STMicroelectronics - ST72F324J6TC/TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324j6tc-tr

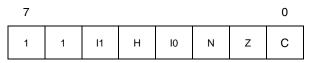
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

2 PIN D	ODUCTION	8
	ISTER & MEMORY MAP	
4 FLAS	SH PROGRAM MEMORY	
4.1		17
4.2	MAIN FEATURES	17
4.3	STRUCTURE	17
	4.3.1 Read-out Protection	17
4.4	ICC INTERFACE	-
4.5	ICP (IN-CIRCUIT PROGRAMMING)	19
4.6	IAP (IN-APPLICATION PROGRAMMING)	19
4.7	RELATED DOCUMENTATION	19
	4.7.1 Register Description	19
5 CEN		
5.1		20
5.2	MAIN FEATURES	20
5.3	CPU REGISTERS	20
6 SUPF	PLY, RESET AND CLOCK MANAGEMENT	
6.1	PHASE LOCKED LOOP	
6.2	MULTI-OSCILLATOR (MO)	24
6.3	RESET SEQUENCE MANAGER (RSM)	
	6.3.1 Introduction	
	6.3.2 Asynchronous External RESET pin	
	6.3.3 External Power-On RESET	26
	6.3.4 Internal Low Voltage Detector (LVD) RESET	
~ /	6.3.5 Internal Watchdog RESET	
6.4	SYSTEM INTEGRITY MANAGEMENT (SI)	
	6.4.1 Low Voltage Detector (LVD)	
	6.4.2 Auxiliary Voltage Detector (AVD)6.4.3 Low Power Modes	
	6.4.3 Low Power Modes 6.4.4 Register Description	
7 INTE	RRUPTS	
7.1	INTRODUCTION	
7.2	MASKING AND PROCESSING FLOW	
7.3	INTERRUPTS AND LOW POWER MODES	
7.4	CONCURRENT & NESTED MANAGEMENT	
7.5		
7.6	EXTERNAL INTERRUPTS	
0.1		
7.7	7.6.1 I/O Port Interrupt Sensitivity	
	ER SAVING MODES	
8.1	INTRODUCTION	
8.2	SLOW MODE	
• • •		
8.3	WAIT MODE	4 I

Table of Contents


8.4	ACT	IVE-HALT AND HALT MODES	42
	8.4.1	ACTIVE-HALT MODE	42
	8.4.2	HALT MODE	43
9 I/O P			
9.1	INTF		45
9.2	FUN	CTIONAL DESCRIPTION	45
	9.2.1	Input Modes	45
	9.2.2	Output Modes	
		Alternate Functions	
9.3		PORT IMPLEMENTATION	
9.4	LOW	POWER MODES	48
9.5	INTE	RRUPTS	48
		I/O Port Implementation	
		PERIPHERALS	
10.1	I WAT	CHDOG TIMER (WDG)	51
	10.1.1	Introduction	51
		Main Features	
		Functional Description	
		How to Program the Watchdog Timeout	
		Low Power Modes	
		Using Halt Mode with the WDG (WDGHALT option)	
		Register Description	
10.2		N CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) .	
	10.2.1	Programmable CPU Clock Prescaler	56
	10.2.2	Clock-out Capability	56
		Real Time Clock Timer (RTC)	
		Beeper	
		Low Power Modes	57
	10.2.6	Low Power Modes	57 57
10 3	10.2.6 10.2.7	Low Power Modes	57 57 57
10.3	10.2.6 10.2.7 3 16-B	Low Power Modes	57 57 57 59
10.3	10.2.6 10.2.7 3 16-B 10.3.1	Low Power Modes	57 57 57 59 59
10.3	10.2.6 10.2.7 3 16-B 10.3.1 10.3.2	Low Power Modes	57 57 57 59 59 59
10.3	10.2.6 10.2.7 3 16-B 10.3.1 10.3.2 10.3.3	Low Power Modes	57 57 59 59 59 59
10.3	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4	Low Power Modes	57 57 59 59 59 59 59 71
10.3	10.2.6 10.2.7 3 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	Low Power Modes	57 57 59 59 59 59 59 71 71
	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7	Low Power Modes	57 57 59 59 59 59 71 71 71 71
	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 1 SER	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI)	57 57 59 59 59 59 71 71 71 72 79
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.3.7 10.4.1	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI)	57 57 59 59 59 59 59 71 71 71 72 79 79
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 1 SER 10.4.1 10.4.2	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI)	57 57 59 59 59 59 71 71 71 72 79 79
	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 \$ SER 10.4.1 10.4.2 10.4.3	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI) Introduction Main Features General Description	57 57 59 59 59 59 71 71 71 72 79 79 79
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.4.1 10.4.2 10.4.3 10.4.4	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI) Introduction Main Features General Description Clock Phase and Clock Polarity	57 57 59 59 59 59 59 71 71 71 72 79 79 79 83
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 4 SER 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI) Introduction Main Features General Description	57 57 59 59 59 59 71 71 71 72 79 79 79 83 84

CENTRAL PROCESSING UNIT (Cont'd)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Arithmetic Management Bits

Bit 4 = **H** Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result 7^{th} bit.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative

(i.e. the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = **Z** Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0: The result of the last operation is different from zero.

1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

Interrupt Management Bits

Bit 5,3 = 11, 10 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.

Interrupt Software Priority	1	10
Level 0 (main)	1	0
Level 1	0	1
Level 2	0	0
Level 3 (= interrupt disable)	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

6.3 RESET SEQUENCE MANAGER (RSM)

6.3.1 Introduction

The reset sequence manager includes three RE-SET sources as shown in Figure 13:

- External RESET source pulse
- Internal LVD RESET (Low Voltage Detection)
- Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of 3 phases as shown in Figure 12:

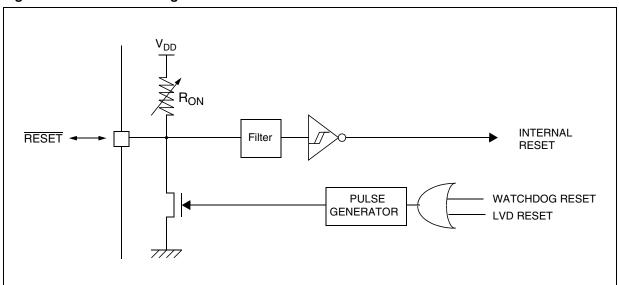
- Active Phase depending on the RESET source
- 256 or 4096 CPU clock cycle delay (selected by option byte)
- RESET vector fetch

5/

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application.

Figure 13. Reset Block Diagram

The RESET vector fetch phase duration is 2 clock cycles.


Figure 12. RESET Sequence Phases

RESET					
Active Phase	INTERNAL RESET 256 or 4096 CLOCK CYCLES	FETCH VECTOR			

6.3.2 Asynchronous External RESET pin

The $\overrightarrow{\text{RESET}}$ pin is both an input and an open-drain output with integrated $\overrightarrow{\text{R}}_{ON}$ weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See Electrical Characteristic section for more details.

A RESET signal originating from an external source must have a duration of at least $t_{h(RSTL)in}$ in order to be recognized (see Figure 14). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode.

7 INTERRUPTS

7.1 INTRODUCTION

The ST7 enhanced interrupt management provides the following features:

- Hardware interrupts
- Software interrupt (TRAP)
- Nested or concurrent interrupt management with flexible interrupt priority and level management:
 - Up to 4 software programmable nesting levels
 - Up to 16 interrupt vectors fixed by hardware
- 2 non maskable events: RESET, TRAP

This interrupt management is based on:

- Bit 5 and bit 3 of the CPU CC register (I1:0),
- Interrupt software priority registers (ISPRx),
- Fixed interrupt vector addresses located at the high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order.

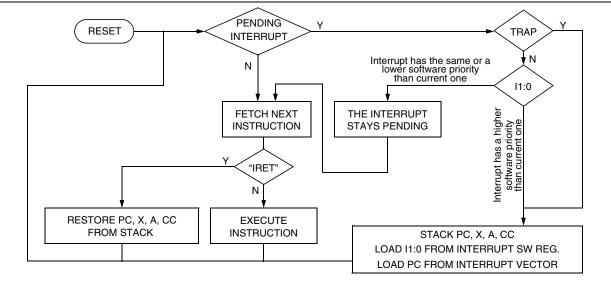
This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller.

7.2 MASKING AND PROCESSING FLOW

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see Table 6). The processing flow is shown in Figure 17

Figure 17. Interrupt Processing Flowchart

When an interrupt request has to be serviced:


- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx registers of the serviced interrupt vector.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to "Interrupt Mapping" table for vector addresses).

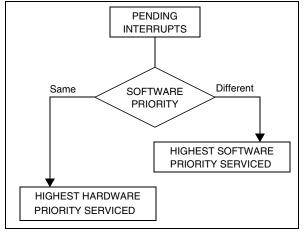
The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.

Table 6. Interrupt Software Priority Levels

Interrupt software priority	Level	l1	10
Level 0 (main)	Low	1	0
Level 1		0	1
Level 2	★	0	0
Level 3 (= interrupt disable)	High	1	1

INTERRUPTS (Cont'd)


Servicing Pending Interrupts

As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process:

- the highest software priority interrupt is serviced,
- if several interrupts have the same software priority then the interrupt with the highest hardware priority is serviced first.

Figure 18 describes this decision process.

Figure 18. Priority Decision Process

When an interrupt request is not serviced immediately, it is latched and then processed when its software priority combined with the hardware priority becomes the highest one.

Note 1: The hardware priority is exclusive while the software one is not. This allows the previous process to succeed with only one interrupt.

Note 2: RESET and TRAP can be considered as having the highest software priority in the decision process.

Different Interrupt Vector Sources

Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET,TRAP) and the maskable type (external or from internal peripherals).

Non-Maskable Sources

These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see Figure 17). After stacking the PC, X, A and CC registers (except for RESET), the corresponding

vector is loaded in the PC register and the I1 and I0 bits of the CC are set to disable interrupts (level 3). These sources allow the processor to exit HALT mode.

TRAP (Non Maskable Software Interrupt)

This software interrupt is serviced when the TRAP instruction is executed. It will be serviced according to the flowchart in Figure 17.

RESET

The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the highest hardware priority.

See the RESET chapter for more details.

Maskable Sources

Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt is latched and thus remains pending.

External Interrupts

External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitivity is software selectable through the External Interrupt Control register (EICR).

External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.

If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed.

Peripheral Interrupts

Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the "Interrupt Mapping" table. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register.

The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register.

Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear sequence is executed.

INTERRUPTS (Cont'd)

Table 8. Interrupt Mapping

N°	Source Block	Description	Register Label	Priority Order	Exit from HALT/ ACTIVE HALT ¹⁾	Address Vector
	RESET	Reset N/A			yes	FFFEh-FFFFh
	TRAP	Software interrupt			no	FFFCh-FFFDh
0		Not used				FFFAh-FFFBh
1	MCC/RTC	Main clock controller time base interrupt MCCSR		Higher	yes	FFF8h-FFF9h
2	ei0	External interrupt port A30			yes	FFF6h-FFF7h
3	ei1	External interrupt port F20			yes	FFF4h-FFF5h
4	ei2	External interrupt port B30			yes	FFF2h-FFF3h
5	ei3	External interrupt port B74			yes	FFF0h-FFF1h
6		Not used				FFEEh-FFEFh
7	SPI	SPI peripheral interrupts	SPICSR	▼	yes	FFECh-FFEDh
8	TIMER A	TIMER A peripheral interrupts	TASR	Ī	no	FFEAh-FFEBh
9	TIMER B	TIMER B peripheral interrupts	TBSR	Ī	no	FFE8h-FFE9h
10	SCI	SCI Peripheral interrupts	SCISR	Lower	no	FFE6h-FFE7h
11	AVD	Auxiliary Voltage detector interrupt	SICSR	Priority	no	FFE4h-FFE5h

Notes:

1. In Flash devices only a RESET or MCC/RTC interrupt can be used to wake-up from Active Halt mode.

7.6 EXTERNAL INTERRUPTS

7.6.1 I/O Port Interrupt Sensitivity

The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR register (Figure 21). This control allows to have up to 4 fully independent external interrupt source sensitivities.

Each external interrupt source can be generated on four (or five) different events on the pin:

- Falling edge
- Rising edge
- Falling and rising edge

- Falling edge and low level
- Rising edge and high level (only for ei0 and ei2)

To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity.

The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits of the EICR.

10.3 16-BIT TIMER

10.3.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (*input capture*) or generation of up to two output waveforms (*output compare* and *PWM*).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

10.3.2 Main Features

- Programmable prescaler: f_{CPU} divided by 2, 4 or 8.
- Overflow status flag and maskable interrupt
- External clock input (must be at least 4 times slower than the CPU clock speed) with the choice of active edge
- 1 or 2 Output Compare functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated programmable signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- 1 or 2 Input Capture functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated active edge selection signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- Pulse width modulation mode (PWM)
- One pulse mode
- Reduced Power Mode
- 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)*

The Block Diagram is shown in Figure 35.

*Note: Some timer pins may not be available (not bonded) in some ST7 devices. Refer to the device pin out description.

When reading an input signal on a non-bonded pin, the value will always be '1'.

10.3.3 Functional Description

10.3.3.1 Counter

The main block of the Programmable Timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high & low.

Counter Register (CR):

- Counter High Register (CHR) is the most significant byte (MS Byte).
- Counter Low Register (CLR) is the least significant byte (LS Byte).

Alternate Counter Register (ACR)

- Alternate Counter High Register (ACHR) is the most significant byte (MS Byte).
- Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte).

These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the Status register, (SR), (see note at the end of paragraph titled 16-bit read sequence).

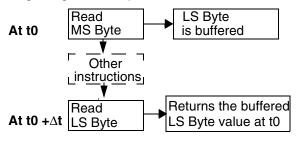
Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value.

Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM mode.

The timer clock depends on the clock control bits of the CR2 register, as illustrated in Table 16 Clock Control Bits. The value in the counter register repeats every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits.

The timer frequency can be $f_{CPU}/2$, $f_{CPU}/4$, $f_{CPU}/8$ or an external frequency.

Caution: In Flash devices, Timer A functionality has the following restrictions:


- TAOC2HR and TAOC2LR registers are write only
- Input Capture 2 is not implemented
- The corresponding interrupts cannot be used (ICF2, OCF2 forced by hardware to zero)

57

16-BIT TIMER (Cont'd)

16-bit read sequence: (from either the Counter Register or the Alternate Counter Register).

Beginning of the sequence

Sequence completed

The user must read the MS Byte first, then the LS Byte value is buffered automatically.

This buffered value remains unchanged until the 16-bit read sequence is completed, even if the user reads the MS Byte several times.

After a complete reading sequence, if only the CLR register or ACLR register are read, they return the LS Byte of the count value at the time of the read.

Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:

- The TOF bit of the SR register is set.
- A timer interrupt is generated if:

5/

- TOIE bit of the CR1 register is set and
- I bit of the CC register is cleared.

If one of these conditions is false, the interrupt remains pending to be issued as soon as they are both true. Clearing the overflow interrupt request is done in two steps:

1. Reading the SR register while the TOF bit is set. 2. An access (read or write) to the CLR register.

Notes: The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the ACLR register rather than the CLR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously.

The timer is not affected by WAIT mode.

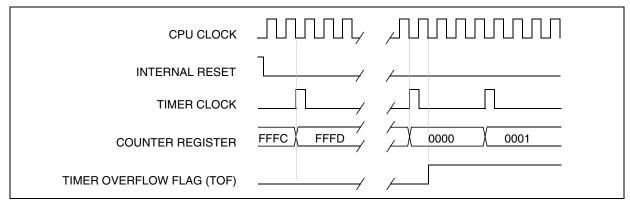
In HALT mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a Reset).

10.3.3.2 External Clock

The external clock (where available) is selected if CC0=1 and CC1=1 in the CR2 register.

The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter.

The counter is synchronized with the falling edge of the internal CPU clock.


A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency.

16-BIT TIMER (Cont'd)

Figure 36. Counter	[•] Timing Diagram,	, internal o	clock divided b	y 2
--------------------	------------------------------	--------------	-----------------	-----

CPU CLOCK	
INTERNAL RESET	
TIMER CLOCK	
– COUNTER REGISTER –	\ FFFD\ FFFE\ FFFF\ 0000 \ 0001 \ 0002 \ 0003 \
TIMER OVERFLOW FLAG (TOF)	

Figure 37. Counter Timing Diagram, internal clock divided by 4

Figure 38. Counter Timing Diagram, internal clock divided by 8

CPU CLOCK	
INTERNAL RESET	1
TIMER CLOCK	/
COUNTER REGISTER	FFFC FFFD 0000
TIMER OVERFLOW FLAG (TOF)	

Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running.

16-BIT TIMER (Cont'd)

10.3.3.4 Output Compare

In this section, the index, *i*, may be 1 or 2 because there are 2 output compare functions in the 16-bit timer.

This function can be used to control an output waveform or indicate when a period of time has elapsed.

When a match is found between the Output Compare register and the free running counter, the output compare function:

- Assigns pins with a programmable value if the OC/E bit is set
- Sets a flag in the status register
- Generates an interrupt if enabled

Two 16-bit registers Output Compare Register 1 (OC1R) and Output Compare Register 2 (OC2R) contain the value to be compared to the counter register each timer clock cycle.

	MS Byte	LS Byte
OC <i>i</i> R	OC <i>i</i> HR	OC <i>i</i> LR

These registers are readable and writable and are not affected by the timer hardware. A reset event changes the OC*i*R value to 8000h.

Timing resolution is one count of the free running counter: $(f_{CPU/CC[1:0]})$.

Procedure:

To use the output compare function, select the following in the CR2 register:

- Set the OC*i*E bit if an output is needed then the OCMP*i* pin is dedicated to the output compare *i* signal.
- Select the timer clock (CC[1:0]) (see Table 16 Clock Control Bits).

And select the following in the CR1 register:

- Select the OLVL*i* bit to applied to the OCMP*i* pins after the match occurs.
- Set the OCIE bit to generate an interrupt if it is needed.

When a match is found between OCRi register and CR register:

- OCF*i* bit is set.

- The OCMP*i* pin takes OLVL*i* bit value (OCMP*i* pin latch is forced low during reset).
- A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is cleared in the CC register (CC).

The OC*i*R register value required for a specific timing application can be calculated using the following formula:

$$\Delta \operatorname{OC}_{i} R = \frac{\Delta t * f_{CPU}}{PRESC}$$

Where:

- Δt = Output compare period (in seconds)
- f_{CPU} = CPU clock frequency (in hertz)
- PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 16 Clock Control Bits)

If the timer clock is an external clock, the formula is:

$$\Delta \text{ OC} i \text{R} = \Delta t * f_{\text{EXT}}$$

Where:

 Δt = Output compare period (in seconds)

 f_{EXT} = External timer clock frequency (in hertz)

Clearing the output compare interrupt request (i.e. clearing the OCF*i* bit) is done by:

- 1. Reading the SR register while the OCF*i* bit is set.
- 2. An access (read or write) to the OCiLR register.

The following procedure is recommended to prevent the OCF*i* bit from being set between the time it is read and the write to the OC*i*R register:

- Write to the OC*i*HR register (further compares are inhibited).
- Read the SR register (first step of the clearance of the OCF*i* bit, which may be already set).
- Write to the OC*i*LR register (enables the output compare function and clears the OCF*i* bit).

16-BIT TIMER (Cont'd) CONTROL/STATUS REGISTER (CSR)

Read Only (except bit 2 R/W)

Reset Value: xxxx x0xx (xxh)

7							0
ICF1	OCF1	TOF	ICF2	OCF2	TIMD	0	0

Bit 7 = ICF1 Input Capture Flag 1.

0: No input capture (reset value).

1: An input capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the low byte of the IC1R (IC1LR) register.

Bit 6 = OCF1 Output Compare Flag 1.

0: No match (reset value).

1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the low byte of the OC1R (OC1LR) register.

Bit 5 = **TOF** Timer Overflow Flag.

0: No timer overflow (reset value).

1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first read the SR register, then read or write the low byte of the CR (CLR) register.

Note: Reading or writing the ACLR register does not clear TOF.

Bit 4 = ICF2 Input Capture Flag 2.

0: No input capture (reset value).

1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the low byte of the IC2R (IC2LR) register.

Note: In Flash devices, this bit is not available for Timer A and is forced by hardware to 0.

Bit 3 = **OCF2** *Output Compare Flag 2.*

- 0: No match (reset value).
- 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the low byte of the OC2R (OC2LR) register.

Note: In Flash devices, this bit is not available for Timer A and is forced by hardware to 0.

Bit 2 = **TIMD** *Timer disable.*

This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled.

0: Timer enabled

1: Timer prescaler, counter and outputs disabled

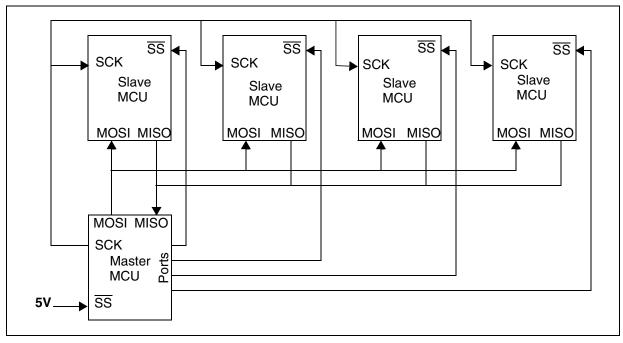
Bits 1:0 = Reserved, must be kept cleared.

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.5.4 Single Master Systems

57/

A typical single master system may be configured, using an MCU as the master and four MCUs as slaves (see Figure 52).


The master device selects the individual slave devices by using four pins of a parallel port to control the four SS pins of the slave devices.

The \overline{SS} pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices.

Note: To prevent a bus conflict on the MISO line the master allows only one active slave device during a transmission.

For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register.

Other transmission security methods can use ports for handshake lines or data bytes with command fields.

SERIAL PERIPHERAL INTERFACE (Cont'd)

CONTROL/STATUS REGISTER (SPICSR)

Read/Write (some bits Read Only) Reset Value: 0000 0000 (00h)

7							0
SPIF	WCOL	OVR	MODF	-	SOD	SSM	SSI

Bit 7 = **SPIF** Serial Peripheral Data Transfer Flag (Read only).

This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE=1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register).

- 0: Data transfer is in progress or the flag has been cleared.
- 1: Data transfer between the device and an external device has been completed.

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

Bit 6 = WCOL Write Collision status (Read only).

This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see Figure 51).

0: No write collision occurred

1: A write collision has been detected

Bit 5 = OVR SPI Overrun error (Read only).

This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (See Section 10.4.5.2). An interrupt is generated if SPIE = 1 in SPICR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error

1: Overrun error detected

Bit 4 = MODF Mode Fault flag (Read only).

This bit is set by hardware when the SS pin is pulled low in master mode (see Section 10.4.5.1 Master Mode Fault (MODF)). An SPI interrupt can be generated if SPIE=1 in the SPICSR register. This bit is cleared by a software sequence (An access to the SPICR register while MODF=1 followed by a write to the SPICR register).

0: No master mode fault detected

1: A fault in master mode has been detected

Bit 3 = Reserved, must be kept cleared.

Bit 2 = SOD SPI Output Disable.

This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode) 0: SPI output enabled (if SPE=1) 1: SPI output disabled

Bit 1 = **SSM** *SS Management.*

This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See Section 10.4.3.2 Slave Select Management.

- 0: Hardware management (SS managed by external pin)
- 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O)

Bit 0 = SSI <u>SS</u> Internal Mode.

This bit is set and cleared by software. It acts as a 'chip select' by controlling the level of the \overline{SS} slave select signal when the SSM bit is set.

0: Slave selected

1: Slave deselected

DATA I/O REGISTER (SPIDR)

Read/Write

Reset Value: Undefined

7							0	
D7	D6	D5	D4	D3	D2	D1	D0	

The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte.

Notes: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read.

While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

Warning: A write to the SPIDR register places data directly into the shift register for transmission.

A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see Figure 46).

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.7 Parity Control

Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in Table 1.

Table 20.	Frame Formats
-----------	----------------------

M bit	PCE bit	SCI frame
0	0	SB 8 bit data STB
0	1	SB 7-bit data PB STB
1	0	SB 9-bit data STB
1	1	SB 8-bit data PB STB

Legend: SB = Start Bit, STB = Stop Bit,

PB = Parity Bit

5/

Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and not the parity bit

Even parity: the parity bit is calculated to obtain an even number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit = 0).

Odd parity: the parity bit is calculated to obtain an odd number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the interface checks if the received data byte has an

even number of "1s" if even parity is selected (PS = 0) or an odd number of "1s" if odd parity is selected (PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register.

10.5.4.8 SCI Clock Tolerance

During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th samples is considered as the bit value. For a valid bit detection, all the three samples should have the same value otherwise the noise flag (NF) is set. For example: If the 8th, 9th and 10th samples are 0, 1 and 1 respectively, then the bit value is "1", but the Noise Flag bit is set because the three samples values are not the same.

Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples have the desired bit value. This means the clock frequency should not vary more than 6/16 (37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed 3.75%.

Note: The internal sampling clock of the microcontroller samples the pin value on every falling edge. Therefore, the internal sampling clock and the time the application expects the sampling to take place may be out of sync. For example: If the baud rate is 15.625 Kbaud (bit length is 64µs), then the 8th, 9th and 10th samples are at 28µs, 32µs and 36µs respectively (the first sample starting ideally at 0µs). But if the falling edge of the internal clock occurs just before the pin value changes, the samples would then be out of sync by ~4us. This means the entire bit length must be at least 40µs (36µs for the 10th sample + 4µs for synchronization with the internal sampling clock).

INSTRUCTION SET OVERVIEW (Cont'd)

11.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

Load and Transfer	LD	CLR						
Stack operation	PUSH	POP	RSP					
Increment/Decrement	INC	DEC						
Compare and Tests	СР	TNZ	BCP					
Logical operations	AND	OR	XOR	CPL	NEG			
Bit Operation	BSET	BRES						
Conditional Bit Test and Branch	BTJT	BTJF						
Arithmetic operations	ADC	ADD	SUB	SBC	MUL			
Shift and Rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional Jump or Call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional Branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition Code Flag modification	SIM	RIM	SCF	RCF				

Using a pre-byte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC opcode

57

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.

PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode.

It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

OPERATING CONDITIONS (Cont'd)

12.4 LVD/AVD CHARACTERISTICS

12.4.1 Operating Conditions with Low Voltage Detector (LVD)

Subject to general operating conditions for T_A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Baratasia ang diserahada	VD level = High in option byte	4.0 ¹⁾	4.2	4.5	
V _{IT+(LVD)}	(LVD) (V _{DD} rise)	VD level = Med. in option byte ²⁾	3.55 ¹⁾	3.75	4.0 ¹⁾	
		VD level = Low in option byte ²⁾	2.95 ¹⁾	3.15	3.35 ¹⁾	v
		VD level = High in option byte	3.8	4.0	4.25 ¹⁾	v
V _{IT-(LVD)}	Reset generation threshold (V _{DD} fall)	VD level = Med. in option byte ²⁾	3.35 ¹⁾	3.55	3.75 ¹⁾	
		VD level = Low in option byte ²⁾	2.8 ¹⁾	3.0	3.15 ¹⁾	
V _{hys(LVD)}	LVD voltage threshold hysteresis 1)	V _{IT+(LVD)} -V _{IT-(LVD)}	150	200	250	mV
Vt _{POR}	V _{DD} rise time ¹⁾		6μs/V		100ms/V	
t _{g(VDD)}	Filtered glitch delay on $V_{DD}^{(1)}$	Not detected by the LVD			40	ns

Notes:

1. Data based on characterization results, not tested in production.

2. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range.

12.4.2 Auxiliary Voltage Detector (AVD) Thresholds

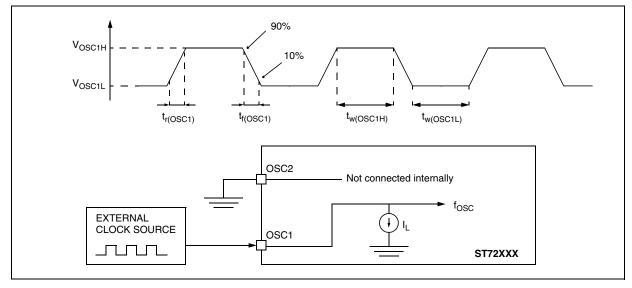
Subject to general operating conditions for T_A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	1⇒0 AVDF flag toggle threshold	VD level = High in option byte	4.4 ¹⁾	4.6	4.9	
V _{IT+(AVD)}	T⇒0 AVDF hag toggle threshold (V _{DD} rise)	VD level = Med. in option byte	3.95 ¹⁾	4.15	4.4 ¹⁾	
	(V _{DD} lise)	VD level = Low in option byte	3.4 ¹⁾	3.6	3.8 ¹⁾	v
	0. 1 AV/DE flag to go to the solution	VD level = High in option byte	4.2	4.4	4.65 ¹⁾	v
V _{IT-(AVD)}	0⇒1 AVDF flag toggle threshold (V _{DD} fall)	VD level = Med. in option byte	3.75 ¹⁾	4.0	4.2 ¹⁾	
. ,		VD level = Low in option byte	3.2 ¹⁾	3.4	3.6 ¹⁾	
V _{hys(AVD)}	AVD voltage threshold hysteresis	V _{IT+(AVD)} -V _{IT-(AVD)}		200		mV
ΔV_{IT-}	Voltage drop between AVD flag set and LVD reset activated	V _{IT-(AVD)} -V _{IT-(LVD)}		450		mV

1. Data based on characterization results not tested in production.

12.6 CLOCK AND TIMING CHARACTERISTICS

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A .


12.6.1 General Timings

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
t _{c(INST)}	Instruction cycle time		2	3	12	t _{CPU}
		f _{CPU} =8MHz	250	375	1500	ns
+	$ \begin{array}{l} \mbox{Interrupt reaction time} \ ^{2)} \\ t_{v(IT)} = \Delta t_{c(INST)} + 10 \end{array} $		10		22	t _{CPU}
		f _{CPU} =8MHz	1.25		2.75	μs

12.6.2 External Clock Source

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OSC1H}	OSC1 input pin high level voltage		V _{DD} -1		V _{DD}	V
V _{OSC1L}	OSC1 input pin low level voltage		V _{SS}		V _{SS} +1	v
t _{w(OSC1H)} t _{w(OSC1L)}	OSC1 high or low time ³⁾	see Figure 65	5			ns
t _{r(OSC1)} t _{f(OSC1)}	OSC1 rise or fall time ³⁾				15	15
١L	OSC1 Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA

Figure 65. Typical Application with an External Clock Source

Notes:

1. Data based on typical application software.

2. Time measured between interrupt event and interrupt vector fetch. $\Delta t_{c(INST)}$ is the number of t_{CPU} cycles needed to finish the current instruction execution.

3. Data based on design simulation and/or technology characteristics, not tested in production.

ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

OPTION BYTE 1

OPT7= **PKG1** *Pin package selection bit* This option bit selects the package.

Version	Selected Package	PKG1
J	TQFP44 / SDIP42	1
К	TQFP32 / SDIP32	0

Note: On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

OPT6 = RSTC RESET clock cycle selection

This option bit selects the number of CPU cycles applied during the RESET phase and when exiting HALT mode. For resonator oscillators, it is advised to select 4096 due to the long crystal stabilization time.

0: Reset phase with 4096 CPU cycles

1: Reset phase with 256 CPU cycles

OPT5:4 = OSCTYPE[1:0] Oscillator Type

These option bits select the ST7 main clock source type.

Clock Source	OSCTYPE		
Clock Source	1	0	
Resonator Oscillator	0	0	
Reserved	0	1	
Internal RC Oscillator	1	0	
External Source	1	1	

OPT3:1 = **OSCRANGE[2:0]** Oscillator range

When the resonator oscillator type is selected,

these option bits select the resonator oscillator current source corresponding to the frequency range of the used resonator. Otherwise, these bits are used to select the normal operating frequency range.

Typ. Freq. Range		OSCRANGE				
тур	. Freq. Range	2	1	0		
LP	1~2MHz	0	0	0		
MP	2~4MHz	0	0	1		
MS	4~8MHz	0	1	0		
HS	8~16MHz	0	1	1		

OPT0 = PLL OFF PLL activation

This option bit activates the PLL which allows multiplication by two of the main input clock frequency. The PLL must not be used with the internal RC oscillator. The PLL is guaranteed only with an input frequency between 2 and 4MHz.

0: PLL x2 enabled 1: PLL x2 disabled

CAUTION: the PLL can be enabled only if the "OSC RANGE" (OPT3:1) bits are configured to "MP - 2~4MHz". Otherwise, the device functionality is not guaranteed.

15 KNOWN LIMITATIONS

15.1 ALL DEVICES

15.1.1 External RC option

The External RC clock source option described in previous datasheet revisions is no longer supported and has been removed from this specification.

15.1.2 CSS Function

The Clock Security System function has been removed from the datasheet.

15.1.3 Safe Connection of OSC1/OSC2 Pins

The OSC1 and/or OSC2 pins must not be left unconnected otherwise the ST7 main oscillator may start and, in this configuration, could generate an f_{OSC} clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. Refer to Section 6.2 on page 24.

15.1.4 Unexpected Reset Fetch

If an interrupt request occurs while a "POP CC" instruction is executed, the interrupt controller does not recognise the source of the interrupt and, by default, passes the RESET vector address to the CPU.

Workaround

To solve this issue, a "POP CC" instruction must always be preceded by a "SIM" instruction.

15.1.5 Clearing active interrupts outside interrupt routine

When an active interrupt request occurs at the same time as the related flag is being cleared, an unwanted reset may occur.

Note: clearing the related interrupt mask will not generate an unwanted reset

Concurrent interrupt context

The symptom does not occur when the interrupts are handled normally, i.e.

when:

- The interrupt flag is cleared within its own interrupt routine
- The interrupt flag is cleared within any interrupt routine
- The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following sequence:

Perform SIM and RIM operation before and after resetting an active interrupt request.

Example:

SIM

reset interrupt flag

RIM

Nested interrupt context:

The symptom does not occur when the interrupts are handled normally, i.e.

when:

- The interrupt flag is cleared within its own interrupt routine
- The interrupt flag is cleared within any interrupt routine with higher or identical priority level
- The interrupt flag is cleared in any part of the code while this interrupt is disabled

If these conditions are not met, the symptom can be avoided by implementing the following sequence:

PUSH CC SIM reset interrupt flag

POP CC

15.1.6 External Interrupt Missed

To avoid any risk of generating a parasitic interrupt, the edge detector is automatically disabled for one clock cycle during an access to either DDR and OR. Any input signal edge during this period will not be detected and will not generate an interrupt.

This case can typically occur if the application refreshes the port configuration registers at intervals during runtime.

Workaround

The workaround is based on software checking the level on the interrupt pin before and after writing to the PxOR or PxDDR registers. If there is a level change (depending on the sensitivity programmed for this pin) the interrupt routine is invoked using the call instruction with three extra PUSH instructions before executing the interrupt routine (this is to make the call compatible with the IRET instruction at the end of the interrupt service routine).

But detection of the level change does ensure that edge occurs during the critical 1 cycle duration and the interrupt has been missed. This may lead to occurrence of same interrupt twice (one hardware and another with software call).

57