

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf721t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-4: PIC16(L)F721 SPECIAL FUNCTION REGISTERS

	-		-		-		
INDF ^(*)	00h	INDF ^(*)	80h	INDF ^(*)	100h	INDF ^(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	ANSELA	185h
PORTB	06h	TRISB	86h		106h	ANSELB	186h
PORTC	07h	TRISC	87h		107h	ANSELC	187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
	0Dh		8Dh	PMADRL	10Dh	PMCON2	18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh	T1GCON	8Fh	PMADRH	10Fh		18Fh
T1CON	10h	OSCCON	90h		110h		190h
TMR2	11h	OSCTUNE	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD/SSPMSK	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUA	95h	WPUB	115h		195h
CCPR1H	16h	IOCA	96h	IOCB	116h		196h
CCP1CON	17h		97h		117h		197h
RCSTA	18h	TXSTA	98h		118h		198h
TXREG	19h	SPBRG	99h		119h		199h
RCREG	1Ah		9Ah		11Ah		19Ah
	1Bh		9Bh		11Bh		19Bh
	1Ch		9Ch		11Ch		19Ch
	1Dh	FVRCON	9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCONO	1Fh	ADCON1	9Fh		11Fh		19Fh
1200110	20h		A0h		120h		1A0h
General	2011	General	7 1011	General	12011		
Register		Register		Register			
80 Bytes		80 Bytes		80 Bytes	105		
	06Fh		E⊦h		16Fh		1EFh
Access DAM	07011	Accesses	F0h	Accesses	170h	Accesses	1F0h
	756	70n – 7Fh	FFh	70n – 7Fh	17Fh	70n – 7Fh	1FFb
DANK O	/Fn			DANK 0		DANK 2	
DAINK U		DAINK T		DAINK Z		DAINK 3	

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 3												
180h ⁽ 2)	INDF	Addres	sing this locati	on uses conte	ents of FSR to a	address data m	nemory (not	a physical re	egister)	xxxx xxxx	xxxx xxxx	
181h	OPTION_ REG	RABPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
182h ⁽ 2)	PCL			Program C	Counter (PC) Le	east Significan	t Byte			0000 0000	0000 0000	
183h ⁽ 2)	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000g quuu	
184h ⁽ 2)	FSR			Indirec	t Data Memory	Address Poin	ter			xxxx xxxx	uuuu uuuu	
185h	ANSELA	—	—	_	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111	
186h	ANSELB	_	—	ANSB5	ANSB4	_	_	—	_	11	11	
187h	ANSELC	ANSC7	ANSC6	_	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111	
188h	—				Unimplem	ented				—	_	
18Ah ⁽ 1 ^{),(} 2)	PCLATH	—	—	—	Write Buffer f	or the upper 5	bits of the P	rogram Cou	nter	0 0000	0 0000	
18Bh ⁽ 2)	INTCON	GIE	PEIE	TMR0IE	INTE	RABIE	TMR0IF	INTF	RABIF	0000 000x	0000 000x	
18Ch	PMCON1	(4)	CFGS	LWLO	FREE	—	WREN	WR	RD	1000 -000	1000 -000	
18Dh	PMCON2		Proç	gram Memory	Control Regist	er 2 (not a phy	sical registe	r)				
190h	—				Unimplem	ented				—	—	
191h	_				Unimplem	ented				_	_	
192h	—				Unimplem	ented				—	—	
193h	_				Unimplem	ented				_	_	
194h					Unimplem	ented				_	_	
195h					Unimplem	ented				_	_	
196h					Unimplem	ented				_	_	
197h					Unimplem	ented				_	_	
198h					Unimplem	ented				_	_	
199h			Unimplemented							_	_	
19Ah			Unimplemented							_	_	
19Bh			Unimplemented						_	_		
19Ch					Unimplem	ented				_	_	
19Dh	—				Unimplem	Unimplemented					—	
19Eh	—				Unimplem	ented				-	—	
19Fh	—	Unimplemented								-	—	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.
2: These registers can be addressed from any bank.
3: Accessible only when SSPM<3:0> = 1001.
4: This bit is unimplemented and reads as '1'.
5: See Register 6-2

5: See Register 6-2.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-6.

A simple program to clear the RAM location 020h-02Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

I	IOVLW	020h	;initialize pointer
P	10VWF	FSR	;to RAM
Ε	BANKISI	EL 020h	L
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONT	INUE		;yes continue

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

FIGURE 6-13: BLOCK DIAGRAM OF RC4

FIGURE 6-14:

FIGURE 6-15: BLOCK DIAGRAM OF RC6

7.2 Clock Source Modes

Clock source modes can be classified as external or internal.

- Internal clock source (INTOSC) is contained within the oscillator module and derived from a 500 kHz high-precision oscillator. The oscillator module has eight selectable output frequencies, with a maximum internal frequency of 16 MHz.
- The External Clock mode (EC) relies on an external signal for the clock source.

The system clock can be selected between external or internal clock sources via the FOSC bits of the Configuration Word 1.

7.3 Internal Clock Modes

The oscillator module has eight output frequencies derived from a 500 kHz high-precision oscillator. The IRCF bits of the OSCCON register select the postscaler applied to the clock source dividing the frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the Configuration Word 1 locks the internal clock source to 16 MHz before the postscaler is selected by the IRCF bits. The PLLEN bit must be set or cleared at the time of programming; therefore, only the upper or low four clock source frequencies are selectable in software.

The internal oscillator block has one internal oscillator and a dedicated Phase-Locked Loop that are used to generate two internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 500 kHz (MFINTOSC). Both can be useradjusted via software using the OSCTUNE register (Register 7-2).

7.3.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as system clock source when the device is programmed using the oscillator selection or the FOSC<1:0> bits in the CONFIG1 register. See **Section 8.0** "**Device Configuration**" for more information.

In INTOSC mode, CLKIN is available for general purpose I/O. CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, Calibration, test or other application requirements.

In INTOSCIO mode, CLKIN and CLKOUT are available for general purpose I/O.

7.3.2 FREQUENCY SELECT BITS (IRCF)

The output of the 500 kHz MFINTOSC and 16 MHz HFINTOSC, with Phase-Locked Loop enabled, connect to a postscaler and multiplexer (see Figure 7-1). The Internal Oscillator Frequency Select bits (IRCF) of the OSCCON register select the frequency output of the internal oscillator. Depending upon the PLLEN bit, one of four frequencies of two frequency sets can be selected via software:

If PLLEN = 1, HFINTOSC frequency selection is as follows:

- 16 MHz
- 8 MHz (default after Reset)
- 4 MHz
- 2 MHz

If PLLEN = 0, MFINTOSC frequency selection is as follows:

- 500 kHz
- 250 kHz (default after Reset)
- 125 kHz
- 62.5 kHz

Note: Following any Reset, the IRCF<1:0> bits of the OSCCON register are set to '10' and the frequency selection is set to 8 MHz or 250 kHz. The user can modify the IRCF bits to select a different frequency.

There is no start-up delay before a new frequency selected in the IRCF bits takes effect. This is because the old and new frequencies are derived from INTOSC via the postscaler and multiplexer.

Start-up delay specifications are located in the Table 23-2 in Section 23.0 "Electrical Specifications".

7.3.3 INTERNAL OSCILLATOR STATUS BITS

The internal oscillator (500 kHz) is a factory-calibrated internal clock source. The frequency can be altered via software using the OSCTUNE register (Register 7-2).

The Internal Oscillator Status Locked bit (ICSL) of the OSCCON register indicates when the internal oscillator is running within 2% of its final value.

The Internal Oscillator Status Stable bit (ICSS) of the OSCCON register indicates when the internal oscillator is running within 0.5% of its final value.

13.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 3-bit prescaler
- Synchronous or asynchronous operation
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with CCP)
- Selectable Gate Source Polarity

- Gate Toggle Mode
- Gate Single Pulse Mode
- · Gate Value Status
- Gate Event Interrupt

Figure 13-1 is a block diagram of the Timer1 module.

13.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescaler counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

13.4 Timer1 Operation in Asynchronous Counter Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 13.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

13.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

13.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 gate count enable.

Timer1 gate can also be driven by multiple selectable sources.

13.5.1 TIMER1 GATE COUNT ENABLE

The Timer1 gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate $(\overline{T1G})$ input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 13-3 for timing details.

TABLE 13-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation		
\uparrow	0	0	Counts		
\uparrow	0	1	Holds Count		
\uparrow	1	0	Holds Count		
\uparrow	1	1	Counts		

13.5.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 13-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Timer2 match PR2 (TMR2 increments to match PR2)
11	Count Enabled by WDT Overflow (Watchdog Time-out interval expired)

FIGURE 17-2: SPI MODE BLOCK DIAGRAM

17.1.2 SLAVE MODE

For any SPI device acting as a slave, the data is transmitted and received as external clock pulses appear on SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

17.1.2.1 Slave Mode Operation

The SSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready.

The slave has no control as to when data will be clocked in or out of the device. All data that is to be transmitted, to a master or another slave, must be loaded into the SSPBUF register before the first clock pulse is received.

Once eight bits of data have been received:

- · Received byte is moved to the SSPBUF register
- BF bit of the SSPSTAT register is set
- SSPIF bit of the PIR1 register is set

Any write to the SSPBUF register during transmission/ reception of data will be ignored and the Write Collision Detect bit, WCOL of the SSPCON register, will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

The user's firmware must read SSPBUF, clearing the BF flag, or the SSPOV bit of the SSPCON register will be set with the reception of the next byte and communication will be disabled.

A SPI module transmits and receives at the same time, occasionally causing dummy data to be transmitted/ received. It is up to the user to determine which data is to be used and what can be discarded.

17.1.2.2 Enabling Slave I/O

To enable the serial port, the SSPEN bit of the SSPCON register must be set. If a Slave mode of operation is selected in the SSPM bits of the SSPCON register, the SDI, SDO and SCK pins will be assigned as serial port pins.

For these pins to function as serial port pins, they must have their corresponding data direction bits set or cleared in the associated TRIS register as follows:

- SDI configured as input
- SDO configured as output
- SCK configured as input

Optionally, a fourth pin, Slave Select $\overline{(SS)}$ may be used in Slave mode. Slave Select may be configured to operate on the RC6/SS pin via the SSSEL bit in the APFCON register.

Upon selection of a Slave Select pin, the appropriate bits must be set in the ANSELA and TRISA registers. Slave Select must be set as an input by setting the corresponding bit in TRISA, and digital I/O must be enabled on the SS pin by clearing the corresponding bit of the ANSELA register.

17.1.2.3 Slave Mode Setup

When initializing the SSP module to SPI Slave mode, compatibility must be ensured with the master device. This is done by programming the appropriate control bits of the SSPCON and SSPSTAT registers. These control bits allow the following to be specified:

- SCK as clock input
- Idle state of SCK (CKP bit)
- Data input sample phase (SMP bit)
- Output data on rising/falling edge of SCK (CKE bit)

Figure 17-4 and Figure 17-5 show example waveforms of Slave mode operation.

17.2.6 TRANSMISSION

When the R/W bit of the received address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set and the slave will respond to the master by reading out data. After the address match, an ACK pulse is generated by the slave hardware and the SCL pin is held low (clock is automatically stretched) until the slave is ready to respond. See **Section 17.2.7 "Clock Stretching"**. The data the slave will transmit must be loaded into the SSPBUF register, which sets the BF bit. The SCL line is released by setting the CKP bit of the SSPCON register.

An SSP interrupt is generated for each transferred data byte. The SSPIF flag bit of the PIR1 register initiates an SSP interrupt, and must be cleared by software before the next byte is transmitted. The BF bit of the SSPSTAT register is cleared on the falling edge of the eighth received clock pulse. The SSPIF flag bit is set on the falling edge of the ninth clock pulse. Following the eighth falling clock edge, control of the SDA line is released back to the master so that the master can acknowledge or not acknowledge the response. If the master sends a not acknowledge, the slave's transmission is complete and the slave must monitor for the next Start condition. If the master acknowledges, control of the bus is returned to the slave to transmit another byte of data. Just as with the previous byte, the clock is stretched by the slave, data must be loaded into the SSPBUF and CKP must be set to release the clock line (SCL).

FIGURE 17-12: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0			
bit 7		·	•				bit 0			
Legend:										
R = Readabl	le bit	VV = VVritable	bit		nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 7	WCOL: Write	e Collision Dete	ct bit							
	1 = The SSF software	PBUF register is	s written while	e it is still transn	nitting the prev	rious word (mus	t be cleared in			
	0 = No collis	sion								
bit 6	SSPOV: Receive Overflow Indicator bit									
	1 = A byte is	received while	the SSPBUF	register is still l	nolding the pre	evious byte. SSF	POV is a "don't			
	0 = No overf	flow	SSFOV mus	st be cleared in	sonware in en	nei mode				
bit 5	SSPEN: Syn	chronous Serial	Port Enable	bit						
	1 = Enables 0 = Disables	the serial port a serial port a	nd configures configures th	s the SDA and S ese pins as I/O	SCL pins as se port pins	erial port pins ⁽²⁾				
bit 4	CKP: Clock F	Polarity Select b	oit							
	1 = Release 0 = Holds clo	control of SCL ock low (clock st	retch). (Usec	I to ensure data	setup time.)					
bit 3-0	SSPM<3:0>:	Synchronous S	Serial Port mo	ode Select bits						
	$0110 = I^2 C S$	Slave mode, 7-b	it address							
	0111 = PCS	Slave mode, 10-	bit address							
	1000 = Rese	SSPMSK reais	ter at SSPAD	DD SFR Addres	_S (1)					
	1010 = Rese	erved			-					
	$1011 = I^2 C F$	Firmware Contro	olled Master r	node (Slave Idle	e)					
	1100 = Rese	erved								
	1101 = Rese $1110 = \text{I}^2\text{C}\text{S}$ $1111 = \text{I}^2\text{C}\text{S}$	Blave mode, 7-b Slave mode, 10-	it address wit bit address w	th Start and Sto vith Start and St	p bit interrupts op bit interrupt	enabled s enabled				
Note 1:	Nhen this mode is	s selected any r	aade or writee		SER address a	eccesses the SS	DMSK register			

REGISTER 17-3: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (I²C MODE)

Note 1: When this mode is selected, any reads or writes to the SSPADD SFR address accesses the SSPMSK register.

2: When enabled, these pins must be properly configured as input or output using the associated TRIS bit.

Since data is being written to buffer registers, the writing of the first 31 words of the block appears to occur immediately. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the erase takes place (i.e., the last word of the 32-word block erase). This is not Sleep mode as the clocks and peripherals will continue to run. After the 32-word write cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

FIGURE 18-2: BLOCK OF 32 WRITES TO FLASH PROGRAM MEMORY

22.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

22.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

22.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

22.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

22.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

23.2 DC Characteristics: PIC16(L)F720/721-I/E (Industrial, Extended)

PIC16LF	720/721	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC16F72	20/721	Standard Operating	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param.	Device	Min	Tynt	Max	Units		Conditions	
No.	Characteristics		1961	max.	onno	VDD	Note	
	Supply Current (IDD) ^{(1,}	2)						
D013		—	100	180	μA	1.8	Fosc = 1 MHz	
		—	210	270	μA	3.0	EC mode	
D013		_	120	205	μA	1.8	Fosc = 1 MHz	
		_	220	320	μΑ	3.0	EC mode	
		—	250	410	μΑ	5.0		
D014			220	330	μΑ	1.8	Fosc = 4 MHz	
			420	500	μΑ	3.0	EC mode	
D014			250	430	μΑ	1.8	Fosc = 4 MHz	
		_	450	655	μΑ	3.0	EC mode	
		—	500	730	μΑ	5.0		
D015			105	203	μΑ	1.8	Fosc = 500 kHz	
		—	130	235	μΑ	3.0	MFINTOSC mode	
D015			120	219	μΑ	1.8	Fosc = 500 kHz	
			145	284	μΑ	3.0	MFINTOSC mode	
		—	160	348	μΑ	5.0		
D016			600	800	μΑ	1.8	Fosc = 8 MHz	
			1000	1200	μΑ	3.0	HFINTOSC mode	
D016			610	850	μΑ	1.8	Fosc = 8 MHz	
			1010	1200	μΑ	3.0	HFINTOSC mode	
		—	1150	1500	μΑ	5.0		
D017		_	900	1200	μΑ	1.8	Fosc = 16 MHz	
			1450	1850	μΑ	3.0	HFINTOSC mode	
D017		_	910	1200	μΑ	1.8	Fosc = 16 MHz	
		_	1460	1900	μΑ	3.0	HFINTOSC mode	
		—	1700	2100	μA	5.0		

Note 1: The test conditions for all IDD measurements in active EC Mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

OSCILLATOR PARAMETERS⁽¹⁾ **TABLE 23-2:**

Standard Operating Conditions (unless otherwise stated)

4000 × T

Operatin										
Param. No.	Sym	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions		
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ^(2, 3)	± 2%		16.0	—	MHz	$\begin{array}{l} 0^{\circ}C \leq TA \leq +60^{\circ}C, \\ V\text{DD} \geq 2.5 V \end{array}$		
			± 3%	—	16.0	—	MHz	+60°C \leq TA \leq +85°C, VDD \geq 2.5V		
			\pm 5%	—	16.0	—	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$		
OS08	MFosc	Internal Calibrated MFINTOSC Frequency ^(2, 3)	± 2%		500	—	kHz	$\begin{array}{l} 0^{\circ}C \leq TA \leq \text{+}60^{\circ}C, \\ \text{VDD} \geq 2.5 \text{V} \end{array}$		
			\pm 3%	—	500	—	kHz	+60°C \leq TA \leq +85°C, VDD \geq 2.5V		
			\pm 5%	_	500	—	kHz	$\text{-40°C} \leq \text{TA} \leq \text{+125°C}$		
OS10*	TIOSC ST	HFINTOSC 16 MHz and MFINTOSC 500 kHz Oscillator Wake-up from Sleep Start-up Time			5	8	μS			

These parameters are characterized but not tested.

t Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.
 - 3: The frequency tolerance of the internal oscillator is ±2% from 0-60°C and ±3% from 60-85°C (see Figure 23-5).

FIGURE 23-12: PIC16F720/721 A/D CONVERSION TIMING (SLEEP MODE)

TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions				
US120*	ТскН2ртV	SYNC XMIT (Master and Slave)	3.0-5.5V	_	80	ns					
		Clock high to data-out valid	1.8-5.5V	—	100	ns					
US121*	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns					
		(Master mode)	1.8-5.5V	_	50	ns					
US122*	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns					
			1.8-5.5V	_	50	ns					

* These parameters are characterized but not tested.

FIGURE 24-16: PIC16F720/721 WDT IPD vs. VDD

FIGURE 24-36: TYPICAL FVR CHANGE VS. TEMPERATURE NORMALIZED AT 25°C

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ι	Units			S		
Dimension Lim	its	MIN	NOM	MAX		
Number of Pins	Ν		20			
Pitch	е		1.27 BSC			
Overall Height	А	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	Е		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	I	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[<u>X]</u> ⁽¹⁾ │ Tape and Reel Option	X Temperature Range	/XX Package	XXX Pattern	Exan a) b)	PIC16F PIC16F Dackag PIC16F Temp	F720-E/P 301 = Extended Temp., PDIP je, QTP pattern #301 F721T-I/SO = Tape and Reel, Industrial SOIC package
Device:	PIC16F720, PIC16	LF720, PIC16F721	, PIC16LF721			iomp.,	
Temperature Range:	$ \begin{array}{rcl} I & = & -40^{\circ}C \text{ to} \\ E & = & -40^{\circ}C \text{ to} \end{array} $	+85°C +125°C					
Package:	ML = Micro Lo P = Plastic I SO = SOIC SS = SSOP	ead Frame (QFN) DIP					
Pattern:	3-Digit Pattern Coo	le for QTP (blank o	therwise)		No	te 1: 2:	T= Available in tape and reel for all industrial devices except PDIP Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.