

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf721-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
80h ⁽ 2 ⁾	INDF	Addres	sing this locati	on uses conte	nts of FSR to a	address data n	nemory (not	a physical re	egister)	XXXX XXXX	XXXX XXXX
81h	OPTION_ REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽ 2)	PCL			Program C	Counter (PC) Le	east Significar	nt Byte			0000 0000	0000 0000
83h ⁽ 2)	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽ 2)	FSR			Indirec	t Data Memory	Address Poin	ter			xxxx xxxx	uuuu uuuu
85h ⁽⁵⁾	TRISA	_	_	TRISA5	TRISA4	(4)	TRISA2	TRISA1	TRISA0	11 -111	11 -111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	1111
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
88h	—				Unimplem	ented				—	—
89h	—				Unimplem	ented				—	—
8Ah ⁽ 1),(2)	PCLATH	—	—	—	Write Buff	fer for the upp	er 5 bits of th	ne Program	Counter	0 0000	0 0000
8Bh ⁽ 2)	INTCON	GIE	PEIE	TMR0IE	INTE	RABIE	TMR0IF	INTF	RABIF	0000 000x	0000 000x
8Ch	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	_				Unimplem	ented	•			_	_
8Eh	PCON	—	—	—	—	—	_	POR	BOR	dd	uu
8Fh	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	uuuu uxuu
90h	OSCCON	—	_	IRCF1	IRCF0	ICSL	ICSS	_	_	10 qq	10 qq
91h	OSCTUNE	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	uu uuuu
92h	PR2			Tim	er2 module Pe	riod Register				1111 1111	1111 1111
93h	SSPADD				ADD<7:	0>				0000 0000	0000 0000
93h ⁽ 3)	SSPMSK				MSK<7	0>				1111 1111	1111 1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
96h	IOCA	_	-	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	00 0000	00 0000
97h	—				Unimplem	ented	•	•	•	_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
9Ah	—				Unimplem	ented				—	—
9Bh	_				Unimplem	ented				—	—
9Ch	_				Unimplem	ented				—	_
9Dh	FVRCON	FVRRDY	FVREN	TSEN	TSRNG	_	_	ADFVR1	ADFVR0	d00000	d00000
9Eh	—				Unimplem	ented			•	—	—
9Fh	ADCON1	_	ADCS2	ADCS1	ADCS0	_	_			-000	-000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. Accessible only when SSPM<3:0> = 1001. 2:

3:

4: This bit is unimplemented and reads as '1'.

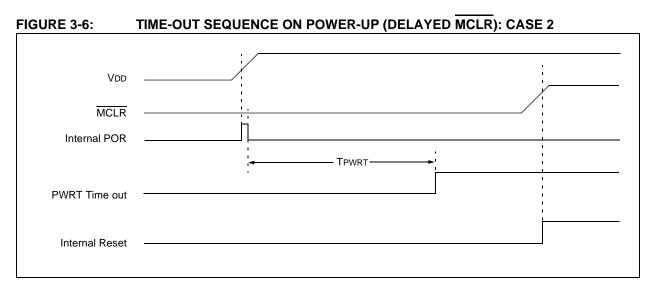
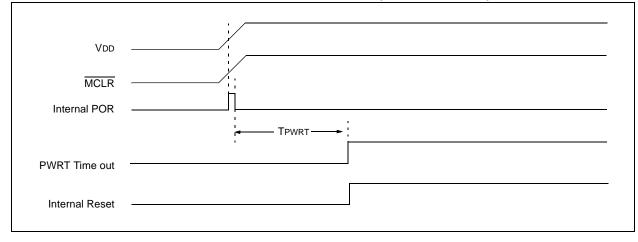

5: See Register 6-2.

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3											
180h ⁽ 2)	INDF	Addres	sing this location	on uses conte	nts of FSR to a	address data n	nemory (not	a physical re	gister)	xxxx xxxx	xxxx xxxx
181h	OPTION_ REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h ⁽ 2)	PCL			Program C	Counter (PC) Le	east Significar	nt Byte			0000 0000	0000 0000
183h ⁽ 2)	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h ⁽ 2)	FSR			Indirec	t Data Memory	Address Poin	iter			xxxx xxxx	uuuu uuuu
185h	ANSELA	-	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	1 -111	1 -111
186h	ANSELB	_	_	ANSB5	ANSB4		_	_	_	11	11
187h	ANSELC	ANSC7	ANSC6	_	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
188h	_				Unimplem	ented	•			_	_
18Ah (1),(2)	PCLATH	-	— — Write Buffer for the upper 5 bits of the Program Counter							0 0000	0 0000
18Bh ⁽ 2)	INTCON	GIE	PEIE	TMR0IE	INTE	RABIE	TMR0IF	INTF	RABIF	0000 000x	0000 000x
18Ch	PMCON1	(4)	CFGS	LWLO	FREE	—	WREN	WR	RD	1000 -000	1000 -000
18Dh	PMCON2		Program Memory Control Register 2 (not a physical register)								
190h	_		Unimplemented							_	_
191h	_				Unimplem	ented				_	_
192h	_				Unimplem	ented				_	_
193h	_				Unimplem	ented				_	_
194h	_				Unimplem	ented				_	_
195h	_				Unimplem	ented				_	_
196h	_				Unimplem	ented				_	_
197h	_				Unimplem	ented				_	_
198h	_		Unimplemented							_	_
199h	—		Unimplemented							_	—
19Ah	—		Unimplemented							_	—
19Bh	—		Unimplemented							_	—
19Ch	—				Unimplem	ented				—	—
19Dh	—				Unimplem	ented				—	—
19Eh	_				Unimplem	ented				_	_
19Fh	_				Unimplem	ented				_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.
2: These registers can be addressed from any bank.
3: Accessible only when SSPM<3:0> = 1001.
4: This bit is unimplemented and reads as '1'.
5: See Register 6-2

5: See Register 6-2.

FIGURE 3-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD): CASE 3

4.5.1 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTB change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE	PEIE	TMR0IE	INTE	RABIE ⁽¹⁾	TMR0IF ⁽²⁾	INTF	RABIF
bit 7							bit 0

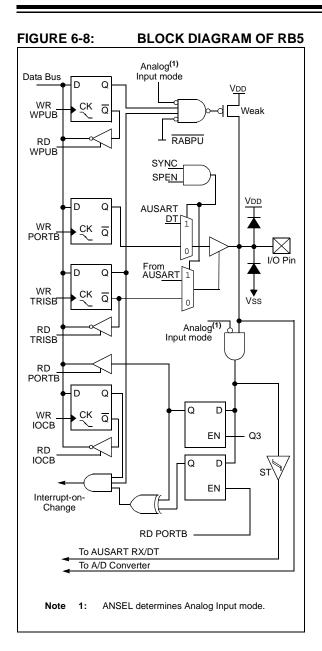
Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts
bit 6	 0 = Disables all interrupts PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TMROIE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: INT External Interrupt Enable bit 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt
bit 3	RABIE: PORTA or PORTB Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the PORTA or PORTB change interrupt 0 = Disables the PORTA or PORTB change interrupt
bit 2	TMR0IF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred (must be cleared in software) 0 = The INT external interrupt did not occur
bit 0	RABIF: PORTA or PORTB Change Interrupt Flag bit 1 = When at least one of the PORTA or PORTB general purpose I/O pins changed state (must be cleared in software)
Note 1	0 = None of the PORTA or PORTB general purpose I/O pins have changed state

- Note 1: The appropriate bits in the IOCB register must also be set.
 - 2: TMR0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing TMR0IF bit.

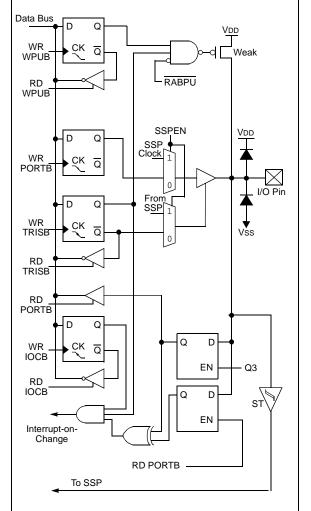
4.5.3 PIR1 REGISTER

The PIR1 register contains the interrupt flag bits, as shown in Register 4-3.


Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-3: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0


Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

L:1.7	TNDAOLE Time and Only Internated Elements
bit 7	TMR1GIF: Timer1 Gate Interrupt Flag bit
	1 = Timer1 gate is inactive
	0 = Timer1 gate is active
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = A/D conversion complete (must be cleared in software)
	0 = A/D conversion has not completed or has not been started
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = The USART receive buffer is full (cleared by reading RCREG)
	0 = The USART receive buffer is not full
bit 4	TXIF: USART Transmit Interrupt Flag bit
	1 = The USART transmit buffer is empty (cleared by writing to TXREG)
	0 = The USART transmit buffer is full
bit 3	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit
	1 = The Transmission/Reception is complete (must be cleared in software)
	0 = Waiting to Transmit/Receive
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)
	0 = No TMR1 register capture occurred
	Compare mode:
	1 = A TMR1 register compare match occurred (must be cleared in software)
	0 = No TMR1 register compare match occurred
	PWM mode:
	Unused in this mode
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit
	1 = A Timer2 to PR2 match occurred (must be cleared in software)
	0 = No Timer2 to PR2 match occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = The TMR1 register overflowed (must be cleared in software)
	0 = The TMR1 register did not overflow

FIGURE 6-9:

BLOCK DIAGRAM OF RB6

6.3 **PORTC and TRISC Registers**

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 6-12). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 6-3 shows how to initialize PORTC.

Reading the PORTC register (Register 6-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISC register (Register 6-12) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are set when using them as analog inputs. I/O pins configured as analog input always read '0'.

EXAMPLE 6-3: INITIALIZING PORTC

BANKSEL PORTC	;
CLRF PORTC	;Init PORTC
BANKSEL TRISC	;
MOVLW B'00001100'	;Set RC<3:2> as inputs
MOVWF TRISC	;and set RC<7:4,1:0>
	;as outputs

6.3.1 ANSELC REGISTER

The ANSELC register (Register 6-13) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

6.3.2 RC0/AN4

Figure 6-11 shows the diagram for this pin. The RC0 pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the A/D

6.3.3 RC1/AN5

Figure 6-11 shows the diagram for this pin. The RC1 pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the A/D

6.3.4 RC2/AN6

Figure 6-12 shows the diagram for this pin. The RC2 pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the A/D

6.3.5 RC3/AN7

Figure 6-12 shows the diagram for this pin. The RC3 pin is configurable to function as one of the following:

- General purpose I/O
- Analog input for the A/D

6.3.6 RC4

Figure 6-13 shows the diagram for this pin. The RC4 pin functions as one of the following:

• General purpose I/O

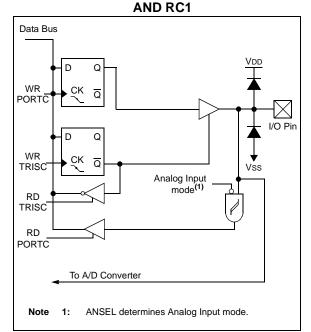
6.3.7 RC5/CCP1

Figure 6-14 shows the diagram for this pin. The RC5 pin is configurable to function as one of the following:

- General purpose I/O
- Capture, Compare or PWM (one output)

6.3.8 RC6/AN8/SS

Figure 6-15 shows the diagram for this pin. The RC6 pin is configurable to function as one of the following:


- General purpose I/O
- Analog input for the A/D
- SS input to SSP

6.3.9 RC7/AN9/SDO

Figure 6-16 shows the diagram for this pin. The RC7 pin is configurable to function as one of the following:

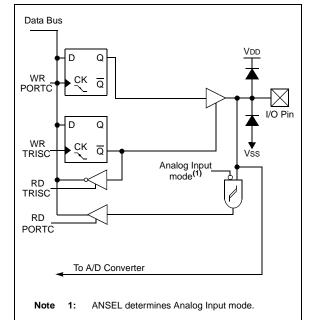

- General purpose I/O
- Analog input for the A/D
- SDO output of SSP

FIGURE 6-11: BLOCK DIAGRAM OF RC0

FIGURE 6-12:

BLOCK DIAGRAM OF RC2 AND RC3

7.4 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 7-1) displays the status and allows frequency selection of the internal oscillator (INTOSC) system clock. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Status Locked bits (ICSL)
- Status Stable bits (ICSS)

REGISTER 7-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	U-0	R/W-1	R/W-0	R-q	R-q	U-0	U-0
—	—	IRCF1	IRCF0	ICSL	ICSS	—	—
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
q = Value depends on condition						

bit 7-6	Unimplemented: Read as '0'
bit 5-4	IRCF<1:0>: Internal Oscillator Frequency Select bits
	<u>When PLLEN = 1 (16 MHz HFINTOSC)</u>
	11 = 16 MHz
	10 = 8 MHz (default)
	01 = 4 MHz
	00 = 2 MHz
	<u>When PLLEN = 0 (500 kHz MFINTOSC)</u>
	11 = 500 kHz
	10 = 250 kHz (default)
	01 = 125 kHz
	00 = 62.5 kHz
bit 3	ICSL: Internal Clock Oscillator Status Locked bit
	 1 = 16 MHz/500 kHz internal oscillator is at least 2% accurate 0 = 16 MHz/500 kHz internal oscillator not 2% accurate
bit 2	ICSS: Internal Clock Oscillator Status Stable bit
	1 = 16 MHz/500 kHz internal oscillator is at least 0.5% accurate 0 = 16 MHz/500 kHz internal oscillator not 0.5% accurate
bit 1-0	Unimplemented: Read as '0'

	2. ADCO			ISTER I			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	ADCS2	ADCS1	ADCS0	_	—	—	—
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 bit 6-4 bit 3-0	ADCS<2:0>: 000 = Fosc/2 001 = Fosc/2 010 = Fosc/2 011 = Frc (c 100 = Fosc/2 101 = Fosc/2 110 = Fosc/2	2 33 Ilock supplied f 4 16 64 Ilock supplied f	n Clock Select from a dedicate	t bits ed RC oscillato ed RC oscillato			

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

REGISTER 9-3: ADRES: ADC RESULT REGISTER

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | • | | | • | | | bit 0 |

Legend:						
R = Readable bit	W = Writable bit	Vritable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0 **ADRES<7:0>**: ADC Result Register bits 8-bit conversion result.

R-q	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
FVRRDY	FVREN	TSEN	TSRNG		_	ADFVR1	ADFVR0					
bit 7	·	•					bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'						
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown					
q = Value de	epends on condit	ion										
		-										
bit 7		Fixed Voltage I										
		 0 = Fixed Voltage Reference output is not active or stable 1 = Fixed Voltage Reference output is ready for use 										
bit 6		FVREN: Fixed Voltage Reference Enable bit										
JIL O		0 = Fixed Voltage Reference is disabled										
	1 = Fixed Voltage Reference is enabled											
bit 5		TSEN: Temperature Indicator Enable bit ⁽³⁾										
		0 = Temperature indicator is disabled										
b :4	•	1 = Temperature indicator is enabled										
bit 4		TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range)										
	0 = VOUT = VDD - 2VT (Low Range)											
bit 3-2	Unimplemer	nted: Read as	0'									
bit 1-0	ADFVR<1:0:	>: A/D Convert	er Fixed Voltag	ge Reference S	election bits							
		00 = A/D Converter Fixed Voltage Reference Peripheral output is off										
		 01 = A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V) 10 = A/D Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)⁽²⁾ 										
				nce Peripheral								
Note 1: F	VRRDY is alway				·							
	ixed Voltage Ref											
	Section 11 0	-			ional informat	ion						

REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER

3: See Section 11.0 "Temperature Indicator Module" for additional information.

TABLE 10-2: SUMMARY OF ASSOCIATED FIXED VOLTAGE REFERENCE REGISTER
--

Nam	e	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
FVRC	ON	FVRRDY	FVREN	TSEN	TSRNG			ADFVR1	ADFVR0	81

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for Fixed Voltage Reference.

13.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, these bits must be set:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

13.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, the clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- TMR1GE bit of the T1GCON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h).

13.8 CCP Capture/Compare Time Base

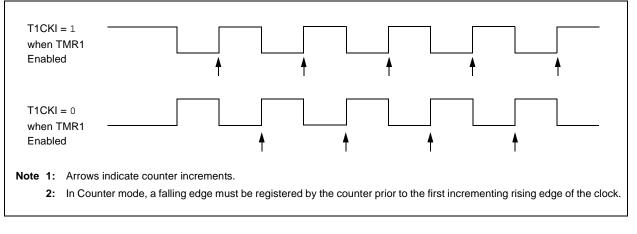
The CCP module uses the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 15.0 "Capture/ Compare/PWM (CCP) Module".

13.9 CCP Special Event Trigger


When the CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

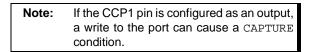
Timer1 should be synchronized to the Fosc/4 to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

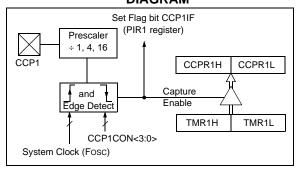
For more information, see Section 9.2.5 "Special Event Trigger".

FIGURE 13-2: TIMER1 INCREMENTING EDGE

15.1 Capture Mode


In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge


When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (refer to Figure 15-1).

15.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode or when Timer1 is clocked at Fosc, the capture operation may not work.

Note:	Clocking Timer1 from the system clock (Fosc) should not be used in Capture
	(FOSC) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCP1
	pin, Timer1 must be clocked from the
	Instruction Clock (Fosc/4) or from an
	external clock source.

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in Operating mode.

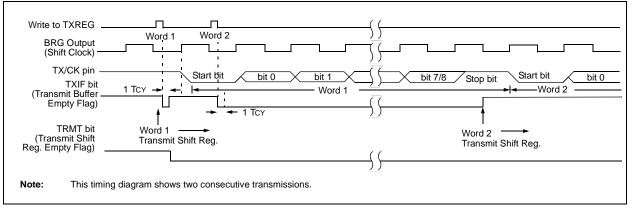
15.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (refer to Example 15-1).

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

ĺ	BANKSEL	CCP1CON	;Set Bank bits to point
			;to CCP1CON
	CLRF	CCP1CON	;Turn CCP module off
	MOVLW	NEW_CAPT_PS	;Load the W reg with
			; the new prescaler
			; move value and CCP ON
	MOVWF	CCP1CON	;Load CCP1CON with this
			; value


15.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

If Timer1 is clocked by FOSC/4, then Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

If Timer1 is clocked by an external clock source, then Capture mode will operate as defined in **Section 15.1** "**Capture Mode**".

TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	TMR0IE	INTE	RABIE	TMR0IF	INTF	RABIF	37	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	38	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	39	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	118	
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	119	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	58	
TXREG		AUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	117	

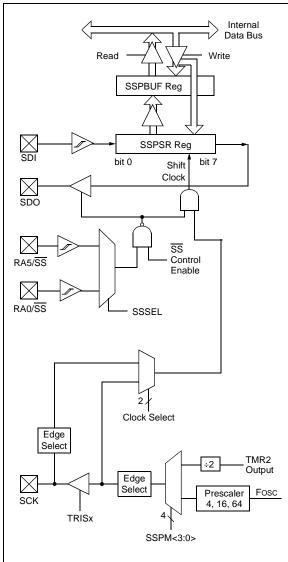
Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for asynchronous transmission.

16.1.2 AUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 16-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the AUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

16.1.2.1 Enabling the Receiver

The AUSART receiver is enabled for asynchronous operation by configuring the following three control bits:


- CREN = 1
- SYNC = 0
- SPEN = 1

All other AUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the AUSART. Clearing the SYNC bit of the TXSTA register configures the AUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the AUSART and automatically configures the RX/DT I/O pin as an input.

Note: When the SPEN bit is set, the TX/CK I/O pin is automatically configured as an output, regardless of the state of the corresponding TRIS bit and whether or not the AUSART transmitter is enabled. The PORT latch is disconnected from the output driver so it is not possible to use the TX/CK pin as a general purpose output.

FIGURE 17-2: SPI MODE BLOCK DIAGRAM

17.1.2.4 Slave Select Operation

The \overline{SS} pin allows Synchronous Slave mode operation. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPM<3:0> = 0100). The associated TRIS bit for the \overline{SS} pin must be set, making \overline{SS} an input.

In Slave Select mode, when:

- SS = 0, The device operates as specified in Section 17.1.2 "Slave Mode".
- $\overline{SS} = 1$, The SPI module is held in Reset and the SDO pin will be tri-stated.
 - Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPM<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is driven high.
 - 2: If the SPI is used in Slave mode with CKE set, the SS pin control must be enabled.

When the SPI module resets, the bit counter is cleared to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit. Figure 17-6 shows the timing waveform for such a synchronization event.

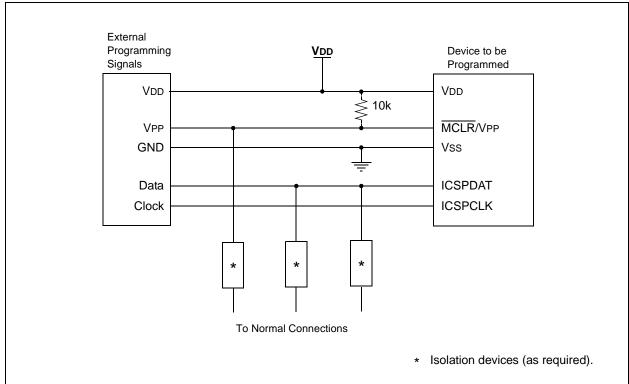
Note:	SSPSR must be reinitialized by writing to
	the SSPBUF register before the data can
	be clocked out of the slave again.

17.1.2.5 Sleep in Slave Mode

While in Sleep mode, the slave can transmit/receive data. The SPI Transmit/Receive Shift register operates asynchronously to the device on the externally supplied clock source. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the SSP Interrupt Flag bit will be set and, if enabled, will wake the device from Sleep.

	- - - - -										(\ \
SCK (CKP = 0											
SCK (CKP = 1						: 				; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · ·
9982-09 3589889		2 2 2 4 4 8 8 8 8 8	- - - - - - - - - - - - - - - - - - -			SSR the be o	SR must SSPBUF	be reiniti register b t of the sk	sized by efore the type again.	writing to data can	()))))) ; ; ; ; ; ; ; ; ; ; ; ; ;
30X?		4 5 7 838 7 8	X 88.8			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		X			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SDI		-//////	\sim	2 2 2	<pre></pre>	2 2 2 2 2		\leftarrow	\rightarrow		
Input Sample			1				<u> </u>	1	<u> </u>		<u></u>
SSPH Interrupt Pag		- 2 		· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • •		S	- - -	(
SSPSR 10 SSPRIF											\$

REGISTER 17-4: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (I²C MODE)


R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
SMP	CKE	D/A	Р	S	R/W	UA	BF		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 7	SMP : SPI Data Input Sample Phase bit $1 = $ Slew Rate Control (limiting) disabled. Operating in I ² C Standard mode (100 kHz and 1 MHz). $0 = $ Slew Rate Control (limiting) enabled. Operating in I ² C Fast mode (400 kHz).								
bit 6	CKE : SPI Clock Edge Select bit This bit must be maintained clear. Used in SPI mode only.								
bit 5	D/A : DATA/ADDRESS bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address								
bit 4	 P: Stop bit This bit is cleared when the SSP module is disabled, or when the Start bit is detected last. 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset) 0 = Stop bit was not detected last 								
bit 3	 Start bit This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last. 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 								
bit 2	R/W : READ/WRITE bit Information This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or ACK bit. 1 = Read 0 = Write								
bit 1	UA : Update Address bit (10-bit I ² C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated								
bit 0	BF : Buffer Full Status bit <u>Receive:</u> 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty <u>Transmit:</u> 1 = Transmit in progress, SSPBUF is full 0 = Transmit complete, SSPBUF is empty								

20.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

The device is placed into Program/Verify mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP from 0V to VPP. In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ISCPCLK pin is the clock input. For more information on ICSPTM refer to the "PIC16(L)F720/721 Flash Memory Programming Specification" (DS41409).

FIGURE 20-1: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING

22.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

22.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

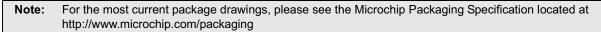
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

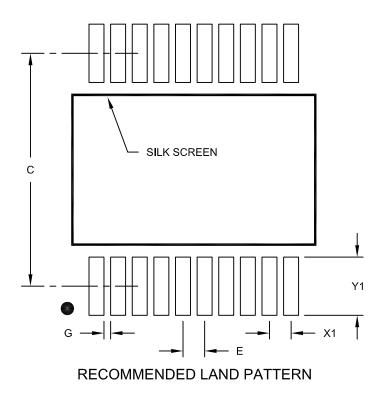
22.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


22.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X20)	X1			0.45	
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A