

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C31
Core Size	8-Bit
Speed	10MHz
Connectivity	EBI/EMI, Serial Port
Peripherals	LVD, POR, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	576 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 7x8b; D/A 11x8b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w78e378

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. PIN DESCRIPTION

PIN NAME	I/O	DESCRIPTION
		Chip reset input (active low) input &
	1/0	Internal reset output (generated by WDT or power low)
RESET	1/0	TTL Schmitt trigger input, internal pull-up ~30 K Ω
		IOL = +12 mA @VOL = 0.45V
Vdd	-	Positive power supply
Vss	-	Ground
Vss	-	Ground
OSCOUT	0	Output from the inverting oscillator amplifier
OSCIN	Ι	Input to the inverting oscillator amplifier, 10 MHz max.
		Hsync input
Hin	I	TTL Schmitt trigger input , w/o PMOS
		VIH/VIL = 2.0V/0.8V, V+/ V- = ~1.6V/ 1.1V
		Vsync input
Vin	I	TTL Schmitt trigger input, w/o PMOS
		VIH/VIL = 2.0V/0.8V, V+/ V- = ~1.6V/ 1.1V
	I/O	General purpose I/O, DAC0 special function output
P 1.0 (DAC0)		Open-drain output, sink current: 15 mA
	I/O	General purpose I/O, DAC1 special function output
FI.T (DACT)		Open-drain output, sink current: 15 mA
	I/O	General purpose I/O, DAC2 special function output
F 1.2 (DAC2)		Open-drain output, sink current: 4 mA
	I/O	General purpose I/O, DAC3 special function output
F 1.3 (DAC3)		Open-drain output, sink current: 4 mA
	1/0	General purpose I/O, DAC4 special function output
P1.4 (DAC4)	1/0	Open-drain output, sink current: 4 mA
P1.5 (DAC5)		General purpose I/O, DAC5 special function output
	1/0	Open-drain output, sink current: 4 mA
	1/0	General purpose I/O, DAC6 special function output
F 1.0 (DACO)	1/0	Open-drain output, sink current: 4 mA
	I/O	General purpose I/O, DAC7 special function output
P1.7 (DAC7)		Open-drain output, sink current: 4 mA

W78E378

Pin Description, Continued

PIN NAME	I/O	DESCRIPTION
		General purpose I/O, ADC input channel 4
F3.5 (ADC4, 10)	1/0	Open-drain output, sink current: 4 mA
	1/0	General purpose I/O, ADC input channel 5
F3.0 (ADC5, TT)	10	Open-drain output, sink current: 4 mA
	1/0	General purpose I/O, ADC input channel 6
F 3.7 (ADC0)	1/0	Open-drain output, sink current: 4 mA
	1/0	P4.0 Output, HFI Input
14.0 (1111)	1/0	Sink/Source current: 4 mA/-4 mA
D/ 1	0	P4.1 Output
14.1	0	Sink/Source current: 4 mA/-4 mA
P4 2	0	P4.2 Output
1 4.2		Sink/Source current: 4 mA/-4 mA
P4 3	Ο	P4.3 Output
1 4.5		Sink/Source current: 4 mA/-4 mA
	I/O	P4.4 Output, SIO2 port serial clock I/O
		Schmitt trigger input
F4.4 (SCLZ)		VIH/VIL = 0.7 VDD/0.3 VDD, V+/V- = ~0.6 VDD/0.4 VDD
		Open-drain output, sink current: 8 mA
		P4.5 Output, SIO2 port serial data I/O
P4 5 (SDA2)	1/0	Schmitt trigger input
P4.3 (3DAZ)	1/0	VIH/VIL = 0.7 VDD/0.3 VDD, V+/V- = ~0.6 VDD/0.4 VDD
		Open-drain output, sink current: 8 mA
P4.6	0	P4.6 Output
	0	Sink/Source current: 4 mA/-4 mA
	0	P4.7 Output, HFO Output
F4.7 (NFU)		Sink/Source current: 4 mA/-4 mA

5. BLOCK DIAGRAM

6. FUNCTIONAL DESCRIPTION

6.1. Address Space

Program/Data/SFRs Address Space

6.2.	SFRs	accessed	using	'Direct	Addressing'
------	------	----------	-------	---------	-------------

	REGISTER	ADDRESS	BITS	POWER ON RESET	RESET	R/W
1	A*	E0h	8	00h	00h	R/W
2	B*	F0h	8	00h	00h	R/W
3	PSW*	D0h	8	00h	00h	R/W
4	SP	81h	8	00h	00h	R/W
5	DPL	82h	8	00h	00h	R/W
6	DPH	83h	8	00h	00h	R/W
7	IE*	A8h	8	00h	00h	R/W
8	IP*	B8h	8	00h	00h	R/W
9	TCON*	88h	8	00h	00h	R/W
10	TMOD	89h	8	00h	00h	R/W
11	TL0	8Ah	8	00h	00h	R/W
12	TH0	8Ch	8	00h	00h	R/W
13	TL1	8Bh	8	00h	00h	R/W
14	TH1	8Dh	8	00h	00h	R/W
15	PCON	87h	8	00h	x0h	R/W

BIT	NAME	FUNCTION
		A-to-D Conversion START control
0	ADCSTRT	Set by S/W to start conversion.
		Cleared by H/W while conversion completed (read SOARH.6 to check).
1	ADCS0	ADC channel Select bit 0
2	ADCS1	ADC channel Select bit 1
3	ENDDC1	Enable DDC1
		H-Clamp Edge Select
4	HCES	0: Select leading edge of restored Hsync
		1: Select trailing edge of restored Hsync
5	HCWS	H-Clamp Width Select bit
6	DUMMYEN	Dummy signal Enable
7	VSDIS	Vsync Separator Disable, 0: Enable, 1: Disable

* CTRL2: Control Register 2 (Write Only)

BIT	NAME	FUNCTION
0	HSDS	HSync Polarity Select
0	11353	0: Positive, 1: Negative
1		VSync Polarity Select
I	VOFO	0: Positive, 1: Negative
2	HDUMS0	H Dummy frequency Select 0
3	VDUMS	V Dummy frequency Select
4	DDC1B9	Bit 9 in DDC1 mode
5	WDTEN	Enable Watch Dog Timer
6	SOAHDIS	Disable SOA low to high detection
7	OSCHI	OSC freq. Higher than 10 MHz

* **CTRL3**: Control Register 3 (Write Only)

BIT	NAME	FUNCTION
		Enable HF input/output for P4.0/P4.7, respectively
0	ENHFU	0: Disable, 1: Enable
1	HDUMS1	H Dummy frequency Select 1
2		Select HFO polarity
2	HFU_PUL	0: Positive, 1: Negative
2		Select HFO output freq.
	HFO_HALF	0: the same as HFI, 1: half of the HFI
4	4 ENBNK1	Select on-chip ext. RAM bank
4		0: Bank 0, 1: Bank 1
5–7	-	-

*HFCOUNTH: Horizontal frequency counter register, high byte (Read Only)

BIT	NAME	FUNCTION
0	HF8	H frequency count bit 8
1	HF9	H frequency count bit 9
2	HF10	H frequency count bit 10
3	HF11	H frequency count bit 11
4–5	-	-
6	NOH	Set by hardware if no Hin signal
7	HPOL	Hin polarity. 0: Positive, 1: Negative

***VFCOUNTL**: Vertical frequency counter register, low byte (Read Only)

BIT	NAME	FUNCTION
0	VF0	V frequency count bit 0
1	VF1	V frequency count bit 1
2	VF2	V frequency count bit 2
3	VF3	V frequency count bit 3
4	VF4	V frequency count bit 4
5	VF5	V frequency count bit 5
6	VF6	V frequency count bit 6
7	VF7	V frequency count bit 7

*VFCOUNTH: Vertical frequency counter register, high byte (Read Only)

BIT	NAME	FUNCTION
0	VF8	V frequency count bit 8
1	VF9	V frequency count bit 9
2	VF10	V frequency count bit 10
3	VF11	V frequency count bit 11
4–5	-	-
6	NOV	Set by hardware if no VIN signal
7	VPOL	VIN polarity. 0: Positive, 1: Negative

* **INTVECT**: Interrupt Vector Register (Read Only)

BIT	NAME	FUNCTION	
0	SCLINT	SCL pin pulled low detected	
1	ADCINT	ADC conversion completed	
2	DDC1INT	DDC1 port buffer empty	
3	SOAINT	SOA condition happen	
		Vsync pulse detected or NOV = 1 (V counter overflow)	
4	VEVENT	(The VEVENT is designed to be generated only 'one' time	
		if no Vsync input.)	
5	PARAINT	Parabola Interrupt generated	

* **INTMSK:** Interrupt Mask Register (Read/Write)

BIT	NAME	FUNCTION	
0	MSCLINT	Set/clear to enable/disable SCLINT	
1	MADCINT	Set/clear to enable/disable ADCINT	
2	MDDC1INT	Set/clear to enable/disable DDC1INT	
3	MSOAINT	Set/clear to enable/disable SOAINT	
4	MVEVENT	Set/clear to enable/disable VEVENT	
5	MPARAINT	Set/clear to enable/disable PARAINT	

* INTCLR (Write Only)

BIT	NAME	FUNCTION	
0	CSCLINT	Write 1 to this bit to clear SCLINT in INTVECT	
1	CADCINT	Write 1 to this bit to clear ADCINT in INTVECT	
2	CDDC1INT	Write 1 to this bit to clear DDC1INT in INTVECT	
3	CSOAINT	Write 1 to this bit to clear SOAINT in INTVECT	
4	CVEVENT	Write 1 to this bit to clear VEVENT in INTVECT	
5	CPARAINT	Write 1 to this bit to clear PARAINT in INTVECT	

***PARAL**: Parabola interrupt generator register, low byte (Read/Write)

BIT	NAME	FUNCTION	
0	PARA0	PARAINT period register bit 0	
1	PARA1	PARAINT period register bit 1	
2	PARA2	PARAINT period register bit 2	
3	PARA3	PARAINT period register bit 3	
4	PARA4	PARAINT period register bit 4	
5	PARA5	PARAINT period register bit 5	
6	PARA6	PARAINT period register bit 6	
7	PARA7	PARAINT period register bit 7	

***PARAH**: Parabola interrupt generator register, high byte (Read/Write)

BIT	NAME	FUNCTION	
0	PARA8	PARAINT period register bit 8	
1	PARA9	PARAINT period register bit 9	
2	PARA10	PARAINT period register bit 10	
3	PARA11	PARAINT period register bit 11	
4	PARA12	PARAINT period register bit 12	

BIT	NAME	FUNCTION	
0	SL0	SOA Low register bit 0	
1	SL1	SOA Low register bit 1	
2	SL2	SOA Low register bit 2	
3	SL3	SOA Low register bit 3	
4	SL4	SOA Low register bit 4	
5	SL5	SOA Low register bit 5	
6	(OVL)	OVL = 1: current H count larger than SOARL, for test	
7	(OVH)	OVH = 1: current H count smaller than SOARH, for test	

*SOARL: SOA register, low byte (Read/Write)

*SOARH: SOA register, high byte (Read/Write)

BIT	NAME	FUNCTION	
0	SH0	SOA High register bit 0	
1	SH1	SOA High register bit 1	
2	SH2	SOA High register bit 2	
3	SH3	SOA High register bit 3	
4	SH4	SOA High register bit 4	
5	SH5	SOA High register bit 5	
6	(ADCSTRT)	ADCSTRT bit status, for test	
7	(WDTQ10)	Watch Dog Timer, bit 10, for test	

* ADC	Result of the A-to-D conversion.
* DAC0~DAC8	8-bit PWM static DAC register.
* DAC9~DAC10	8-bit PWM dynamic DAC register.
* WDTCLR	Watchdog-timer-clear register, without real hardware but an address.
	Writing any value to WDTCLR will clear the watchdog timer.
* SOACLR	Safe-Operation-Area Clear register, without real hardware but an address.
	Writing any value to SOACLR will clear the SOAINT.
* DDC1	DDC1 latch buffer.
* S1CON	SIO1 control register.
* S1STA	SIO1 status register.
* S1DAT	SIO1 data register.
* S1ADR1, S1ADR2	SIO1 address registers.
* S2CON	SIO2 control register.
* S2STA	SIO2 status register.
* S2DAT	SIO2 data register.
* S2ADR1, S2ADR2	SIO2 address registers.

6.4. Modified Timer 0 & Timer 1

6.5. DDC1/SIO1 and SIO2 Ports

1. DDC1/SIO1 port

• ENDDC1 = 1, used as DDC1 (Display Data Channel) port:

To support DDC1, use Vsync signal for shift clock and P3.0 (SDA) for data output.

• ENDDC1 = 0, used as SIO1 port: To support DDC2B/2B+/2Bi/2AB, use P3.1 (SCL) for serial clock and P3.0 (SDA) for serial data.

SCLINT interrupt is generated when SCL (P3.1) has a high-to-low transition and then keeps at low for $16 \times 1/Fosc.$

Fosc	8 MHz	10 MHz		
SCL low	2 μS	1.6 μS		

2. SIO2 port:

To support DDC2B/2B+/2Bi/2AB, use P4.4 (SCL) for serial clock and P4.5 (SDA) for serial data.

DDC1 Port

The DDC1 is a serial output port that supports DDC1 communication. To enable the DDC1 port, ENDDC1 (bit 3 of CTRL1) should be set to '1'. Once previous eight data bits in the shift register and one null bit (the 9th bit) are shifted out to the SDA sequentially on each rising edge of the VIN signal, the DDC1 control circuit loads the next data byte from the latch buffer (the DDC1 register) to the shift register and generates a DDC1INT signal to the CPU. In the interrupt service routine, the S/W should fetch the next byte of EDID data and write it to the DDC1 register. If ENDDC1 is cleared, the shift register is stopped, and the SDA output is kept high. The bit DDC1B9 (bit 4 of CTRL2) decides the 9th bit in a DDC transmission. If DDC1B9 is set, the 9th bit will be '1', otherwise '0'.

W78E378

Unbond Electronics Corp.

6.6. Parabola Interrupt Generator

The parabola interrupt generator is a 13-bit auto-reload timer, which generates an interrupt to the CPU periodically for software to load the parabola waveform data to the dynamic DACs (DAC8–DAC10). The software should calculate the value of the PARAH and PARAL registers by: (Vcount \times 16) \div segment number. The segment number is the number of integration segments between two Vsync pulses. The interrupt interval is programmable:

- Time base = 1/Fosc
- Programmable interrupt period = Time base × (PARAH × 256 + PARAL + 1)
- Maximum period = Time base × 8192
- Note: Zero value in [PARAH, PARAL] is inhibited.

A-to-D Converter (ref. Application Note in Appendix A.)

One 4-bit Analog-to-Digital Converter.

- Conversion time = $(6/Fosc) \times 128$ sec.
- 7 channels selected by an analog multiplexer

(ADCS2, ADCS1, ADCS0)	(0, 0, 0)	(0, 0, 1)	(0, 1, 0)	(0, 1, 1)	(1, 0, 0)	(1, 0, 1)	(1, 1, 0)
Selected Channel	ADC0	ADC1	ADC2	ADC3	ADC4	ADC5	ADC6

The conversion of the ADC is started by setting bit ADCSTRT in CTRL1 by software. When the conversion is completed, the ADCSTRT bit is cleared by hardware automatically, and the ADCINT bit in INTVECT is set by hardware at the same time if MADCINT in INTMSK is set.

PWM DACs

Eight 8-bit Static DACs: DAC0–DAC7

- The PWM frequency FPWM = Fosc ÷ 255
- The duty cycle of the PWM output = Register value ÷ 255
- The DC voltage after the low pass filter = Vcc × duty cycle

Static DAC application circuit:

Electronics Corp.

6.7. Sync Processor

Polarity Detector

The H/V polarity is detected automatically and can be known from HPOL bit (HFCOUNTH.7) and VPOL bit (VFCOUNTH.7).

Fosc	10 MHz
Max. H+V width	(64/Fosc) \times 62 (counter overflow) = 396.8 μ S
Max. V width	(2048/Fosc) × 2 = 409.6 μS

Sync Separator

The Vsync is separated from the composite sync automatically, without any software effort.

Fosc	10 MHz	
Min. V width & Max. H width	$(1/Fosc) \times 64 = 6.4 \ \mu S$	

Horizontal & Vertical Frequency Counter

There are two 12-bit counters which can count H and V frequency automatically. When VEVENT (Vsync frequency counter timeout) interrupt happens, the count value values are latched into the counter registers (HFCOUNTH, HFCOUNTL, VFCOUNTH and VFCOUNTL). And then the S/W may read the count value (H_{COUNT} and V_{COUNT}) from the counter registers to calculate the H and V frequency by the formulas listed below.

V frequency:

The resolution of V frequency counter: VRESOL = $(1/Fosc) \times 64$. The V frequency: VFREQ = $1/(VCOUNT \times VRESOL)$. The lowest V frequency can be detected: Fosc ÷ 262144. (38.1Hz @Fosc =10 MHz)

H frequency:

The resolution of H frequency counter: $HRESOL = (1/Fosc) \div 8$. The H frequency: $HFREQ = 1/(HCOUNT \times HRESOL)$. The lowest H frequency can be detected: $Fosc \div 512$. (19.5 KHz @Fosc = 10 MHz)

Dummy Frequency Generator

The Dummy H and V frequencies are generated for factory burn-in or showing warning message while there are no input frequency.

(HDUMS1, HDUMS0)	(0, 0)	(0, 1)	(1, 0)	(1, 1)	
FdummyH	Fosc/($8 \times 4 \times 8$)	Fosc/($8 \times 2 \times 8$)	Fosc/($8 \times 3 \times 8$)	Fosc/($8 \times 5 \times 8$)	
Hsync width	(8×4) /Fosc	$(8 \times 2)/Fosc$	(8×3) /Fosc	(8×5) /Fosc	

VDUMS	0	1	
FdummyV	FdummyH/ 512	FdummyH/1024	
Vsync width	8/ FdummyH	16/ FdummyH	

W78E378

Hsync width	
Vdummy	

For Fosc = 10 MHz:

(HDUMS1, HDUMS0)	(0, 1)		(1, 0)		(0, 0)		(1, 1)	
FdummyH	78.125 KHz		52.083 KHz		39.063 KHz		31.250 KHz	
Hsync width	1.6 μS		2.4 μS		3.2 μS		4.0 μS	
VDUMS	0	1	0	1	0	1	0	1
Fdummy∨	152.6 Hz	76.3 Hz	101.7 Hz	50.9 Hz	76.3 Hz	38.1 Hz	61.0 Hz	30.5 Hz

H-clamp Pulse Generator

- 1. Leading edge/Trailing edge selectable.
 - * HCES = 0: select leading edge
 - * HCES = 1: select trailing edge

7. ELECTRICAL CHARACTERISTICS

7.1. Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
DC Power Supply	Vdd	-0.3	+7.0	V
Input Voltage	Vin	Vss -0.3	VDD +0.3	V
Input Current	lin	-100	+100	mA
Operating Temperature	Та	0	70	°C
Storage Temperature	TST	-55	150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

7.2. D.C. Characteristics

VDD-Vss= 5V \pm 10%, TA = 25°C, Fosc = 10 MHz, unless otherwise specified.

PARAMETER	SYM	SPECIFICATION			UNIT	TEST CONDITIONS	
	5 m.	MIN.	TYP.	MAX.			
Operating Voltage	Vdd	4.5	5	5.5	V	All function must pass!	
Operating Current	IDD	-	-	30	mA	No load, VDD = 5.5V	
Power-down Current	IPD	-	-	100	μA	No load, VDD = 5.5V	
Input							
Input Current	Цілій	-75	-	-10		VDD = 5.5V, VIN = 0V	
P2, P3.2–P3.4, P4.0	IINT	-10	-	+10	μΑ	VDD = 5.5V, VIN = 5.5V	
	lin2	-300	-	-100	μA	VDD = 5.5V, VIN = 0V	
Input Current RESET		-10	-	+10		VDD = 5.5V, VIN = 5.5V	
Input Leakage Current							
P1, P2.4–P2.7(S.F. enabled)	Ιικ	-10	_	+10	цΑ	VDD = 5.5V,	
P3.0, P3.1, P3.5–P3.7, P4.4, P4.5 Hin, Vin	ILIX				μ	0V <vin< td="" vdd<=""></vin<>	
Logical 1-to-0 Transition Current	Itl	-650	-	-100	μA	Vdd = 5.5V, Vin = 2.0V	
P2, P3.2–P3.4							
Input Low Voltage							
P1, P2, P3 (except P3.0 & P3.1), P4.0, Hin, Vin,	VIL1	0	-	0.8	V	VDD = 4.5V	
RESET , OSCIN							

8. APPENDIX A. APPLICATION NOTE FOR USAGE OF ADC

To use the ADC, users should pay attention to the following points:

- (1) According to the absolute maximum ratings, the input voltage should not exceed VDD +0.3V, especially for the ADC channel pins (P2.4–P2.7 & P3.5–P3.7). If a voltage over VDD +0.3V exists on any of these ADC channel pins, the AD conversion will fail.
- (2) Owing to the CMOS process, the ADC curve of some chip might differ from those of the others. So, before using the ADC, the S/W should do the ADC calibration described below.
 - Step 1. Set (ADCS2, ADCS1, ADCS0, ADCcal) = (1, 1, 1, 0) and then do AD coversion to get the ADC value for the on-chip **0.948V** input. Suppose it is **A**.
 - Step 2. Set (ADCS2, ADCS1, ADCS0, ADCcal) = (1, 1, 1, 1) and then do AD coversion to get the ADC value for the on-chip **2.924V** input. Suppose it is **B**.
 - Step 3. Because the ADC curve in the usable range is linear, any V and X should meet the formula:

(X-A)/(V-0.948) = (B-A)/(2.924-0.948),

where **V** is the key voltage (designed by users and thus known) and **X** is its predicted ADC value. Then, we can get **X** = **A** + (V-0.948)(B-A)/(2.924-0.948), regardless of V > 0.948V or < 0.948V. (*Of course, some effort should be paid in S/W to find* **X**.)

Step 4. Suppose there are N keys used, the N predicted ADC values for these keys can be found.

After finding these N predicted ADC values, the S/W can recognize which key is pressed by comparing the ADC value of this key with the set of predicted values (found previously).

** Note: To get the exact on-chip calibration voltages (0.948V and 2.924V), the V_{DD} should be 5.0V as close as possible.

Electronics Corp.

Test strategy before shipping:

(1) Vi = 0V => ADC < 20

(2) Vi = 0.8V => ADC > 25

- (3) Vi = 3.2V => ADC < 248
- (4) Vi = 4.4V => ADC = 255
- (5) 0.8V < Vi < 3.2V, 25 points (step 0.1V) will be tested. All test points should be recognized correctly.

Comment:

- a. (1) guarantees 0V input can be recognized (ADC value < 20).
- b. (4) guarantees 5V input can be recognized (ADC value = 255).
- c. (2), (3) and (5) guarantee linear (with 4 bits at least) within the usable range (0.8V to 3.2V).

10. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	August, 2004	-	Initial issued

Headquarters No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/

 Taipei Office

 9F, No.480, Rueiguang Rd.,

 Neihu District, Taipei, 114,

 Taiwan, R.O.C.

 TEL: 886-2-8177-7168

 FAX: 886-2-8751-3579

Winbond Electronics Corporation America 2727 North First Street, San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798

Winbond Electronics Corporation Japan 7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800 Winbond Electronics (Shanghai) Ltd. 27F, 2299 Yan An W. Rd. Shanghai, 200336 China TEL: 86-21-62365999 FAX: 86-21-62365998

Winbond Electronics (H.K.) Ltd. Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.