

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	35MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, PWM, WDT
Number of I/O	82
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	120-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df61656n35ftv

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Instruction	Size	Function
DIVU	W/L	$Rd \div Rs \to Rd$
		Performs unsigned division on data in two general registers: either 16 bits \div 16 bits \rightarrow 16-bit quotient, or 32 bits \div 32 bits \rightarrow 32-bit quotient.
DIVXS	B/W	$Rd \div Rs \to Rd$
		Performs signed division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder, or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder.
DIVS	W/L	$Rd \div Rs \to Rd$
		Performs signed division on data in two general registers: either 16 bits \div 16 bits \rightarrow 16-bit quotient, or 32 bits \div 32 bits \rightarrow 32-bit quotient.
CMP	B/W/L	(EAd) – #IMM, (EAd) – (EAs)
		Compares data between immediate data, general registers, and memory and stores the result in CCR.
NEG	B/W/L	0-(EAd) o (EAd)
		Takes the two's complement (arithmetic complement) of data in a general register or the contents of a memory location.
EXTU	W/L	(EAd) (zero extension) \rightarrow (EAd)
		Performs zero-extension on the lower 8 or 16 bits of data in a general register or memory to word or longword size.
		The lower 8 bits to word or longword, or the lower 16 bits to longword can be zero-extended.
EXTS	W/L	(EAd) (sign extension) \rightarrow (EAd)
		Performs sign-extension on the lower 8 or 16 bits of data in a general register or memory to word or longword size.
		The lower 8 bits to word or longword, or the lower 16 bits to longword can be sign-extended.
TAS	В	@ERd – 0, 1 \rightarrow (<bit 7=""> of @EAd)</bit>
		Tests memory contents, and sets the most significant bit (bit 7) to 1.
MAC		$(EAs) \times (EAd) + MAC \rightarrow MAC$
		Performs signed multiplication on memory contents and adds the result to MAC.
CLRMAC	_	$0 \rightarrow MAC$
		Clears MAC to zero.
LDMAC		$Rs \rightarrow MAC$
		Loads data from a general register to MAC.
STMAC		$MAC \rightarrow Rd$
		Stores data from MAC to a general register.

Bit	Bit Name	Initial Value	R/W	Descriptions
15		0	R	Reserved
14	_	1	R	These are read-only bits and cannot be modified.
13	_	0	R	
12	_	1	R	
11	MDS3	Undefined*	R	Mode Select 3 to 0
10	MDS2	Undefined*	R	These bits indicate the operating mode selected by
9	MDS1	Undefined*	R	the mode pins (MD2 to MD0) (see table 3.2).
8	MDS0	Undefined*	R	When MDCR is read, the signal levels input on pins MD2 to MD0 are latched into these bits. These latches are released by a reset.
7	_	0	R	Reserved
6		1	R	These are read-only bits and cannot be modified.
5	—	0	R	
4	_	1	R	
3		Undefined*	R	
2		Undefined*	R	
1	_	Undefined*	R	
0		Undefined*	R	

Note: * Determined by pins MD2 to MD0.

Table 3.2Settings of Bits MDS3 to MDS0

MCU Operating		Mode Pi	ns		MDCR				
Mode	MD2	MD1	MD0	MDS3	MDS2	MDS1	MDS0		
1	0	0	1	1	1	0	1		
2	0	1	0	1	1	0	0		
4	1	0	0	0	0	1	0		
5	1	0	1	0	0	0	1		
6	1	1	0	0	1	0	1		
7	1	1	1	0	1	0	0		

Figure 6.20 Example of Wait Cycle Insertion Timing

6.9.4 I/O Pins Used for Address/Data Multiplexed I/O Interface

Table 6.19 shows the pins used for the address/data multiplexed I/O Interface.

Table 6.19 I/O Pins for Address/Data Multiplexed I/O Interface

Dia	When Byte Control SRAM is	News	10	Function
	Specified	Name	1/0	Function
CSn	CSn	Chip select	Output	Chip select (n = 3 to 7) when area n is specified as the address/data multiplexed I/O space
AS/AH	AH*	Address hold	Output	Signal to hold an address when the address/data multiplexed I/O space is specified
RD	RD	Read strobe	Output	Signal indicating that the address/data multiplexed I/O space is being read
LHWR/LUB	LHWR	Low-high write	Output	Strobe signal indicating that the upper byte (D15 to D8) is valid when the address/data multiplexed I/O space is written
LLWR/LLB	LLWR	Low-low write	Output	Strobe signal indicating that the lower byte (D7 to D0) is valid when the address/data multiplexed I/O space is written
D15 to D0	D15 to D0	Address/dat a	Input/ output	Address and data multiplexed pins for the address/data multiplexed I/O space.
				Only D7 to D0 are valid when the 8-bit space is specified. D15 to D0 are valid when the 16-bit space is specified.
A23 to A0	A23 to A0	Address	Output	Address output pin
WAIT	WAIT	Wait	Input	Wait request signal used when the external address space is accessed
BS	BS	Bus cycle start	Output	Signal to indicate the bus cycle start
RD/WR	RD/WR	Read/write	Output	Signal indicating the data bus input or output direction
Note: * Tl	he AH output s address/da	t is multiplexed ta multiplexed	with the I/O, this I	$\overline{\text{AS}}$ output. At the timing that an area is specified pin starts to function as the $\overline{\text{AH}}$ output meaning

Note: * The AH output is multiplexed with the AS output. At the timing that an area is specified as address/data multiplexed I/O, this pin starts to function as the AH output meaning that this pin cannot be used as the AS output. At this time, when other areas set to the basic bus interface is accessed, this pin does not function as the AS output. Until an area is specified as address/data multiplexed I/O, be aware that this pin functions as the AS output.

(2) Write after Read

If an external write occurs after an external read while bit IDLS0 in IDLCR is set to 1, idle cycles specified by bits IDLCA1 and IDLCA0 when bit IDLSELn in IDLCR is cleared to 0 when IDLSELn = 0, or bits IDLCB1 and IDLCB0 when IDLSELn is set to 1 are inserted at the start of the write cycle (n = 0 to 7).

Figure 6.38 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a conflict occurs in bus cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data conflict is prevented.

Figure 6.38 Example of Idle Cycle Operation (Write after Read)

7.3.3 DMA Offset Register (DOFR)

DOFR is a 32-bit readable/writable register that specifies the offset to update the source and destination addresses. Although different values are specified for individual channels, the same values must be specified for the source and destination sides of a single channel.

Bit	31	30	29	28	27	26	25	24
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	23	22	21	20	19	18	17	16
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	15	14	13	12	11	10	9	8
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SARA4 to SARA0 or DARA4 to	
DARA0	Extended Repeat Area
00000	Not specified
00001	2 bytes specified as extended repeat area by the lower 1 bit of the address
00010	4 bytes specified as extended repeat area by the lower 2 bits of the address
00011	8 bytes specified as extended repeat area by the lower 3 bits of the address
00100	16 bytes specified as extended repeat area by the lower 4 bits of the address
00101	32 bytes specified as extended repeat area by the lower 5 bits of the address
00110	64 bytes specified as extended repeat area by the lower 6 bits of the address
00111	128 bytes specified as extended repeat area by the lower 7 bits of the address
01000	256 bytes specified as extended repeat area by the lower 8 bits of the address
01001	512 bytes specified as extended repeat area by the lower 9 bits of the address
01010	1 kbyte specified as extended repeat area by the lower 10 bits of the address
01011	2 kbytes specified as extended repeat area by the lower 11 bits of the address
01100	4 kbytes specified as extended repeat area by the lower 12 bits of the address
01101	8 kbytes specified as extended repeat area by the lower 13 bits of the address
01110	16 kbytes specified as extended repeat area by the lower 14 bits of the address
01111	32 kbytes specified as extended repeat area by the lower 15 bits of the address
10000	64 kbytes specified as extended repeat area by the lower 16 bits of the address
10001	128 kbytes specified as extended repeat area by the lower 17 bits of the address
10010	256 kbytes specified as extended repeat area by the lower 18 bits of the address
10011	512 kbytes specified as extended repeat area by the lower 19 bits of the address
10100	1 Mbyte specified as extended repeat area by the lower 20 bits of the address
10101	2 Mbytes specified as extended repeat area by the lower 21 bits of the address
10110	4 Mbytes specified as extended repeat area by the lower 22 bits of the address
10111	8 Mbytes specified as extended repeat area by the lower 23 bits of the address
11000	16 Mbytes specified as extended repeat area by the lower 24 bits of the address
11001	32 Mbytes specified as extended repeat area by the lower 25 bits of the address
11010	64 Mbytes specified as extended repeat area by the lower 26 bits of the address
11011	128 Mbytes specified as extended repeat area by the lower 27 bits of the address
111××	Setting prohibited
[Logond]	

RENESAS

Table 7.3 Settings and Areas of Extended Repeat Area

[Legend]

 $\times:$ Don't care

7.5.4 Bus Modes

There are two types of bus modes: cycle stealing and burst.

When an activation source is the auto request, the cycle stealing or burst mode is selected by bit DTF0 in DMDR. When an activation source is the on-chip module interrupt or external request, the cycle stealing mode is selected.

(1) Cycle Stealing Mode

In cycle stealing mode, the DMAC releases the bus every time one unit of transfers (byte, word, longword, or 1-block size) is completed. After that, when a transfer is requested, the DMAC obtains the bus to transfer 1-unit data and then releases the bus on completion of the transfer. This operation is continued until the transfer end condition is satisfied.

When a transfer is requested to another channel during a DMA transfer, the DMAC releases the bus and then transfers data for the requested channel. For details on operations when a transfer is requested to multiple channels, see section 7.5.8, Priority of Channels.

Figure 7.13 shows an example of timing in cycle stealing mode. The transfer conditions are as follows:

- Address mode: Single address mode
- Sampling method of the DREQ signal: Low level detection

DREQ	
Bus cycle	X CPU X CPU X DMAC X CPU X DMAC X CPU X
	Bus released temporarily for the CPU

Figure 7.13 Example of Timing in Cycle Stealing Mode

9.1.2 Data Register (PnDR) (n = 1 to 3, 6, A, B, D to F, H, and I)

DR is an 8-bit readable/writable register that stores the output data of the pins to be used as the general output port.

The initial value of DR is H'00.

Bit	7	6	5	4	3	2	1	0
Bit Name	Pn7DR	Pn6DR	Pn5DR	Pn4DR	Pn3DR	Pn2DR	Pn1DR	Pn0DR
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: The lower six bits are valid and the upper two bits are reserved for port 6 registers. The lower four bits are valid and the upper four bits are reserved for port B registers.

9.1.3 Port Register (PORTn) (n = 1 to 3, 5, 6, A, B, D to F, H, and I)

PORT is an 8-bit read-only register that reflects the port pin state. A write to PORT is invalid. When PORT is read, the DR bits that correspond to the respective DDR bits set to 1 are read and the status of each pin whose corresponding DDR bit is cleared to 0 is also read regardless of the ICR value.

The initial value of PORT is undefined and is determined based on the port pin state.

Bit	7	6	5	4	3	2	1	0
Bit Name	Pn7	Pn6	Pn5	Pn4	Pn3	Pn2	Pn1	Pn0
Initial Value	Undefined							
R/W	R	R	R	R	R	R	R	R

Note: The lower six bits are valid and the upper two bits are reserved for port 6 registers. The lower four bits are valid and the upper four bits are reserved for port B registers.

9.2.12 Port I

(1) PI7/D15, PI6/D14, PI5/D13, PI4/D12, PI3/D11, PI2/D10, PI1/D9, PI0/D8

The pin function is switched as shown below according to the combination of operating mode, bus mode, the EXPE bit, and the PInDDR bit settings.

		Setting			
		Bus Controller	I/O Port		
Module Name	Pin Function	16-Bit Bus Mode	PInDDR		
Bus controller	Data I/O* (initial setting E)	1			
I/O port	PIn output	0	1		
	PIn input (initial setting S)	0	0		

[Legend]

Initial setting E: Initial setting in external extended mode

Initial setting S: Initial setting in single-chip mode

n = 0 to 7

Note: * Valid in external extended mode (EXPE = 1)

Table 10.15 TIOR_1

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_1 Function	TIOCB1 Pin Function
0	0	0	0	Output	Output disabled
0	0	0	1	compare	Initial output is 0 output
				register	0 output at compare match
0	0	1	0	_	Initial output is 0 output
					1 output at compare match
0	0	1	1		Initial output is 0 output
					Toggle output at compare match
0	1	0	0	_	Output disabled
0	1	0	1	_	Initial output is 1 output
					0 output at compare match
0	1	1	0	_	Initial output is 1 output
					1 output at compare match
0	1	1	1		Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input	Capture input source is TIOCB1 pin
				capture register	Input capture at rising edge
1	0	0	1		Capture input source is TIOCB1 pin
					Input capture at falling edge
1	0	1	Х		Capture input source is TIOCB1 pin
					Input capture at both edges
1	1	Х	Х		TGRC_0 compare match/input capture
					Input capture at generation of TGRC_0 compare match/input capture

[Legend] X: Don't care

12.5.6 Timing of Overflow Flag (OVF) Setting

The OVF bit in TCSR is set to 1 when TCNT overflows (changes from H'FF to H'00). Figure 12.12 shows the timing of this operation.

Figure 12.12 Timing of OVF Setting

12.6 Operation with Cascaded Connection

If bits CKS2 to CKS0 in either TCR_0 or TCR_1 are set to B'100, the 8-bit timers of the two channels are cascaded. With this configuration, a single 16-bit timer could be used (16-bit counter mode) or compare matches of the 8-bit channel 0 could be counted by the timer of channel 1 (compare match count mode).

12.6.1 16-Bit Counter Mode

When bits CKS2 to CKS0 in TCR_0 are set to B'100, the timer functions as a single 16-bit timer with channel 0 occupying the upper 8 bits and channel 1 occupying the lower 8 bits.

(1) Setting of Compare Match Flags

- The CMF flag in TCSR_0 is set to 1 when a 16-bit compare match event occurs.
- The CMF flag in TCSR_1 is set to 1 when a lower 8-bit compare match event occurs.

(2) Counter Clear Specification

- If the CCLR1 and CCLR0 bits in TCR_0 have been set for counter clear at compare match, the 16-bit counter (TCNT_0 and TCNT_1 together) is cleared when a 16-bit compare match event occurs. The 16-bit counter (TCNT0 and TCNT1 together) is cleared even if counter clear by the TMRI0 pin has been set.
- The settings of the CCLR1 and CCLR0 bits in TCR_1 are ignored. The lower 8 bits cannot be cleared independently.

(3) Pin Output

- Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR_0 is in accordance with the 16-bit compare match conditions.
- Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR_1 is in accordance with the lower 8-bit compare match conditions.

12.6.2 Compare Match Count Mode

When bits CKS2 to CKS0 in TCR_1 are set to B'100, TCNT_1 counts compare match A for channel 0. Channels 0 and 1 are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clear are in accordance with the settings for each channel.

12.8.3 Conflict between TCNT Write and Increment

If a TCNT input clock pulse is generated during the T_2 state of a TCNT write cycle, the write takes priority and the counter is not incremented as shown in figure 12.14.

Figure 12.14 Conflict between TCNT Write and Increment

12.8.4 Conflict between TCOR Write and Compare Match

If a compare match event occurs during the T_2 state of a TCOR write cycle, the TCOR write takes priority and the compare match signal is inhibited as shown in figure 12.15.

Figure 12.15 Conflict between TCOR Write and Compare Match

Section 13 Watchdog Timer (WDT)

The watchdog timer (WDT) is an 8-bit timer that outputs an overflow signal (\overline{WDTOVF}) if a system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow. At the same time, the WDT can also generate an internal reset signal.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows.

Figure 13.1 shows a block diagram of the WDT.

13.1 Features

- Selectable from eight counter input clocks
- Switchable between watchdog timer mode and interval timer mode
 - In watchdog timer mode

If the counter overflows, the WDT outputs \overline{WDTOVF} . It is possible to select whether or not the entire LSI is reset at the same time.

In interval timer mode

If the counter overflows, the WDT generates an interval timer interrupt (WOVI).

Figure 13.1 Block Diagram of WDT

RENESAS

	Initial		
Bit Name	Value	R/W	Description
WOVF	0	R/(W)*	Watchdog Timer Overflow Flag
			This bit is set when TCNT overflows in watchdog timer mode. This bit cannot be set in interval timer mode, and only 0 can be written.
			[Setting condition]
			 When TCNT overflows (changed from H'FF to H'00) in watchdog timer mode
			[Clearing condition]
			• Reading RSTCSR when WOVF = 1, and then writing 0 to WOVF
RSTE	0	R/W	Reset Enable
			Specifies whether or not this LSI is internally reset if TCNT overflows during watchdog timer operation.
			0: LSI is not reset even if TCNT overflows (Though this LSI is not reset, TCNT and TCSR in WDT are reset)
			1: LSI is reset if TCNT overflows
_	0	R/W	Reserved
			Although this bit is readable/writable, reading from or writing to this bit does not affect operation.
_	All 1	R	Reserved
			These are read-only bits and cannot be modified.
	Bit Name WOVF	Initial ValueWOVF0RSTE0—0—0—All 1	Bit NameInitial ValueR/WWOVF0R/(W)*WOVF0R/WRSTE0R/W—0R/W—All 1R

Note: * Only 0 can be written to this bit, to clear the flag.

14.5.2 Multiprocessor Serial Data Reception

Figure 14.13 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in SCR is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is generated at this time. All other SCI operations are the same as in asynchronous mode. Figure 14.12 shows an example of SCI operation for multiprocessor format reception.

Figure 14.12 Example of SCI Operation for Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

RENESAS

18.4 Block Structure

18.4.1 Block Diagram of H8SX/1657C

Figure 18.4 (1) shows the block structure of the 768-Kbyte user MAT. The heavy-line frames indicate the erase blocks. The thin-line frames indicate the programming units and the values inside the frames stand for the addresses. The user MAT is divided into eleven 64-Kbyte blocks, one 32-Kbyte block, and eight 4-Kbyte blocks. The user MAT can be erased in these divided block units. Programming is done in 128-byte units starting from where the lower address is H'00 or H'80. RAM emulation can be performed in the eight 4-Kbyte blocks.

EB0	H'000000 H'000001 H'000002 \leftarrow Programming unit: 128 bytes \rightarrow	H'00007
Erase unit: 4 Kbytes		
	H'000F80 H'000F81 H'000F82	H'000FF
EB1	H'001000 $\frac{1}{2}$ H'001001 $\frac{1}{2}$ H'001002 $\frac{1}{2}$ \leftarrow Programming unit: 128 bytes \rightarrow	H'00107I
Erase unit: 4 Kbytes	\sim	
	H'001F80 H'001F81 H'001F82	H'001FF
EB2	H'002000 \downarrow H'002001 \downarrow H'002002 \downarrow \leftarrow Programming unit: 128 bytes \rightarrow	H'00207I
Erase unit: 4 Kbytes		
	H'002F80 H'002F81 H'002F82	H'002FF
EB3	H'003000 ¦ H'003001 ¦ H'003002 ¦ \leftarrow Programming unit: 128 bytes \rightarrow	H'00307I
Erase unit: 4 Kbytes		
	H'003F80 H'003F81 H'003F82	H'003FF
EB4	H'004000 H'004001 H'004002 \leftarrow Programming unit: 128 bytes \rightarrow	H'00407I
Erase unit: 4 Kbytes		
	H'004F80 ¦ H'004F81 ¦ H'004F82 ¦ – – – – – – – – – – –	H'004FF
EB5	H'005000 H'005001 H'005002 \leftarrow Programming unit: 128 bytes \rightarrow	H'00507I
Erase unit: 4 Kbytes		
	H'005F80 ¦ H'005F81 ¦ H'005F82 ¦	H'005FF
EB6	H'006000 H'006001 H'006002 ←Programming unit: 128 bytes→	H'00607I
Erase unit: 4 Kbytes	\sim	
	H'006F80 H'006F81 H'006F82	H'006FF
EB7	H'007000 $\frac{1}{2}$ H'007001 $\frac{1}{2}$ H'007002 $\frac{1}{2}$ ← Programming unit: 128 bytes →	H'00707I
Erase unit: 4 Kbytes	\sim	
	H'007F80 H'007F81 H'007F82	H'007FF
EB8	H'008000 $\stackrel{!}{,}$ H'008001 $\stackrel{!}{,}$ H'008002 $\stackrel{!}{,}$ \leftarrow Programming unit: 128 bytes \rightarrow	H'00807I
Erase unit: 32 Kbytes	\approx	
	H'00FF80 H'00FF81 H'00FF82	H'00FFF
EB9	H'010000 ¦ H'010001 ¦ H'010002 ¦ \leftarrow Programming unit: 128 bytes \rightarrow	H'01007
Erase unit: 64 Kbytes		
	H'01FF80 H'01FF81 H'01FF82	H'01FFF
EB10	H'020000 H'020001 H'020002 \leftarrow Programming unit: 128 bytes \rightarrow	H'02007
	H'0AFF80 H'0AFF81 H'0AFF82	H'0AFFF
EB19	H'0B0000 H'0B0001 H'0B0002 \leftarrow Programming unit: 128 bytes \rightarrow	H'0B007
Erase unit: 64 Kbytes		
	H'0BFF80 ¦ H'0BFF81 ¦ H'0BFF82	H'0BFFF

Figure 18.4 User MAT Block Structure of H8SX/1657C (1)

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Module
SMR_2*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/\overline{E} (O/\overline{E})	STOP (BCP1)	MP (BCP0)	CKS1	CKS0	SCI_2
BRR_2									-
SCR_2*1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
TDR_2									_
SSR_2*1	TDRE	RDRF	ORER	FER (ERS)	PER	TEND	MPB	MPBT	_
RDR_2									-
SCMR_2	_	—	_	_	SDIR	SINV	—	SMIF	-
DADR0									D/A
DADR1									_
DACR01	DAOE1	DAOE0	DAE	_		_	_	_	_
PCR	G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	G0CMS0	PPG
PMR	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV	-
NDERH	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	_
NDERL	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0	-
PODRH	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	-
PODRL	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0	-
NDRH* ²	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	_
NDRL* ²	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0	-
NDRH* ²	_	_	_	_	NDR11	NDR10	NDR9	NDR8	_
NDRL* ²	_	_	_	_	NDR3	NDR2	NDR1	NDR0	_
SMR_0*1	C/A (GM)	CHR (BLK)	PE (PE)	O/\overline{E} (O/\overline{E})	STOP (BCP1	MP (BCP0)	CKS1	CKS0	SCI_0
BRR_0									_
SCR_0*1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
TDR_0									_
SSR_0*1	TDRE	RDRF	ORER	FER (ERS)	PER	TEND	MPB	MPBT	_
RDR_0									_
SCMR_0	_	_	_	_	SDIR	SINV	_	SMIF	_
SMR_1*1	C/A (GM)	CHR (BLK)	PE (PE)	O/\overline{E} (O/\overline{E})	STOP (BCP1)	MP (BCP0)	CKS1	CKS0	SCI_1
BRR_1									_
SCR_1*1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_
TDR_1									_
SSR_1*1	TDRE	RDRF	ORER	FER (ERS)	PER	TEND	MPB	MPBT	_
RDR_1									_
SCMR_1	_				SDIR	SINV		SMIF	

Section 22 Electrical Characteristics

22.1 Absolute Maximum Ratings

Table 22.1	Absolute Maximu	m Ratings
-------------------	-----------------	-----------

Item	Symbol	Value	Unit
Power supply voltage	V _{cc}	–0.3 to +4.6	V
	PLV_{cc}		
Input voltage (except for port 5)	V _{in}	–0.3 to V $_{\rm cc}$ +0.3	V
Input voltage (port 5)	V _{in}	–0.3 to AV_{cc} +0.3	V
Reference power supply voltage	V_{ref}	–0.3 to AV _{cc} +0.3	V
Analog power supply voltage	AV_{cc}	-0.3 to +4.6	V
Analog input voltage	V _{AN}	–0.3 to AV_{cc} +0.3	V
Operating temperature	T_{opr}	Regular specifications: -20 to +75*	°C
		Wide-range specifications: -40 to +85*	
Storage temperature	T_{stg}	–55 to +125	°C

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exceeded.

Note: * The operating temperature range during programming/erasing of the flash memory is 0° C to +75°C for regular specifications and 0°C to +85°C for wide-range specifications.

