.2.5 FSMC (flexible static memory controller)

The FSMC is embedded in the high-density value line family. It has four Chip Select outputs supporting the following modes: SRAM, PSRAM, and NOR.

Functionality overview:

- The three FSMC interrupt lines are ORed in order to be connected to the NVIC
- No read FIFO
- Code execution from external memory
- No boot capability
- The targeted frequency is HCLK/2, so external access is at 12 MHz when HCLK is at 24 MHz

2.2.6 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to

HDMI (high-definition multimedia interface) consumer electronics control (CEC)

The STM32F100xx value line embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead.

2.2.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.2.23 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.

For details refer to *Table 4: High-density STM32F100xx pin definitions*; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the STM32F100xx reference manual for software considerations.

2.2.24 ADC (analog-to-digital converter)

The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

2.2.25 DAC (digital-to-analog converter)

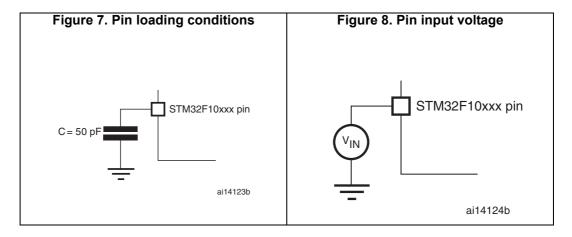
The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in noninverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- up to 10-bit output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channels' independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the STM32F100xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.2.26 Temperature sensor


The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.2.27 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

Table 4. High-density STM32F100xx pin definitions (continued)

	Pins		Table 41 mgm				Alternate function	ons ⁽⁴⁾
LQFP144	LQFP100	LQFP64	Pin name	Type ⁽¹⁾	I/O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
14	-	-	PF4	I/O	FT	PF4	FSMC_A4	-
15	-	-	PF5	I/O	FT	PF5	FSMC_A5	-
16	10	-	V _{SS_5}	S	-	V _{SS_5}	-	-
17	11		V_{DD_5}	S	1	V_{DD_5}	-	-
18	-	-	PF6	I/O	-	PF6	-	-
19	-	-	PF7	I/O	-	PF7	-	-
20	-	-	PF8	I/O	1	PF8	-	-
21	-	-	PF9	I/O	-	PF9	-	-
22	-	-	PF10	I/O	-	PF10	-	-
23	12	5	OSC_IN	I	-	OSC_IN	-	PD0 ⁽⁷⁾
24	13	6	OSC_OUT	0	-	OSC_OUT	-	PD1 ⁽⁷⁾
25	14	7	NRST	I/O	-	NRST	-	-
26	15	8	PC0	I/O	-	PC0	ADC_IN10	-
27	16	9	PC1	I/O	-	PC1	ADC_IN11	-
28	17	10	PC2	I/O	-	PC2	ADC_IN12	-
29	18	11	PC3	I/O	-	PC3	ADC_IN13	-
30	19	12	V _{SSA}	S	-	V _{SSA}	-	-
31	20		V_{REF}	S	1	V_{REF}	-	-
32	21	-	V _{REF+}	S	1	V _{REF+}	-	-
33	22	13	V_{DDA}	S	-	V_{DDA}	-	-
34	23	14	PA0-WKUP	I/O	1	PA0	WKUP/USART2_CTS ⁽⁸⁾ ADC_IN0 TIM2_CH1_ETR TIM5_CH1	-
35	24	15	PA1	I/O	ı	PA1	USART2_RTS ⁽⁸⁾ ADC_IN1/ TIM5_CH2/TIM2_CH2 ⁽⁸⁾	-
36	25	16	PA2	I/O	-	PA2	USART2_TX ⁽⁸⁾ /TIM5_CH3 ADC_IN2/ TIM15_CH1 TIM2_CH3 ⁽⁸⁾	-
37	26	17	PA3	I/O	-	PA3	USART2_RX ⁽⁸⁾ /TIM5_CH4 ADC_IN3/TIM2_CH4 ⁽⁸⁾ / TIM15_CH2	-
38	27	18	V _{SS_4}	S	-	V _{SS_4}	-	-
39	28	19	V _{DD_4}	S	-	V_{DD_4}	-	-

5.1.6 Power supply scheme

Figure 9. Power supply scheme V_{BAT} Backup circuitry (OSC32K,RTC, Wake-up logic Backup registers) Ю GP I/Os Logic Kernel logic (CPU, Digital & Memories) V_{DD} 1/2/3/4/5 Regulator VSS 5 × 100 nF + 1 × 4.7 µF 1/2/3/4/5 V_{DDA} VREF+ Analog: V_{REF} ADC/DAC RCs, PLL V_{SSA} ai14125e

Caution: In *Figure* 9, the 4.7 μ F capacitor must be connected to V_{DD3} .

577

Symbol Parameter Conditions Min Max Unit LQFP144 666 Power dissipation at T_A = 85 °C for suffix 6 or $T_A = 105$ °C for suffix $7^{(2)}$ P_D LQFP100 434 mW LQFP64 444 Maximum power dissipation -40 85 Ambient temperature for 6 °C suffix version Low power dissipation⁽³⁾ -40 105 TA Maximum power dissipation -40 105 Ambient temperature for 7 °C suffix version Low power dissipation⁽³⁾ -40 125 -40 105 6 suffix version °C TJ Junction temperature range 7 suffix version -40 125

Table 9. General operating conditions (continued)

- 1. When the ADC is used, refer to Table 51: ADC characteristics.
- If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Section 6.5: Thermal characteristics on page 100).
- In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Section 6.5: Thermal characteristics on page 100).

Note: It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

Table 10. Operating conditions at power-up / power-down

Symbol	Parameter	Min	Max	Unit
t	V _{DD} rise time rate	0	∞	µs/V
ι√DD	V _{DD} fall time rate	20	∞	μ5/ ν

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 11* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Table 11. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
	Programmable voltage	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
V_{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79	V
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	V
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
$V_{POR/PDR}$	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1.5	2.5	4.5	ms

^{1.} The product behavior is guaranteed by design down to the minimum $V_{\mbox{POR}/\mbox{PDR}}$ value.

577

^{2.} Guaranteed by design, not tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 19*. The MCU is placed under the following conditions:

- ullet all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 6.

Table 19. Peripheral current consumption

Pe	ripheral	Typical consumption at 25 °C	Unit
	DMA1	12.50	
	DMA2	8.33	
AHB (up to 24MHz)	FSMC	28.33	μΑ/MHz
	CRC	1.25	
	BusMatrix ⁽¹⁾	16.67	

Table 19. Peripheral current consumption (continued)

Pe	ripheral	Typical consumption at 25 °C	Unit
	APB1-Bridge	3.75	
	TIM2	17.08	
	TIM3	17.50	
	TIM4	17.08	
	TIM5	17.08	
	TIM6	4.58	
	TIM7	4.17	
	TIM12	10.42	
	TIM13	7.08	
	TIM14	7.08	
	SPI2/I2S2	4.58	
APB1 (up to 24 MHz)	SPI3/I2S3	4.58	μΑ/MHz
AFB1 (up to 24 Will2)	USART2	12.08	μΑνίνιι ιΖ
	USART3	12.08	
	UART4	11.25	
	UART5	10.83	
	I2C1	10.42	
	I2C2	10.42	
	CEC	5.42	
	DAC ⁽²⁾	7.92	
	WWDG	2.92	
	PWR	1.25	
	ВКР	2.08	
	IWDG	3.33	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	24	MHz
V _{HSEH}	OSC_IN input pin high level voltage ⁽¹⁾		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage ⁽¹⁾	-	V _{SS}	-	0.3V _{DD}	V
$\begin{matrix} t_{w(\text{HSE})} \\ t_{w(\text{HSE})} \end{matrix}$	OSC_IN high or low time ⁽¹⁾		5	ı	-	ns
$t_{r(HSE)} \ t_{f(HSE)}$	OSC_IN rise or fall time ⁽¹⁾		-	-	20	113
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle ⁽¹⁾	-	45	-	55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 20. High-speed external user clock characteristics

Low-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in *Table 9*.

Symbol **Parameter Conditions** Min Тур Max Unit User external clock source 1000 32.768 kHz f_{LSE_ext} frequency⁽¹⁾ OSC32_IN input pin high level V_{LSEH} $0.7V_{DD}$ $V_{DD} \\$ voltage⁽¹⁾ ٧ OSC32 IN input pin low level $0.3V_{DD}$ V_{LSEL} V_{SS} voltage⁽¹⁾ t_{w(LSE)} OSC32_IN high or low time⁽¹⁾ 450 t_{w(LSE)} ns t_{r(LSE)} OSC32 IN rise or fall time⁽¹⁾ 50 $t_{f(LSE)}$ OSC32 IN input capacitance⁽¹⁾ 5 pF C_{in(LSE)} Duty cycle⁽¹⁾ DuCy_(LSE) 30 70 %

 $V_{SS} \leq V_{IN} \leq V_{DD}$


±1

μΑ

Table 21. Low-speed external user clock characteristics

 I_{L}

OSC32 IN Input leakage current

^{1.} Guaranteed by design, not tested in production.

^{1.} Guaranteed by design, not tested in production.

Table 34. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	2	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	0.5	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	12	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	ns
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	6	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	8	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

^{1.} $C_L = 15 pF$.

^{2.} Preliminary values.

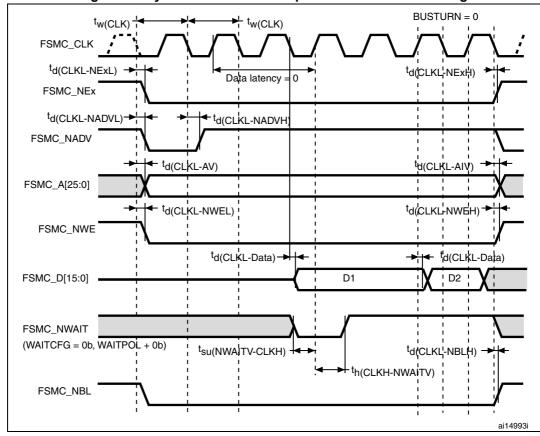


Figure 22. Synchronous non-multiplexed PSRAM write timings

Table 37. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	2	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	2	-	ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low	-	1	ns
t _{d(CLKL-NWEH)}	FSMC_CLK low to FSMC_NWE high	1	-	ns
t _{d(CLKL-Data)}	FSMC_D[15:0] valid data after FSMC_CLK low	-	6	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	1	-	ns

^{1.} C_L = 15 pF.

^{2.} Preliminary values.

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 38*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD}=3.3$ V, $T_{A}=+25$ °C, $f_{HCLK}=24$ MHz, LQFP144 package, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	$V_{DD}=3.3$ V, $T_{A}=+25$ °C, $f_{HCLK}=24$ MHz, LQFP144 package, conforms to IEC 61000-4-4	4A

Table 38. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 45*, respectively.

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 9*.

Table 45. I/O AC characteristics⁽¹⁾

MODEx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Max	Unit
10	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$	2 ⁽³⁾	MHz
	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 2 6 V	125 ⁽³⁾	- ns
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	125 ⁽³⁾	
01	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	10 ⁽³⁾	MHz
	t _{f(IO)out}	Output high to low level fall time	C _I = 50 pF, V _{DD} = 2 V to 3.6 V	25 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	- C _L = 30 μr, ν _{DD} = 2 ν to 3.6 ν	25 ⁽³⁾	
11	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	24	MHz
	t _{f(IO)out}	Output high to low level fall time	$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	5 ⁽³⁾	
			$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	8 ⁽³⁾	
			$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$	12 ⁽³⁾	
	t _{r(IO)out}	Output low to high level rise time	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	ns
			$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	8 ⁽³⁾	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V	12 ⁽³⁾	
-	t _{EXTIPW}	Pulse width of external signals detected by the EXTI controller	-	10 ⁽³⁾	ns

The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F100xx reference manual for a description of GPIO Port configuration register.

^{2.} The maximum frequency is defined in Figure 27.

^{3.} Guaranteed by design, not tested in production.

5.3.16 TIMx characteristics

The parameters given in *Table 47* are guaranteed by design.

Refer to Section 5.3.13: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	-	1	-	t _{TIMxCLK}
	Time resolution time	f _{TIMxCLK} = 24 MHz	41.7	-	ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
	frequency on CHx ⁽²⁾	f _{TIMxCLK} = 24 MHz	0	12	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
tcounter	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
	when the internal clock is selected	f _{TIMxCLK} = 24 MHz	i	2730	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
	iviaximum possible count	f _{TIMxCLK} = 24 MHz	-	178	s

Table 47. TIMx characteristics

5.3.17 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 48* are preliminary values derived from tests performed under the ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 9*.

The STM32F100xx value line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 48*. Refer also to *Section 5.3.13: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM5, TIM15, TIM16 and TIM17 timers

^{2.} CHx is used as a general term to refer to CH1 to CH4 for TIM1, TIM2, TIM3, TIM4 and TIM5, to the CH1 to CH2 for TIM15, and to CH1 for TIM16 and TIM17.

Device marking for LQFP100

The following figure shows the device marking for the LQFP100 package.

Product identification⁽¹⁾

STM32F100

Revision code

Pin 1 identifier

Optional gate mark

Revision code

Pin 1 identifier

Figure 43.LQFP100 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

MSv36572V1

Using the values obtained in $Table 60 T_{Jmax}$ is calculated as follows:

For LQFP100, 40 °C/W

$$T_{Jmax}$$
 = 115 °C + (40 °C/W × 134 mW) = 115 °C + 5.4 °C = 120.4 °C

This is within the range of the suffix 7 version parts ($-40 < T_J < 125$ °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 61: Ordering information scheme).

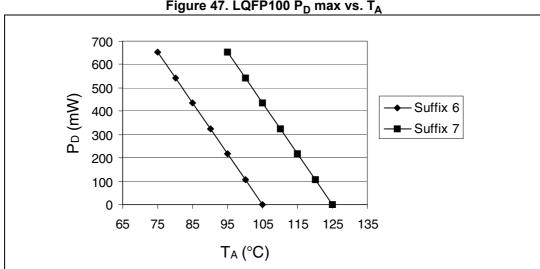


Figure 47. LQFP100 P_D max vs. T_A