
Renesas Electronics America Inc - DF61656CN35FTV Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor H8SX

Core Size 32-Bit Single-Core

Speed 35MHz

Connectivity SCI, SmartCard

Peripherals DMA, PWM, WDT

Number of I/O 82

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 24K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 8x10b; D/A 2x8b

Oscillator Type Internal

Operating Temperature -20°C ~ 75°C (TA)

Mounting Type Surface Mount

Package / Case 120-TQFP

Supplier Device Package 120-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/df61656cn35ftv

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/df61656cn35ftv-4431561
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section 2 CPU

Rev. 2.00 Jun. 28, 2007 Page 32 of 864

REJ09B0341-0200

2.6 Data Formats

The H8SX CPU can process 1-bit, 4-bit BCD, 8-bit (byte), 16-bit (word), and 32-bit (longword)
data.

Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, …, 7) of byte
operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit
BCD data.

2.6.1 General Register Data Formats

Figure 2.12 shows the data formats in general registers.

7 6 5 4 3 2 1 0 Don't care
7 0

Don't care 7 6 5 4 3 2 1 0

4 37 0

7 0

Don’t careUpper Lower

LSB

MSB LSB

1-bit data

1-bit data

4-bit BCD data

4-bit BCD data

Byte data

Byte data

Word data

Word data

Longword data

RnH

RnL

RnH

RnL

RnH

RnL

Rn

En

ERn

MSB

Don't care Upper Lower
4 37 0

Don't care
7 0

Don't care
7 0

General register ER
General register E
General register R
General register RH

[Legend]
ERn:
En:
Rn:
RnH:

015

MSB LSB

0

LSB

1516

MSB

31

En

Section 6 Bus Controller (BSC)

 Rev. 2.00 Jun. 28, 2007 Page 141 of 864

 REJ09B0341-0200

Bus cycle

T1 T2

Section 10 16-Bit Timer Pulse Unit (TPU)

Rev. 2.00 Jun. 28, 2007 Page 440 of 864

REJ09B0341-0200

Bit Bit Name
Initial
value R/W Description

2 TGFC 0 R/(W)* Input Capture/Output Compare Flag C

Status flag that indicates the occurrence of TGRC input
capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always
read as 0 and cannot be modified.

[Setting conditions]

• When TCNT = TGRC while TGRC is functioning as

output compare register

• When TCNT value is transferred to TGRC by input
capture signal while TGRC is functioning as input

capture register

[Clearing conditions]

• When DTC is activated by a TGIC interrupt while the

DISEL bit in MRB of DTC is 0

• When 0 is written to TGFC after reading TGFC = 1
(When the CPU is used to clear this flag by writing 0

while the corresponding interrupt is enabled, be sure

to read the flag after writing 0 to it.)

1 TGFB 0 R/(W)* Input Capture/Output Compare Flag B

Status flag that indicates the occurrence of TGRB input
capture or compare match.

[Setting conditions]

• When TCNT = TGRB while TGRB is functioning as

output compare register

• When TCNT value is transferred to TGRB by input

capture signal while TGRB is functioning as input

capture register

[Clearing conditions]

• When DTC is activated by a TGIB interrupt while the

DISEL bit in MRB of DTC is 0

• When 0 is written to TGFB after reading TGFB = 1

(When the CPU is used to clear this flag by writing 0

while the corresponding interrupt is enabled, be sure

to read the flag after writing 0 to it.)

Section 11 Programmable Pulse Generator (PPG)

Rev. 2.00 Jun. 28, 2007 Page 510 of 864

REJ09B0341-0200

11.4.8 Pulse Output Triggered by Input Capture

Pulse output can be triggered by TPU input capture as well as by compare match. If TGRA
functions as an input capture register in the TPU channel selected by PCR, pulse output will be
triggered by the input capture signal.

Figure 11.11 shows the timing of this output.

Pφ

N

M N

TIOC pin

Input capture
signal

NDR

PODR

M NPO

Figure 11.11 Pulse Output Triggered by Input Capture (Example)

11.5 Usage Notes

11.5.1 Module Stop State Setting

PPG operation can be disabled or enabled using the module stop control register. The initial value
is for PPG operation to be halted. Register access is enabled by clearing the module stop state. For
details, refer to section 20, Power-Down Modes.

11.5.2 Operation of Pulse Output Pins

Pins PO0 to PO15 are also used for other peripheral functions such as the TPU. When output by
another peripheral function is enabled, the corresponding pins cannot be used for pulse output.
Note, however, that data transfer from NDR bits to PODR bits takes place, regardless of the usage
of the pins.

Pin functions should be changed only under conditions in which the output trigger event will not
occur.

Section 18 Flash Memory (0.18-µm F-ZTAT Version)

 Rev. 2.00 Jun. 28, 2007 Page 687 of 864

 REJ09B0341-0200

(2) Programming Procedure in User Program Mode

The procedures for download of the on-chip program, initialization, and programming are shown
in figure 18.12.

Select on-chip program
to be downloaded and

specify download
destination by FTDAR

Set FKEY to H'A5

Set SCO to 1 after initializing
VBR and execute download

DPFR = 0?

Yes

No

Download error processing

Set the FPEFEQ
parameter

Yes

End programming
procedure program

FPFR = 0?
No

Disable interrupts and bus
master operation
other than CPU

Clear FKEY to 0

Programming end processing

JSR FTDAR setting + 16

Programming
JSR FTDAR setting + 16

Yes

FPFR = 0
No

Clear FKEY and
programming

error processing

Yes

Required data
programming is

completed?

No

Set FKEY to H'5A

Clear FKEY to 0

1.

2.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

3.

D
ow

nl
oa

d
In

iti
al

iz
at

io
n

P
ro

gr
am

m
in

g

Initialization
JSR FTDAR setting + 32

Initialization error processing

Set parameters to ER1
and ER0

(FMPAR and FMPDR)

1

1

 Start programming
procedure program

Figure 18.12 Programming Procedure in User Program Mode

Section 21 List of Registers

Rev. 2.00 Jun. 28, 2007 Page 806 of 864

REJ09B0341-0200

Register
Abbreviation Reset

Module
Stop state Sleep

All-Module-
Clock-Stop

Software
Standby

Hardware
Standby Module

SRAMCR Initialized     Initialized BSC

BROMCR Initialized     Initialized

MPXCR Initialized     Initialized

RAMER Initialized     Initialized

MDCR Initialized     Initialized

SYSCR Initialized     Initialized

SCKCR Initialized     Initialized

SBYCR Initialized     Initialized

MSTPCRA Initialized     Initialized

MSTPCRB Initialized     Initialized

MSTPCRC Initialized     Initialized

SYSTEM

SEMR_2 Initialized     Initialized SCI_2

SMR_4 Initialized     Initialized SCI_4

BRR_4 Initialized     Initialized

SCR_4 Initialized     Initialized

TDR_4 Initialized Initialized  Initialized Initialized Initialized

SSR_4 Initialized Initialized  Initialized Initialized Initialized

RDR_4 Initialized Initialized  Initialized Initialized Initialized

SCMR_4 Initialized     Initialized

FCCS Initialized     Initialized FLASH

FPCS Initialized     Initialized

FECS Initialized     Initialized

FKEY Initialized     Initialized

FMATS Initialized     Initialized

FTDAR Initialized     Initialized

TCR_2 Initialized     Initialized TMR_2

TCR_3 Initialized     Initialized TMR_3

TCSR_2 Initialized     Initialized TMR_2

TCSR_3 Initialized     Initialized TMR_3

TCORA_2 Initialized     Initialized TMR_2

TCORA_3 Initialized     Initialized TMR_3

TCORB_2 Initialized     Initialized TMR_2

TCORB_3 Initialized     Initialized TMR_3

