

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf721-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

6.0 I/O PORTS

There are as many as 18 general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

6.1 **PORTA and TRISA Registers**

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 6-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 6-1 shows how to initialize PORTA.

Reading the PORTA register (Register 6-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISA register (Register 6-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSELA register must be initialized
	to configure an analog channel as a digital
	input. Pins configured as analog inputs
	will read '0'.

EXAMPLE 6-1: INITIALIZING PORTA

BANKSEL PORTA	;
CLRF PORTA	;Init PORTA
BANKSEL ANSELA	;
CLRF ANSELA	;digital I/O
BANKSEL TRISA	;
MOVLW 0Ch	;Set RA<3:2> as inputs
MOVWF TRISA	;and set RA<5:4,1:0>
	;as outputs

6.1.1 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bits WPUA<5:0> enable or disable each pull-up (see Register 6-5). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the RABPU bit of the OPTION_REG register.

6.1.2 INTERRUPT-ON-CHANGE

All of the PORTA pins are individually configurable as an interrupt-on-change pin. Control bits IOCA<5:0> enable or disable the interrupt function for each pin (see Register 6-6). The interrupt-on-change feature is disabled on a Power-on Reset.

For enable interrupt-on-change pins, the present value is compared with the old value latched on the last read of PORTA to determine which bits have changed or mismatched the old value. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RABIF) in the INTCON register. This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- 1. Any read or write of PORTA. This will end the mismatch condition.
- 2. Clear the flag bit RABIF.

A mismatch condition will continue to set flag bit RABIF. Reading or writing PORTA will end the mismatch condition and allow flag bit RABIF to be cleared. The latch holding the last read value is not affected by a MCLR or Brown-out Reset. After these Resets, the RABIF flag will continue to be set if a mismatch is present.

Note: When a pin change occurs at the same time as a read operation on PORTA, the RABIF flag will always be set. If multiple PORTA pins are configured for the interrupt-on-change, the user may not be able to identify which pin changed state.

REGISTER 6-1: PORTA: PORTA REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
		RA5	RA4	RA3 ⁽¹⁾	RA2	RA1	RA0		
bit 7	•	•					bi		
Legend:									
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is clear	ed	x = Bit is unknown				
bit 7-6	Unimplemente	ed: Read as '0'							
bit 5-0	RA<5:0>: POR	TA I/O Pin bit							
	1 = Port pin is >	> Vih							
	0 = Port pin is <	< VIL							

REGISTER 6-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1	R/W-1	U-1	R/W-1	R/W-1	R/W-1
—	— — TRISA		TRISA4	_(1)	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 3	Unimplemented: Read as '1'

Note 1: TRISA<3> is unimplemented and read as 1.

REGISTER 6-3: WPUA: WEAK PULL-UP PORTA REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		WPUA5	WPUA4 WPUA3 ⁽²⁾		WPUA2	WPUA1	WPUA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPUA<5:0>: Weak Pull-up PORTA Control bits

- 1 = Weak pull-up enabled⁽¹⁾
 - 0 = Weak pull-up disabled

Note 1: Enabling weak pull-ups also requires that the RABPU bit of the OPTION_REG register be cleared.

2: If MCLREN = 1, WPUA3 is always enabled.

9.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port Configuration
- · Channel selection
- ADC conversion clock source
- Interrupt control

9.1.1 PORT CONFIGURATION

When converting analog signals, the I/O pin selected as the input channel should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 6.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

9.1.2 CHANNEL SELECTION

There are 14 channel selections available:

- AN<11:0> pins
- Temperature Indicator
- FVR (Fixed Voltage Reference) Output

Refer to Section 11.0 "Temperature Indicator Module" and Section 10.0 "Fixed Voltage Reference" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 9.2 "ADC Operation"** for more information.

9.1.3 CONVERSION CLOCK

The source of the conversion clock is softwareselectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 10 TAD periods as shown in Figure 9-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in Section 23.0 "Electrical Specifications" for more information. Table 9-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)					
ADC ADCS<2:0>		16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/8	001	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8 μS (5)		
Fosc/16	101	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽⁵⁾		
Fosc/32	010	2.0 μs	4.0 μs	8 μs (5)	32.0 μs (3)		
Fosc/64	110	4.0 μs	8 μs (5)	16.0 μs (5)	64.0 μs ⁽³⁾		
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)		

Legend: Shaded cells are outside of the recommended range.

- Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.
 - 5: Recommended values for VDD \leq 2.0V and temperature -40°C to 85°C. The 16.0 μ s setting should be avoided for temperature > 85°C.

12.2 Option Register

REGISTER 12-1: OPTION_REG: OPTION REGISTER

		_							
R/W-1	R/W-1	R/	W-1	R/W-1	R/W-1	R/W-	·1 F	र/W-1	R/W-1
RABPU	INTEDG	Т	DCS	TOSE	PSA	PS2	2	PS1	PS0
bit 7									bit 0
Legend:									
R = Readable	R = Readable bit				U = Unimp	lemented bit	t, read as '0)'	
-n = Value at P	OR	'1' = E	Bit is set		'0' = Bit is	cleared	x =	Bit is unkı	nown
bit 7	RABPU: PO 1 = PORTA (0 = PORTA (RTA or or POR ⁻ or POR ⁻	PORTB Pul FB pull-ups a FB pull-ups a	l-up Enable are disable are enablec	e bit d I by individ	ual PORT la	tch values		
bit 6	INTEDG: Int 1 = Interrupt 0 = Interrupt	errupt E on risin on fallir	dge Select I g edge of IN ng edge of IN	oit IT pin NT pin					
bit 5	TOCS: TMR(1 = Transitio 0 = Internal i) Clock n on T0 nstructi	Source Sele CKI pin on cycle cloo	ect bit ck (Fosc/4)	1				
bit 4	T0SE: TMR(1 = Increment 0 = Increment) Source nt on hig nt on lov	e Edge Sele gh-to-low tra v-to-high tra	ct bit nsition on 7 nsition on 7	FOCKI pin FOCKI pin				
bit 3	PSA: Prescale 1 = Prescale 0 = Prescale	aler Ass er is assi er is assi	gnment bit gned to the gned to the	WDT Timer0 mo	dule				
bit 2-0	PS<2:0>: Pr	escaler	Rate Select	bits					
	Bit	Value	TMR0 Rate	WDT Rate	9				
		000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	_				
TABLE 12-1:	SUMMAR	YOF	REGISTER	S ASSOC			20		
						_			Register

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	RABIE	TMR0IF	INTF	RABIF	37
OPTION_REG	RABPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	20
TMR0	Timer0 module Register								83
TRISA	_	_	TRISA5	TRISA4	_	TRISA2	TRISA1	TRISA0	43

Legend: – = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

FIGURE 13-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL Counting enabled on
T1G_IN	rising edge of T1G
Т1СКІ	
T1GVAL	
TIMER1	N N + 1 N + 2
TMR1GIF	Cleared by software Cleared by hardware on falling edge of T1GVAL

FIGURE 13-6:	TIMER1 GATE SINGLE-	PULSE AND TOGGLE COMBINED MODE
TMR1GE		<u></u>
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	 Set by software Counting enabled on rising edge of T1G 	Cleared by hardware on falling edge of T1GVAL
T1G_IN		
т1СКІ		
T1GVAL	[
TIMER1	N	$\sqrt{N+1}$ $\sqrt{N+2}$ $\sqrt{N+3}$ $\sqrt{N+4}$
TMR1GIF	Cleared by software	Set by hardware on Cleared by falling edge of T1GVAL

15.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (refer to Figure 15-1).

15.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode or when Timer1 is clocked at Fosc, the capture operation may not work.

Note:	Clocking Timer1 from the system clock (Fosc) should not be used in Capture									
	mode. In order for Capture mode to									
	recognize the trigger event on the CCP1									
	pin, Timer1 must be clocked from the									
	Instruction Clock (Fosc/4) or from an									
	external clock source.									

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in Operating mode.

15.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (refer to Example 15-1).

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL CCP1C	ON ;Set Bank bits to point
	;to CCP1CON
CLRF CCP1C	CON ;Turn CCP module off
MOVLW NEW_C	APT_PS;Load the W reg with
	; the new prescaler
	; move value and CCP ON
MOVWF CCP1C	CON ;Load CCP1CON with this
	; value

15.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

If Timer1 is clocked by FOSC/4, then Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

If Timer1 is clocked by an external clock source, then Capture mode will operate as defined in **Section 15.1** "**Capture Mode**".

FIGURE 16-2: AUSART RECEIVE BLOCK DIAGRAM

The operation of the AUSART module is controlled through two registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)

These registers are detailed in Register 16-1 and Register 16-2, respectively.

16.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit of the PIR1 register. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

16.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit of the PIR1 register will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE bit of the PIE1 register was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

16.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRG register and the BRGH bit to achieve the desired baud rate (refer to Section 16.2 "AUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit of the PIR1 register will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit of the PIE1 register was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

17.1.2 SLAVE MODE

For any SPI device acting as a slave, the data is transmitted and received as external clock pulses appear on SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

17.1.2.1 Slave Mode Operation

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready.

The slave has no control as to when data will be clocked in or out of the device. All data that is to be transmitted, to a master or another slave, must be loaded into the SSPBUF register before the first clock pulse is received.

Once eight bits of data have been received:

- · Received byte is moved to the SSPBUF register
- BF bit of the SSPSTAT register is set
- SSPIF bit of the PIR1 register is set

Any write to the SSPBUF register during transmission/ reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

The user's firmware must read SSPBUF, clearing the BF flag, or the SSPOV bit of the SSPCON register will be set with the reception of the next byte and communication will be disabled.

A SPI module transmits and receives at the same time, occasionally causing dummy data to be transmitted/ received. It is up to the user to determine which data is to be used and what can be discarded.

17.1.2.2 Enabling Slave I/O

To enable the serial port, the SSPEN bit of the SSPCON register must be set. If a Slave mode of operation is selected in the SSPM bits of the SSPCON register, the SDI, SDO and SCK pins will be assigned as serial port pins.

For these pins to function as serial port pins, they must have their corresponding data direction bits set or cleared in the associated TRIS register as follows:

- SDI configured as input
- SDO configured as output
- SCK configured as input

Optionally, a fourth pin, Slave Select $\overline{(SS)}$ may be used in Slave mode. Slave Select may be configured to operate on the RC6/SS pin via the SSSEL bit in the APFCON register.

Upon selection of a Slave Select pin, the appropriate bits must be set in the ANSELA and TRISA registers. Slave Select must be set as an input by setting the corresponding bit in TRISA, and digital I/O must be enabled on the SS pin by clearing the corresponding bit of the ANSELA register.

17.1.2.3 Slave Mode Setup

When initializing the SSP module to SPI Slave mode, compatibility must be ensured with the master device. This is done by programming the appropriate control bits of the SSPCON and SSPSTAT registers. These control bits allow the following to be specified:

- SCK as clock input
- Idle state of SCK (CKP bit)
- Data input sample phase (SMP bit)
- Output data on rising/falling edge of SCK (CKE bit)

Figure 17-4 and Figure 17-5 show example waveforms of Slave mode operation.

21.0 INSTRUCTION SET SUMMARY

The PIC16(L)F720/721 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 21-1, while the various opcode fields are summarized in Table 21-1.

Table 21-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

21.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTB instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended consequence of clearing the condition that set the RABIF flag.

TABLE 21-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 21-1: GENERAL FORMAT FOR INSTRUCTIONS

	DC CH	HARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D030A			—	_	0.15 Vdd	V	$1.8V \leq V \text{DD} \leq 4.5V$		
D031		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V \text{DD} \le 5.5 V$		
		with I ² C levels	_	_	0.3 Vdd	V			
	Vih	Input High Voltage	•			•			
		I/O ports:		—	—				
D040		with TTL buffer	2.0	_	_	V	$4.5V \le VDD \le 5.5V$		
D040A			0.25 VDD+ 0.8	_	_	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \leq VDD \leq 5.5V$		
-		with I ² C levels	0.7 VDD			V			
D042		MCLR	0.8 VDD			V			
	lıL	Input Leakage Current ⁽¹⁾							
D060		I/O ports	_	± 5	± 125	nA	VSS \leq VPIN \leq VDD, Pin at high- impedance, 85°C		
				± 5	± 1000	nA	125°C		
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	$VSS \le VPIN \le VDD, 85^{\circ}C$		
	IPUR	PORTB Weak Pull-up Current	t		1				
D070*			25	100	200		VDD = 3.3V, VPIN = VSS		
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS		
	Vol	Output Low Voltage							
D080		I/O ports	_		0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V		
	Voh	Output High Voltage			-	_			
D090		I/O ports	Vdd - 0.7		_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V		
	CIO	Capacitive Loading Specs on	Output Pins	6					
D101A*		All I/O pins	—		50	pF			
	Eр	Program Flash Memory							
D130		Cell Endurance	1k	10k	-	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D131	Vpr	VDD for Read	VMIN	_	—	V			
	Vінн	Voltage on MCLR/VPP during Erase/Program	8.0	_	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
D132	VPEW	VDD for Write or Row Erase	1.8 1.8		5.5 3.6	V V	PIC16F720/721 PIC16LF720/721		
	IPPPGM*	Current on MCLR/VPP during Erase/Write	_	1.0	-	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$		
	IDDPGM*	Current on VDD during Erase/ Write	—	5.0	_	mA	Temperature during programming: $10^{\circ}C \le T_A \le 40^{\circ}C$		

23.4 DC Characteristics: PIC16(L)F720/721-I/E

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
OS11*	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾			70	ns	VDD = 3.3-5.0V		
OS12*	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	_		72	ns	VDD = 3.3-5.0V		
OS13*	TCKL2IOV	CLKOUT↓ to Port out valid ⁽¹⁾	_		20	ns			
OS14*	ТюV2скН	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns		_	ns			
OS15*	TosH2IoV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V		
OS16*	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	VDD = 3.3-5.0V		
OS17*	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	—	ns			
OS18*	TIOR	Port output rise time		15 40	32 72	ns	VDD = 2.0V VDD = 3.3-5.0V		
OS19*	TIOF	Port output fall time		28 15	55 30	ns	VDD = 2.0V VDD = 3.3-5.0V		
OS20*	TINP	INT pin input high or low time	25		—	ns			
OS21*	Тквр	PORTB interrupt-on-change new input level time	Тсү		—	ns			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x Tosc.

FIGURE 23-19: I²C BUS START/STOP BITS TIMING

Param. No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600		_		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first	
		Hold time	400 kHz mode	600		_		clock pulse is generated	
SP92*	TSU:STO	Stop condition	100 kHz mode	4700	_	—	ns		
		Setup time	400 kHz mode	600		_			
SP93	THD:STO	Stop condition	100 kHz mode	4000		_	ns		
		Hold time	400 kHz mode	600					

* These parameters are characterized but not tested.

24.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

FIGURE 24-20: PIC16F720/721 BOR IPD vs. VDD

25.2 Package Details

The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units							
Dimensior	Dimension Limits			MAX				
Number of Pins	N		20					
Pitch	е		.100 BSC					
Top to Seating Plane	Α	-	-	.210				
Molded Package Thickness	A2	.115	.130	.195				
Base to Seating Plane	A1	.015	-	-				
Shoulder to Shoulder Width	E	.300	.310	.325				
Molded Package Width	E1	.240	.250	.280				
Overall Length	D	.980	1.030	1.060				
Tip to Seating Plane	L	.115	.130	.150				
Lead Thickness	с	.008	.010	.015				
Upper Lead Width	b1	.045	.060	.070				
Lower Lead Width	b	.014	.018	.022				
Overall Row Spacing §	eB	_	_	.430				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15