
STMicroelectronics - ST72F324K2T6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 24

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 384 x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324k2t6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f324k2t6-4429374
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Table of Contents
164

8.4 ACTIVE-HALT AND HALT MODES . 42

8.4.1 ACTIVE-HALT MODE . 42
8.4.2 HALT MODE . 43

9 I/O PORTS . 45
9.1 INTRODUCTION . 45

9.2 FUNCTIONAL DESCRIPTION . 45

9.2.1 Input Modes . 45
9.2.2 Output Modes . 45
9.2.3 Alternate Functions . 45

9.3 I/O PORT IMPLEMENTATION . 48

9.4 LOW POWER MODES . 48

9.5 INTERRUPTS . 48

9.5.1 I/O Port Implementation . 49
10 ON-CHIP PERIPHERALS . 51

10.1 WATCHDOG TIMER (WDG) . 51

10.1.1 Introduction . 51
10.1.2 Main Features . 51
10.1.3 Functional Description . 51
10.1.4 How to Program the Watchdog Timeout . 52
10.1.5 Low Power Modes . 54
10.1.6 Hardware Watchdog Option . 54
10.1.7 Using Halt Mode with the WDG (WDGHALT option) . 54
10.1.8 Interrupts . 54
10.1.9 Register Description . 54

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 56

10.2.1 Programmable CPU Clock Prescaler . 56
10.2.2 Clock-out Capability . 56
10.2.3 Real Time Clock Timer (RTC) . 56
10.2.4 Beeper . 56
10.2.5 Low Power Modes . 57
10.2.6 Interrupts . 57
10.2.7 Register Description . 57

10.3 16-BIT TIMER . 59

10.3.1 Introduction . 59
10.3.2 Main Features . 59
10.3.3 Functional Description . 59
10.3.4 Low Power Modes . 71
10.3.5 Interrupts . 71
10.3.6 Summary of Timer modes . 71
10.3.7 Register Description . 72

10.4 SERIAL PERIPHERAL INTERFACE (SPI) . 79

10.4.1 Introduction . 79
10.4.2 Main Features . 79
10.4.3 General Description . 79
10.4.4 Clock Phase and Clock Polarity . 83
10.4.5 Error Flags . 84
10.4.6 Low Power Modes . 86
3/164

1

Table of Contents
164

12.6 CLOCK AND TIMING CHARACTERISTICS . 124

12.6.1 General Timings . 124
12.6.2 External Clock Source . 124
12.6.3 Crystal and Ceramic Resonator Oscillators . 125
12.6.4 RC Oscillators . 127
12.6.5 PLL Characteristics . 128

12.7 MEMORY CHARACTERISTICS . 129

12.7.1 RAM and Hardware Registers . 129
12.7.2 FLASH Memory . 129

12.8 EMC CHARACTERISTICS . 130

12.8.1 Functional EMS (Electro Magnetic Susceptibility) . 130
12.8.2 Electro Magnetic Interference (EMI) . 131
12.8.3 Absolute Maximum Ratings (Electrical Sensitivity) . 132

12.9 I/O PORT PIN CHARACTERISTICS . 133

12.9.1 General Characteristics . 133
12.9.2 Output Driving Current . 134

12.10 CONTROL PIN CHARACTERISTICS . 136

12.10.1Asynchronous RESET Pin . 136
12.10.2ICCSEL/VPP Pin . 138

12.11 TIMER PERIPHERAL CHARACTERISTICS . 139

12.11.116-Bit Timer . 139
12.12 COMMUNICATION INTERFACE CHARACTERISTICS . 140

12.12.1SPI - Serial Peripheral Interface . 140
12.13 10-BIT ADC CHARACTERISTICS . 142

12.13.1Analog Power Supply and Reference Pins . 144
12.13.2General PCB Design Guidelines . 144
12.13.3ADC Accuracy . 145

13 PACKAGE CHARACTERISTICS . 146
13.1 PACKAGE MECHANICAL DATA . 146

13.2 THERMAL CHARACTERISTICS . 148

13.3 SOLDERING INFORMATION . 149

14 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION 150
14.1 FLASH OPTION BYTES . 150

14.2 FLASH DEVICE ORDERING INFORMATION . 152

14.3 SILICON IDENTIFICATION . 154

14.4 DEVELOPMENT TOOLS . 155

14.4.1 Socket and Emulator Adapter Information . 156
14.5 ST7 APPLICATION NOTES . 157

15 KNOWN LIMITATIONS . 159
15.1 ALL DEVICES . 159

15.1.1 External RC option . 159
15.1.2 CSS Function . 159
15.1.3 Safe Connection of OSC1/OSC2 Pins . 159
15.1.4 Unexpected Reset Fetch . 159
15.1.5 Clearing active interrupts outside interrupt routine . 159
15.1.6 External Interrupt Missed . 159
5/164

1

ST72324Jx ST72324Kx
FLASH PROGRAM MEMORY (Cont’d)

4.4 ICC Interface

ICC needs a minimum of 4 and up to 6 pins to be
connected to the programming tool (see Figure 7).
These pins are:

– RESET: device reset
– VSS: device power supply ground

– ICCCLK: ICC output serial clock pin
– ICCDATA: ICC input/output serial data pin
– ICCSEL/VPP: programming voltage
– OSC1(or OSCIN): main clock input for exter-

nal source (optional)
– VDD: application board power supply (option-

al, see Figure 7, Note 3)

Figure 7. Typical ICC Interface

Notes:
1. If the ICCCLK or ICCDATA pins are only used
as outputs in the application, no signal isolation is
necessary. As soon as the Programming Tool is
plugged to the board, even if an ICC session is not
in progress, the ICCCLK and ICCDATA pins are
not available for the application. If they are used as
inputs by the application, isolation such as a serial
resistor has to implemented in case another de-
vice forces the signal. Refer to the Programming
Tool documentation for recommended resistor val-
ues.

2. During the ICC session, the programming tool
must control the RESET pin. This can lead to con-
flicts between the programming tool and the appli-
cation reset circuit if it drives more than 5mA at
high level (push pull output or pull-up resistor<1K).
A schottky diode can be used to isolate the appli-
cation RESET circuit in this case. When using a
classical RC network with R>1K or a reset man-
agement IC with open drain output and pull-up re-

sistor>1K, no additional components are needed.
In all cases the user must ensure that no external
reset is generated by the application during the
ICC session.

3. The use of Pin 7 of the ICC connector depends
on the Programming Tool architecture. This pin
must be connected when using most ST Program-
ming Tools (it is used to monitor the application
power supply). Please refer to the Programming
Tool manual.

4. Pin 9 has to be connected to the OSC1 or OS-
CIN pin of the ST7 when the clock is not available
in the application or if the selected clock option is
not programmed in the option byte. ST7 devices
with multi-oscillator capability need to have OSC2
grounded in this case.

ICC CONNECTOR

IC
C

D
A

T
A

IC
C

C
LK

R
E

S
E

T

V
D

D

HE10 CONNECTOR TYPE

APPLICATION
POWER SUPPLY

1

246810

9 7 5 3

PROGRAMMING TOOL

ICC CONNECTOR

APPLICATION BOARD
ICC Cable

(See Note 3)

10kΩ

V
S

S

IC
C

S
E

L/
V

P
P

ST7

CL2 CL1

O
S

C
1

O
S

C
2

OPTIONAL

See Note 1

See Note 2

APPLICATION
RESET SOURCE

APPLICATION
I/O

(See Note 4)
IN SOME CASES
18/164

1

ST72324Jx ST72324Kx
7 INTERRUPTS

7.1 INTRODUCTION

The ST7 enhanced interrupt management pro-
vides the following features:
■ Hardware interrupts
■ Software interrupt (TRAP)
■ Nested or concurrent interrupt management

with flexible interrupt priority and level
management:

– Up to 4 software programmable nesting levels
– Up to 16 interrupt vectors fixed by hardware
– 2 non maskable events: RESET, TRAP

This interrupt management is based on:

– Bit 5 and bit 3 of the CPU CC register (I1:0),
– Interrupt software priority registers (ISPRx),
– Fixed interrupt vector addresses located at the

high addresses of the memory map (FFE0h to
FFFFh) sorted by hardware priority order.

This enhanced interrupt controller guarantees full
upward compatibility with the standard (not nest-
ed) ST7 interrupt controller.

7.2 MASKING AND PROCESSING FLOW

The interrupt masking is managed by the I1 and I0
bits of the CC register and the ISPRx registers
which give the interrupt software priority level of
each interrupt vector (see Table 6). The process-
ing flow is shown in Figure 17

When an interrupt request has to be serviced:

– Normal processing is suspended at the end of
the current instruction execution.

– The PC, X, A and CC registers are saved onto
the stack.

– I1 and I0 bits of CC register are set according to
the corresponding values in the ISPRx registers
of the serviced interrupt vector.

– The PC is then loaded with the interrupt vector of
the interrupt to service and the first instruction of
the interrupt service routine is fetched (refer to
“Interrupt Mapping” table for vector addresses).

The interrupt service routine should end with the
IRET instruction which causes the contents of the
saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction,
the I1 and I0 bits will be restored from the stack
and the program in the previous level will resume.

Table 6. Interrupt Software Priority Levels

Figure 17. Interrupt Processing Flowchart

Interrupt software priority Level I1 I0
Level 0 (main) Low

High

1 0
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable) 1 1

“IRET”

RESTORE PC, X, A, CC
STACK PC, X, A, CC

LOAD I1:0 FROM INTERRUPT SW REG.

FETCH NEXT

RESET TRAP
PENDING

INSTRUCTION

I1:0

FROM STACK

LOAD PC FROM INTERRUPT VECTOR

Y

N

Y

N

Y

NInterrupt has the same or a
lower software priority

THE INTERRUPT
STAYS PENDING

than current one

In
te

rr
up

th
as

a
hi

gh
er

so
ftw

ar
e

pr
io

rit
y

th
an

cu
rr

en
to

ne

EXECUTE
INSTRUCTION

INTERRUPT
31/164

1

ST72324Jx ST72324Kx
INTERRUPTS (Cont’d)

Servicing Pending Interrupts
As several interrupts can be pending at the same
time, the interrupt to be taken into account is deter-
mined by the following two-step process:

– the highest software priority interrupt is serviced,

– if several interrupts have the same software pri-
ority then the interrupt with the highest hardware
priority is serviced first.

Figure 18 describes this decision process.

Figure 18. Priority Decision Process

When an interrupt request is not serviced immedi-
ately, it is latched and then processed when its
software priority combined with the hardware pri-
ority becomes the highest one.

Note 1: The hardware priority is exclusive while
the software one is not. This allows the previous
process to succeed with only one interrupt.
Note 2: RESET and TRAP can be considered as
having the highest software priority in the decision
process.

Different Interrupt Vector Sources
Two interrupt source types are managed by the
ST7 interrupt controller: the non-maskable type
(RESET,TRAP) and the maskable type (external
or from internal peripherals).

Non-Maskable Sources
These sources are processed regardless of the
state of the I1 and I0 bits of the CC register (see
Figure 17). After stacking the PC, X, A and CC
registers (except for RESET), the corresponding

vector is loaded in the PC register and the I1 and
I0 bits of the CC are set to disable interrupts (level
3). These sources allow the processor to exit
HALT mode.
■ TRAP (Non Maskable Software Interrupt)

This software interrupt is serviced when the TRAP
instruction is executed. It will be serviced accord-
ing to the flowchart in Figure 17.
■ RESET

The RESET source has the highest priority in the
ST7. This means that the first current routine has
the highest software priority (level 3) and the high-
est hardware priority.
See the RESET chapter for more details.

Maskable Sources
Maskable interrupt vector sources can be serviced
if the corresponding interrupt is enabled and if its
own interrupt software priority (in ISPRx registers)
is higher than the one currently being serviced (I1
and I0 in CC register). If any of these two condi-
tions is false, the interrupt is latched and thus re-
mains pending.
■ External Interrupts

External interrupts allow the processor to exit from
HALT low power mode. External interrupt sensitiv-
ity is software selectable through the External In-
terrupt Control register (EICR).
External interrupt triggered on edge will be latched
and the interrupt request automatically cleared
upon entering the interrupt service routine.
If several input pins of a group connected to the
same interrupt line are selected simultaneously,
these will be logically ORed.
■ Peripheral Interrupts

Usually the peripheral interrupts cause the MCU to
exit from HALT mode except those mentioned in
the “Interrupt Mapping” table. A peripheral inter-
rupt occurs when a specific flag is set in the pe-
ripheral status registers and if the corresponding
enable bit is set in the peripheral control register.
The general sequence for clearing an interrupt is
based on an access to the status register followed
by a read or write to an associated register.
Note: The clearing sequence resets the internal
latch. A pending interrupt (i.e. waiting for being
serviced) will therefore be lost if the clear se-
quence is executed.

PENDING

SOFTWARE Different

INTERRUPTS

Same

HIGHEST HARDWARE
 PRIORITY SERVICED

PRIORITY

HIGHEST SOFTWARE
 PRIORITY SERVICED
32/164

1

ST72324Jx ST72324Kx
INTERRUPTS (Cont’d)

7.5 INTERRUPT REGISTER DESCRIPTION

CPU CC REGISTER INTERRUPT BITS
Read/Write

Reset Value: 111x 1010 (xAh)

Bit 5, 3 = I1, I0 Software Interrupt Priority

These two bits indicate the current interrupt soft-
ware priority.

These two bits are set/cleared by hardware when
entering in interrupt. The loaded value is given by
the corresponding bits in the interrupt software pri-
ority registers (ISPRx).

They can be also set/cleared by software with the
RIM, SIM, HALT, WFI, IRET and PUSH/POP in-
structions (see “Interrupt Dedicated Instruction
Set” table).

*Note: TRAP and RESET events can interrupt a
level 3 program.

INTERRUPT SOFTWARE PRIORITY REGIS-
TERS (ISPRX)
Read/Write (bit 7:4 of ISPR3 are read only)

Reset Value: 1111 1111 (FFh)

These four registers contain the interrupt software
priority of each interrupt vector.

– Each interrupt vector (except RESET and TRAP)
has corresponding bits in these registers where
its own software priority is stored. This corre-
spondance is shown in the following table.

– Each I1_x and I0_x bit value in the ISPRx regis-
ters has the same meaning as the I1 and I0 bits
in the CC register.

– Level 0 can not be written (I1_x=1, I0_x=0). In
this case, the previously stored value is kept. (ex-
ample: previous=CFh, write=64h, result=44h)

The RESET, and TRAP vectors have no software
priorities. When one is serviced, the I1 and I0 bits
of the CC register are both set.

Caution: If the I1_x and I0_x bits are modified
while the interrupt x is executed the following be-
haviour has to be considered: If the interrupt x is
still pending (new interrupt or flag not cleared) and
the new software priority is higher than the previ-
ous one, the interrupt x is re-entered. Otherwise,
the software priority stays unchanged up to the
next interrupt request (after the IRET of the inter-
rupt x).

7 0

1 1 I1 H I0 N Z C

Interrupt Software Priority Level I1 I0
Level 0 (main) Low

High

1 0
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable*) 1 1

7 0

ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0

ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4

ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8

ISPR3 1 1 1 1 I1_13 I0_13 I1_12 I0_12

Vector address ISPRx bits

FFFBh-FFFAh I1_0 and I0_0 bits*
FFF9h-FFF8h I1_1 and I0_1 bits

... ...
FFE1h-FFE0h I1_13 and I0_13 bits
34/164

1

ST72324Jx ST72324Kx
POWER SAVING MODES (Cont’d)

8.4.2 HALT MODE
The HALT mode is the lowest power consumption
mode of the MCU. It is entered by executing the
‘HALT’ instruction when the OIE bit of the Main
Clock Controller Status register (MCCSR) is
cleared (see Section 10.2 on page 56 for more de-
tails on the MCCSR register).

The MCU can exit HALT mode on reception of ei-
ther a specific interrupt (see Table 8, “Interrupt
Mapping,” on page 36) or a RESET. When exiting
HALT mode by means of a RESET or an interrupt,
the oscillator is immediately turned on and the 256
or 4096 CPU cycle delay is used to stabilize the
oscillator. After the start up delay, the CPU
resumes operation by servicing the interrupt or by
fetching the reset vector which woke it up (see Fig-
ure 28).
When entering HALT mode, the I[1:0] bits in the
CC register are forced to ‘10b’to enable interrupts.
Therefore, if an interrupt is pending, the MCU
wakes up immediately.

In HALT mode, the main oscillator is turned off
causing all internal processing to be stopped, in-
cluding the operation of the on-chip peripherals.
All peripherals are not clocked except the ones
which get their clock supply from another clock
generator (such as an external or auxiliary oscilla-
tor).

The compatibility of Watchdog operation with
HALT mode is configured by the “WDGHALT” op-
tion bit of the option byte. The HALT instruction
when executed while the Watchdog system is en-
abled, can generate a Watchdog RESET (see
Section 14.1 on page 150) for more details.

Figure 27. HALT Timing Overview

Figure 28. HALT Mode Flow-chart

Notes:
1. WDGHALT is an option bit. See option byte sec-
tion for more details.
2. Peripheral clocked with an external clock source
can still be active.
3. Only some specific interrupts can exit the MCU
from HALT mode (such as external interrupt). Re-
fer to Table 8, “Interrupt Mapping,” on page 36 for
more details.
4. Before servicing an interrupt, the CC register is
pushed on the stack. The I[1:0] bits of the CC reg-
ister are set to the current software priority level of
the interrupt routine and recovered when the CC
register is popped.

HALTRUN RUN
256 OR 4096 CPU

CYCLE DELAY

RESET
OR

INTERRUPTHALT
INSTRUCTION FETCH

VECTOR[MCCSR.OIE=0]

HALT INSTRUCTION

RESET

INTERRUPT 3)

Y

N

N

Y

CPU

OSCILLATOR
PERIPHERALS 2)

I[1:0] BITS

OFF
OFF

10
OFF

FETCH RESET VECTOR
OR SERVICE INTERRUPT

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
OFF

XX 4)
ON

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
ON

XX 4)
ON

256 OR 4096 CPU CLOCK
DELAY

WATCHDOGENABLE

DISABLEWDGHALT 1) 0

WATCHDOG
RESET

1

(MCCSR.OIE=0)

CYCLE
43/164

1

ST72324Jx ST72324Kx
9 I/O PORTS

9.1 INTRODUCTION

The I/O ports offer different functional modes:
– transfer of data through digital inputs and outputs

and for specific pins:
– external interrupt generation
– alternate signal input/output for the on-chip pe-

ripherals.

An I/O port contains up to 8 pins. Each pin can be
programmed independently as digital input (with or
without interrupt generation) or digital output.

9.2 FUNCTIONAL DESCRIPTION

Each port has 2 main registers:

– Data Register (DR)

– Data Direction Register (DDR)

and one optional register:

– Option Register (OR)

Each I/O pin may be programmed using the corre-
sponding register bits in the DDR and OR regis-
ters: bit X corresponding to pin X of the port. The
same correspondence is used for the DR register.

The following description takes into account the
OR register, (for specific ports which do not pro-
vide this register refer to the I/O Port Implementa-
tion section). The generic I/O block diagram is
shown in Figure 29

9.2.1 Input Modes
The input configuration is selected by clearing the
corresponding DDR register bit.

In this case, reading the DR register returns the
digital value applied to the external I/O pin.

Different input modes can be selected by software
through the OR register.
Notes:
1. Writing the DR register modifies the latch value
but does not affect the pin status.
2. When switching from input to output mode, the
DR register has to be written first to drive the cor-
rect level on the pin as soon as the port is config-
ured as an output.
3. Do not use read/modify/write instructions (BSET
or BRES) to modify the DR register
External interrupt function
When an I/O is configured as Input with Interrupt,
an event on this I/O can generate an external inter-
rupt request to the CPU.

Each pin can independently generate an interrupt
request. The interrupt sensitivity is independently
programmable using the sensitivity bits in the
EICR register.

Each external interrupt vector is linked to a dedi-
cated group of I/O port pins (see pinout description
and interrupt section). If several input pins are se-
lected simultaneously as interrupt sources, these
are first detected according to the sensitivity bits in
the EICR register and then logically ORed.

The external interrupts are hardware interrupts,
which means that the request latch (not accessible
directly by the application) is automatically cleared
when the corresponding interrupt vector is
fetched. To clear an unwanted pending interrupt
by software, the sensitivity bits in the EICR register
must be modified.

9.2.2 Output Modes
The output configuration is selected by setting the
corresponding DDR register bit. In this case, writ-
ing the DR register applies this digital value to the
I/O pin through the latch. Then reading the DR reg-
ister returns the previously stored value.

Two different output modes can be selected by
software through the OR register: Output push-pull
and open-drain.

DR register value and output pin status:

9.2.3 Alternate Functions
When an on-chip peripheral is configured to use a
pin, the alternate function is automatically select-
ed. This alternate function takes priority over the
standard I/O programming.

When the signal is coming from an on-chip periph-
eral, the I/O pin is automatically configured in out-
put mode (push-pull or open drain according to the
peripheral).

When the signal is going to an on-chip peripheral,
the I/O pin must be configured in input mode. In
this case, the pin state is also digitally readable by
addressing the DR register.

Note: Input pull-up configuration can cause unex-
pected value at the input of the alternate peripheral
input. When an on-chip peripheral use a pin as in-
put and output, this pin has to be configured in in-
put floating mode.

DR Push-pull Open-drain
0 VSS Vss
1 VDD Floating
45/164

1

ST72324Jx ST72324Kx
I/O PORTS (Cont’d)

9.5.1 I/O Port Implementation
The I/O port register configurations are summa-
rised as follows.

Standard Ports

PA5:4, PC7:0, PD5:0,
PE1:0, PF7:6, 4

Interrupt Ports
PB4, PB2:0, PF1:0 (with pull-up)

PA3, PB3, PF2 (without pull-up)

True Open Drain Ports
PA7:6

Table 12. Port Configuration

MODE DDR OR
floating input 0 0
pull-up input 0 1
open drain output 1 0
push-pull output 1 1

MODE DDR OR
floating input 0 0
pull-up interrupt input 0 1
open drain output 1 0
push-pull output 1 1

MODE DDR OR
floating input 0 0
floating interrupt input 0 1
open drain output 1 0
push-pull output 1 1

MODE DDR
floating input 0
open drain (high sink ports) 1

Port Pin name
Input Output

OR = 0 OR = 1 OR = 0 OR = 1

Port A

PA7:6 floating true open-drain

PA5:4 floating pull-up open drain push-pull

PA3 floating floating interrupt open drain push-pull

Port B
PB3 floating floating interrupt open drain push-pull

PB4, PB2:0 floating pull-up interrupt open drain push-pull

Port C PC7:0 floating pull-up open drain push-pull

Port D PD5:0 floating pull-up open drain push-pull

Port E PE1:0 floating pull-up open drain push-pull

Port F

PF7:6, 4 floating pull-up open drain push-pull

PF2 floating floating interrupt open drain push-pull

PF1:0 floating pull-up interrupt open drain push-pull
49/164

1

ST72324Jx ST72324Kx
16-BIT TIMER (Cont’d)

16-bit read sequence: (from either the Counter
Register or the Alternate Counter Register).

The user must read the MS Byte first, then the LS
Byte value is buffered automatically.

This buffered value remains unchanged until the
16-bit read sequence is completed, even if the
user reads the MS Byte several times.

After a complete reading sequence, if only the
CLR register or ACLR register are read, they re-
turn the LS Byte of the count value at the time of
the read.

Whatever the timer mode used (input capture, out-
put compare, one pulse mode or PWM mode) an
overflow occurs when the counter rolls over from
FFFFh to 0000h then:

– The TOF bit of the SR register is set.

– A timer interrupt is generated if:

– TOIE bit of the CR1 register is set and

– I bit of the CC register is cleared.

If one of these conditions is false, the interrupt re-
mains pending to be issued as soon as they are
both true.

Clearing the overflow interrupt request is done in
two steps:

1. Reading the SR register while the TOF bit is set.
2. An access (read or write) to the CLR register.

Notes: The TOF bit is not cleared by accesses to
ACLR register. The advantage of accessing the
ACLR register rather than the CLR register is that
it allows simultaneous use of the overflow function
and reading the free running counter at random
times (for example, to measure elapsed time) with-
out the risk of clearing the TOF bit erroneously.

The timer is not affected by WAIT mode.

In HALT mode, the counter stops counting until the
mode is exited. Counting then resumes from the
previous count (MCU awakened by an interrupt) or
from the reset count (MCU awakened by a Reset).

10.3.3.2 External Clock
The external clock (where available) is selected if
CC0=1 and CC1=1 in the CR2 register.

The status of the EXEDG bit in the CR2 register
determines the type of level transition on the exter-
nal clock pin EXTCLK that will trigger the free run-
ning counter.

The counter is synchronized with the falling edge
of the internal CPU clock.

A minimum of four falling edges of the CPU clock
must occur between two consecutive active edges
of the external clock; thus the external clock fre-
quency must be less than a quarter of the CPU
clock frequency.

is buffered
Read

At t0

Read Returns the buffered
LS Byte value at t0At t0 +∆t

Other
instructions

Beginning of the sequence

Sequence completed

LS Byte

LS Byte

MS Byte
61/164

1

ST72324Jx ST72324Kx
SERIAL PERIPHERAL INTERFACE (Cont’d)

– SS: Slave select:
This input signal acts as a ‘chip select’ to let
the SPI master communicate with slaves indi-
vidually and to avoid contention on the data
lines. Slave SS inputs can be driven by stand-
ard I/O ports on the master MCU.

10.4.3.1 Functional Description
A basic example of interconnections between a
single master and a single slave is illustrated in
Figure 47.

The MOSI pins are connected together and the
MISO pins are connected together. In this way
data is transferred serially between master and
slave (most significant bit first).

The communication is always initiated by the mas-
ter. When the master device transmits data to a
slave device via MOSI pin, the slave device re-
sponds by sending data to the master device via
the MISO pin. This implies full duplex communica-
tion with both data out and data in synchronized
with the same clock signal (which is provided by
the master device via the SCK pin).

To use a single data line, the MISO and MOSI pins
must be connected at each node (in this case only
simplex communication is possible).

Four possible data/clock timing relationships may
be chosen (see Figure 50) but master and slave
must be programmed with the same timing mode.

Figure 47. Single Master/ Single Slave Application

8-BIT SHIFT REGISTER

SPI
CLOCK

GENERATOR

8-BIT SHIFT REGISTER
MISO

MOSI MOSI

MISO

SCK SCK

SLAVEMASTER

SS SS+5V

MSBit LSBit MSBit LSBit

Not used if SS is managed
 by software
80/164

1

ST72324Jx ST72324Kx
SERIAL PERIPHERAL INTERFACE (Cont’d)

10.4.3.3 Master Mode Operation
In master mode, the serial clock is output on the
SCK pin. The clock frequency, polarity and phase
are configured by software (refer to the description
of the SPICSR register).

Note: The idle state of SCK must correspond to
the polarity selected in the SPICSR register (by
pulling up SCK if CPOL=1 or pulling down SCK if
CPOL=0).

To operate the SPI in master mode, perform the
following steps in order (if the SPICSR register is
not written first, the SPICR register setting (MSTR
bit) may be not taken into account):

1. Write to the SPICR register:
– Select the clock frequency by configuring the

SPR[2:0] bits.
– Select the clock polarity and clock phase by

configuring the CPOL and CPHA bits. Figure
50 shows the four possible configurations.
Note: The slave must have the same CPOL
and CPHA settings as the master.

2. Write to the SPICSR register:
– Either set the SSM bit and set the SSI bit or

clear the SSM bit and tie the SS pin high for
the complete byte transmit sequence.

3. Write to the SPICR register:
– Set the MSTR and SPE bits

Note: MSTR and SPE bits remain set only if
SS is high).

The transmit sequence begins when software
writes a byte in the SPIDR register.

10.4.3.4 Master Mode Transmit Sequence
When software writes to the SPIDR register, the
data byte is loaded into the 8-bit shift register and
then shifted out serially to the MOSI pin most sig-
nificant bit first.

When data transfer is complete:

– The SPIF bit is set by hardware

– An interrupt request is generated if the SPIE
bit is set and the interrupt mask in the CCR
register is cleared.

Clearing the SPIF bit is performed by the following
software sequence:

1. An access to the SPICSR register while the
SPIF bit is set

2. A read to the SPIDR register.

Note: While the SPIF bit is set, all writes to the
SPIDR register are inhibited until the SPICSR reg-
ister is read.

10.4.3.5 Slave Mode Operation
In slave mode, the serial clock is received on the
SCK pin from the master device.

To operate the SPI in slave mode:

1. Write to the SPICSR register to perform the fol-
lowing actions:
– Select the clock polarity and clock phase by

configuring the CPOL and CPHA bits (see
Figure 50).
Note: The slave must have the same CPOL
and CPHA settings as the master.

– Manage the SS pin as described in Section
10.4.3.2 and Figure 48. If CPHA=1 SS must
be held low continuously. If CPHA=0 SS must
be held low during byte transmission and
pulled up between each byte to let the slave
write in the shift register.

2. Write to the SPICR register to clear the MSTR
bit and set the SPE bit to enable the SPI I/O
functions.

10.4.3.6 Slave Mode Transmit Sequence
When software writes to the SPIDR register, the
data byte is loaded into the 8-bit shift register and
then shifted out serially to the MISO pin most sig-
nificant bit first.

The transmit sequence begins when the slave de-
vice receives the clock signal and the most signifi-
cant bit of the data on its MOSI pin.

When data transfer is complete:

– The SPIF bit is set by hardware

– An interrupt request is generated if SPIE bit is
set and interrupt mask in the CCR register is
cleared.

Clearing the SPIF bit is performed by the following
software sequence:

1. An access to the SPICSR register while the
SPIF bit is set.

2. A write or a read to the SPIDR register.

Notes: While the SPIF bit is set, all writes to the
SPIDR register are inhibited until the SPICSR reg-
ister is read.

The SPIF bit can be cleared during a second
transmission; however, it must be cleared before
the second SPIF bit in order to prevent an Overrun
condition (see Section 10.4.5.2).
82/164

1

ST72324Jx ST72324Kx
SERIAL COMMUNICATIONS INTERFACE (Cont’d)

10.5.4 Functional Description
The block diagram of the Serial Control Interface,
is shown in Figure 1. It contains six dedicated reg-
isters:

– Two control registers (SCICR1 & SCICR2)

– A status register (SCISR)

– A baud rate register (SCIBRR)

– An extended prescaler receiver register (SCIER-
PR)

– An extended prescaler transmitter register (SCI-
ETPR)

Refer to the register descriptions in Section 0.1.7
for the definitions of each bit.

10.5.4.1 Serial Data Format
Word length may be selected as being either 8 or 9
bits by programming the M bit in the SCICR1 reg-
ister (see Figure 1.).

The TDO pin is in low state during the start bit.

The TDO pin is in high state during the stop bit.

An Idle character is interpreted as an entire frame
of “1”s followed by the start bit of the next frame
which contains data.

A Break character is interpreted on receiving “0”s
for some multiple of the frame period. At the end of
the last break frame the transmitter inserts an ex-
tra “1” bit to acknowledge the start bit.

Transmission and reception are driven by their
own baud rate generator.

Figure 54. Word Length Programming

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
Bit Stop

Bit

Next
Start
Bit

Idle Frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

Start
Bit

Idle Frame
Start
Bit

9-bit Word length (M bit is set)

8-bit Word length (M bit is reset)

Possible
Parity

Bit

Possible
Parity

Bit

Break Frame Start
Bit

Extra
‘1’

Data Frame

Break Frame Start
Bit

Extra
‘1’

Data Frame

Next Data Frame

Next Data Frame
92/164

1

ST72324Jx ST72324Kx
SERIAL COMMUNICATIONS INTERFACE (Cont’d)

Framing Error
A framing error is detected when:

– The stop bit is not recognized on reception at the
expected time, following either a de-synchroni-
zation or excessive noise.

– A break is received.

When the framing error is detected:

– the FE bit is set by hardware

– Data is transferred from the Shift register to the
SCIDR register.

– No interrupt is generated. However this bit rises
at the same time as the RDRF bit which itself
generates an interrupt.

The FE bit is reset by a SCISR register read oper-
ation followed by a SCIDR register read operation.

10.5.4.4 Conventional Baud Rate Generation
The baud rate for the receiver and transmitter (Rx
and Tx) are set independently and calculated as
follows:

with:

PR = 1, 3, 4 or 13 (see SCP[1:0] bits)

TR = 1, 2, 4, 8, 16, 32, 64,128

(see SCT[2:0] bits)

RR = 1, 2, 4, 8, 16, 32, 64,128

(see SCR[2:0] bits)

All these bits are in the SCIBRR register.

Example: If fCPU is 8 MHz (normal mode) and if
PR = 13 and TR = RR = 1, the transmit and re-
ceive baud rates are 38400 baud.

Note: The baud rate registers MUST NOT be
changed while the transmitter or the receiver is en-
abled.

10.5.4.5 Extended Baud Rate Generation
The extended prescaler option gives a very fine
tuning on the baud rate, using a 255 value prescal-
er, whereas the conventional Baud Rate Genera-
tor retains industry standard software compatibili-
ty.

The extended baud rate generator block diagram
is described in the Figure 3.

The output clock rate sent to the transmitter or to
the receiver is the output from the 16 divider divid-
ed by a factor ranging from 1 to 255 set in the SCI-
ERPR or the SCIETPR register.

Note: the extended prescaler is activated by set-
ting the SCIETPR or SCIERPR register to a value
other than zero. The baud rates are calculated as
follows:

with:

ETPR = 1,..,255 (see SCIETPR register)

ERPR = 1,.. 255 (see SCIERPR register)

10.5.4.6 Receiver Muting and Wake-up Feature
In multiprocessor configurations it is often desira-
ble that only the intended message recipient
should actively receive the full message contents,
thus reducing redundant SCI service overhead for
all non addressed receivers.

The non addressed devices may be placed in
sleep mode by means of the muting function.

Setting the RWU bit by software puts the SCI in
sleep mode:

All the reception status bits can not be set.

All the receive interrupts are inhibited.

A muted receiver may be awakened by one of the
following two ways:

– by Idle Line detection if the WAKE bit is reset,

– by Address Mark detection if the WAKE bit is set.

Receiver wakes-up by Idle Line detection when
the Receive line has recognized an Idle Frame.
Then the RWU bit is reset by hardware but the
IDLE bit is not set.

Receiver wakes-up by Address Mark detection
when it received a “1” as the most significant bit of
a word, thus indicating that the message is an ad-
dress. The reception of this particular word wakes
up the receiver, resets the RWU bit and sets the
RDRF bit, which allows the receiver to receive this
word normally and to use it as an address word.

CAUTION: In Mute mode, do not write to the
SCICR2 register. If the SCI is in Mute mode during
the read operation (RWU = 1) and a address mark
wake up event occurs (RWU is reset) before the
write operation, the RWU bit is set again by this
write operation. Consequently the address byte is
lost and the SCI is not woken up from Mute mode.

Tx =
(16*PR)*TR

fCPU
Rx =

(16*PR)*RR

fCPU

Tx =
16*ETPR*(PR*TR)

fCPU Rx =
16*ERPR*(PR*RR)

fCPU
96/164

1

ST72324Jx ST72324Kx
SERIAL COMMUNICATIONS INTERFACE (Cont’d)

DATA REGISTER (SCIDR)
Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data char-
acter, depending on whether it is read from or writ-
ten to.

The Data register performs a double function (read
and write) since it is composed of two registers,
one for transmission (TDR) and one for reception
(RDR).
The TDR register provides the parallel interface
between the internal bus and the output shift reg-
ister (see Figure 1.).
The RDR register provides the parallel interface
between the input shift register and the internal
bus (see Figure 1.).

BAUD RATE REGISTER (SCIBRR)
Read/Write

Reset Value: 0000 0000 (00h)

Bits 7:6 = SCP[1:0] First SCI Prescaler
These 2 prescaling bits allow several standard
clock division ranges:

Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor
These 3 bits, in conjunction with the SCP1 & SCP0
bits define the total division applied to the bus
clock to yield the transmit rate clock in convention-
al Baud Rate Generator mode.

Bits 2:0 = SCR[2:0] SCI Receiver rate divisor.
These 3 bits, in conjunction with the SCP[1:0] bits
define the total division applied to the bus clock to
yield the receive rate clock in conventional Baud
Rate Generator mode.

7 0

DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0

7 0

SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0

PR Prescaling factor SCP1 SCP0

1 0 0

3 0 1

4 1 0

13 1 1

TR dividing factor SCT2 SCT1 SCT0

1 0 0 0

2 0 0 1

4 0 1 0

8 0 1 1

16 1 0 0

32 1 0 1

64 1 1 0

128 1 1 1

RR Dividing factor SCR2 SCR1 SCR0

1 0 0 0

2 0 0 1

4 0 1 0

8 0 1 1

16 1 0 0

32 1 0 1

64 1 1 0

128 1 1 1
103/164

1

ST72324Jx ST72324Kx
INSTRUCTION SET OVERVIEW (Cont’d)

Mnemo Description Function/Example Dst Src I1 H I0 N Z C

JRULE Jump if (C + Z = 1) Unsigned <=

LD Load dst <= src reg, M M, reg N Z

MUL Multiply X,A = X * A A, X, Y X, Y, A 0 0

NEG Negate (2's compl) neg $10 reg, M N Z C

NOP No Operation

OR OR operation A = A + M A M N Z

POP Pop from the Stack
pop reg reg M

pop CC CC M I1 H I0 N Z C

PUSH Push onto the Stack push Y M reg, CC

RCF Reset carry flag C = 0 0

RET Subroutine Return

RIM Enable Interrupts I1:0 = 10 (level 0) 1 0

RLC Rotate left true C C <= A <= C reg, M N Z C

RRC Rotate right true C C => A => C reg, M N Z C

RSP Reset Stack Pointer S = Max allowed

SBC Substract with Carry A = A - M - C A M N Z C

SCF Set carry flag C = 1 1

SIM Disable Interrupts I1:0 = 11 (level 3) 1 1

SLA Shift left Arithmetic C <= A <= 0 reg, M N Z C

SLL Shift left Logic C <= A <= 0 reg, M N Z C

SRL Shift right Logic 0 => A => C reg, M 0 Z C

SRA Shift right Arithmetic A7 => A => C reg, M N Z C

SUB Substraction A = A - M A M N Z C

SWAP SWAP nibbles A7-A4 <=> A3-A0 reg, M N Z

TNZ Test for Neg & Zero tnz lbl1 N Z

TRAP S/W trap S/W interrupt 1 1

WFI Wait for Interrupt 1 0

XOR Exclusive OR A = A XOR M A M N Z
115/164

1

ST72324Jx ST72324Kx
SUPPLY CURRENT CHARACTERISTICS (Cont’d)

12.5.2 Supply and Clock Managers
The previous current consumption specified for the ST7 functional operating modes over temperature
range does not take into account the clock source current consumption. To get the total device consump-
tion, the two current values must be added (except for HALT mode).

Notes:
1. Data based on characterization results done with the external components specified in Section 12.6.3, not tested in
production.
2. As the oscillator is based on a current source, the consumption does not depend on the voltage.

Symbol Parameter Conditions Typ Max Unit

IDD(RCINT) Supply current of internal RC oscillator 625

µA
IDD(RES) Supply current of resonator oscillator 1) & 2)

see Section
12.6.3 on page

125

IDD(PLL) PLL supply current VDD= 5V 360
µA

IDD(LVD) LVD supply current VDD= 5V 150 300
122/164

1

ST72324Jx ST72324Kx
COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d)

Figure 81. SPI Slave Timing Diagram with CPHA=11)

Figure 82. SPI Master Timing Diagram 1)

Notes:
1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has
its alternate function capability released. In this case, the pin status depends of the I/O port configuration.

SS INPUT

S
C

K
IN

P
U

T CPHA=1

MOSI INPUT

MISO OUTPUT

CPHA=1

tw(SCKH)
tw(SCKL) tr(SCK)

tf(SCK)

ta(SO)

tsu(SI) th(SI)

MSB OUT BIT6 OUT LSB OUT
see

CPOL=0

CPOL=1

tsu(SS) th(SS)

tdis(SO)th(SO)

see
note 2note 2

tc(SCK)

HZ

tv(SO)

MSB IN LSB INBIT1 IN

SS INPUT

S
C

K
IN

P
U

T

CPHA=0

MOSI OUTPUT

MISO INPUT

CPHA=0

CPHA=1

CPHA=1

tc(SCK)

tw(SCKH)
tw(SCKL)

th(MI)tsu(MI)

tv(MO) th(MO)

MSB IN

MSB OUT

BIT6 IN

BIT6 OUT LSB OUT

LSB IN

see note 2 see note 2

CPOL=0

CPOL=1

CPOL=0

CPOL=1

tr(SCK)
tf(SCK)
141/164

1

ST72324Jx ST72324Kx
13 PACKAGE CHARACTERISTICS

13.1 PACKAGE MECHANICAL DATA

Figure 88. 44-Pin Thin Quad Flat Package

Figure 89. 32-Pin Thin Quad Flat Package

Dim.
mm inches

Min Typ Max Min Typ Max

A 1.60 0.063

A1 0.05 0.15 0.002 0.006

A2 1.35 1.40 1.45 0.053 0.055 0.057

b 0.30 0.37 0.45 0.012 0.015 0.018

C 0.09 0.20 0.004 0.000 0.008

D 12.00 0.472

D1 10.00 0.394

E 12.00 0.472

E1 10.00 0.394

e 0.80 0.031

θ 0° 3.5° 7° 0° 3.5° 7°

L 0.45 0.60 0.75 0.018 0.024 0.030

L1 1.00 0.039

Number of Pins

N 44

A
A2

A1

b

e

L1
L

h

c

EE1

D
D1

Dim.
mm inches

Min Typ Max Min Typ Max

A 1.60 0.063

A1 0.05 0.15 0.002 0.006

A2 1.35 1.40 1.45 0.053 0.055 0.057

b 0.30 0.37 0.45 0.012 0.015 0.018

C 0.09 0.20 0.004 0.008

D 9.00 0.354

D1 7.00 0.276

E 9.00 0.354

E1 7.00 0.276

e 0.80 0.031

θ 0° 3.5° 7° 0° 3.5° 7°

L 0.45 0.60 0.75 0.018 0.024 0.030

L1 1.00 0.039

Number of Pins

N 32

h

c

 L

L1

b

e

A1

A2

A

EE1

D

D1
146/164

1

ST72324Jx ST72324Kx
KNOWN LIMITATIONS (Cont’d)

To avoid this, a semaphore is set to '1' before
checking the level change. The semaphore is
changed to level '0' inside the interrupt routine.
When a level change is detected, the semaphore
status is checked and if it is '1' this means that the
last interrupt has been missed. In this case, the in-
terrupt routine is invoked with the call instruction.

There is another possible case, that is, if writing to
PxOR or PxDDR is done with global interrupts dis-
abled (interrupt mask bit set). In this case, the
semaphore is changed to '1' when the level
change is detected. Detecting a missed interrupt is
done after the global interrupts are enabled (inter-
rupt mask bit reset) and by checking the status of
the semaphore. If it is '1' this means that the last
interrupt was missed and the interrupt routine is in-
voked with the call instruction.

To implement the workaround, the following soft-
ware sequence is to be followed for writing into the
PxOR/PxDDR registers. The example is for Port
PF1 with falling edge interrupt sensitivity. The soft-
ware sequence is given for both cases (global in-
terrupt disabled/enabled).

Case 1: Writing to PxOR or PxDDR with Global In-
terrupts Enabled:

LD A,#01

LD sema,A ; set the semaphore to '1'

LD A,PFDR

AND A,#02

LD X,A ; store the level before writing to
PxOR/PxDDR

LD A,#$90

LD PFDDR,A ; Write to PFDDR

LD A,#$ff

LD PFOR,A ; Write to PFOR

LD A,PFDR

AND A,#02

LD Y,A ; store the level after writing to
PxOR/PxDDR

LD A,X ; check for falling edge

cp A,#02

jrne OUT

TNZ Y

jrne OUT

LD A,sema ; check the semaphore status if
edge is detected

CP A,#01

jrne OUT

call call_routine; call the interrupt routine

OUT:LD A,#00

LD sema,A

.call_routine ; entry to call_routine

PUSH A

PUSH X

PUSH CC

.ext1_rt ; entry to interrupt routine

LD A,#00

LD sema,A

IRET

Case 2: Writing to PxOR or PxDDR with Global In-
terrupts Disabled:

SIM ; set the interrupt mask

LD A,PFDR

AND A,#$02

LD X,A ; store the level before writing to
PxOR/PxDDR

LD A,#$90

LD PFDDR,A ; Write into PFDDR

LD A,#$ff

LD PFOR,A ; Write to PFOR

LD A,PFDR

AND A,#$02

LD Y,A ; store the level after writing to
PxOR/PxDDR

LD A,X ; check for falling edge

cp A,#$02

jrne OUT

TNZ Y

jrne OUT

LD A,#$01

LD sema,A ; set the semaphore to '1' if edge is
detected

RIM ; reset the interrupt mask

LD A,sema ; check the semaphore status

CP A,#$01

jrne OUT

call call_routine; call the interrupt routine

RIM

OUT: RIM
160/164

1

