

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324k2ta

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

2 PIN C	ODUCTION	8
	ISTER & MEMORY MAP	
4 FLAS	SH PROGRAM MEMORY	
4.1		17
4.2	MAIN FEATURES	17
4.3	STRUCTURE	17
	4.3.1 Read-out Protection	17
4.4	ICC INTERFACE	-
4.5	ICP (IN-CIRCUIT PROGRAMMING)	19
4.6	IAP (IN-APPLICATION PROGRAMMING)	19
4.7	RELATED DOCUMENTATION	19
	4.7.1 Register Description	19
5 CEN		
5.1		20
5.2	MAIN FEATURES	20
5.3	CPU REGISTERS	20
6 SUPF	PLY, RESET AND CLOCK MANAGEMENT	
6.1	PHASE LOCKED LOOP	
6.2	MULTI-OSCILLATOR (MO)	24
6.3	RESET SEQUENCE MANAGER (RSM)	
	6.3.1 Introduction	
	6.3.2 Asynchronous External RESET pin	
	6.3.3 External Power-On RESET	26
	6.3.4 Internal Low Voltage Detector (LVD) RESET	
~ /	6.3.5 Internal Watchdog RESET	
6.4	SYSTEM INTEGRITY MANAGEMENT (SI)	
	6.4.1 Low Voltage Detector (LVD)	
	6.4.2 Auxiliary Voltage Detector (AVD)6.4.3 Low Power Modes	
	6.4.3 Low Power Modes 6.4.4 Register Description	
7 INTE	RRUPTS	
7.1	INTRODUCTION	
7.2	MASKING AND PROCESSING FLOW	
7.3	INTERRUPTS AND LOW POWER MODES	
7.4	CONCURRENT & NESTED MANAGEMENT	
7.5		
7.6	EXTERNAL INTERRUPTS	
0.1		
7.7	7.6.1 I/O Port Interrupt Sensitivity	
	ER SAVING MODES	
8.1	INTRODUCTION	
8.2	SLOW MODE	
• • •		
8.3	WAIT MODE	41

Table of Contents

15.1.7 16-bit Timer PWM Mode 16 15.1.8 SCI Wrong Break duration 16 15.2 FLASH DEVICES ONLY 16	1
15.2.1 Internal RC Operation 16	
16 IMPORTANT NOTES ON ST72F324B FLASH DEVICES:	2
16.1 RESET PIN LOGIC LEVELS 16	2
16.2 WAKE-UP FROM ACTIVE HALT MODE USING EXTERNAL INTERRUPTS 16	2
16.3 PLL JITTER	2
16.4 ACTIVE HALT POWER CONSUMPTION 16	2
16.5 TIMER A REGISTERS 16	2
17 REVISION HISTORY	3

To obtain the most recent version of this datasheet, please check at www.st.com>products>technical literature>datasheet.

Please also pay special attention to the Section "KNOWN LIMITATIONS" on page 159.

57

SYSTEM INTEGRITY MANAGEMENT (Cont'd)

6.4.4 Register Description

SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR)

Read/Write

Reset Value: 000x 000x (00h)

7							0
0	AVD IE	AVD F	LVD RF	0	0	0	WDG RF

Bit 7 = Reserved, must be kept cleared.

Bit 6 = **AVDIE** Voltage Detector interrupt enable This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine.

0: AVD interrupt disabled

1: AVD interrupt enabled

Bit 5 = **AVDF** Voltage Detector flag

This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 16 and to Section 6.4.2.1 for additional details.

0: V_{DD} over $V_{IT+(AVD)}$ threshold

1: V_{DD} under V_{IT-(AVD)} threshold

Bit 4 = LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined. Bits 3:1 = Reserved, must be kept cleared.

Bit 0 = WDGRF Watchdog reset flag

This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts).

Combined with the LVDRF flag information, the flag description is given by the following table.

RESET Sources	LVDRF	WDGRF
External RESET pin	0	0
Watchdog	0	1
LVD	1	Х

Application notes

The LVDRF flag is not cleared when another RE-SET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application.

MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont'd)

Bit 0 = **OIF** Oscillator interrupt flag

This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0).

0: Timeout not reached

1: Timeout reached

CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.

MCC BEEP CONTROL REGISTER (MCCBCR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	BC1	BC0

Bit 7:2 = Reserved, must be kept cleared.

Bit 1:0 = **BC[1:0]** Beep control

These 2 bits select the PF1 pin beep capability.

BC1	BC0	Beep mode with f _{OSC2} =8MHz						
0	0	Off						
0	1	~2-KHz	Output					
1	0	~1-KHz	Beep signal					
1	1	~500-Hz	~50% duty cycle					

The beep output signal is available in ACTIVE-HALT mode but has to be disabled to reduce the consumption.

47/

Table 15. Main Clock Controller Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Bh	SICSR		AVDIE	AVDF	LVDRF				WDGRF
002Bn	Reset Value	0	0	0	х	0	0	0	х
002Ch	MCCSR	MCO	CP1	CP0	SMS	TB1	TB0	OIE	OIF
002Ch	Reset Value	0	0	0	0	0	0	0	0
002Dh	MCCBCR							BC1	BC0
	Reset Value	0	0	0	0	0	0	0	0

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.3.3 Master Mode Operation

In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

To operate the SPI in master mode, perform the following steps in order (if the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not taken into account):

1. Write to the SPICR register:

- Select the clock frequency by configuring the SPR[2:0] bits.
- Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 50 shows the four possible configurations.
 Note: The slave must have the same CPOL and CPHA settings as the master.
- 2. Write to the SPICSR register:
 - Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence.
- 3. Write to the SPICR register:
 - Set the MSTR and SPE bits
 <u>Note</u>: MSTR and SPE bits remain set only if SS is high).

The transmit sequence begins when software writes a byte in the SPIDR register.

10.4.3.4 Master Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first.

When data transfer is complete:

- The SPIF bit is set by hardware
- An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A read to the SPIDR register.

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

10.4.3.5 Slave Mode Operation

In slave mode, the serial clock is received on the SCK pin from the master device.

To operate the SPI in slave mode:

- 1. Write to the SPICSR register to perform the following actions:
 - Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see Figure 50).
 Note: The slave must have the same CPOL and CPHA settings as the master.
 - Manage the SS pin as described in Section 10.4.3.2 and Figure 48. If CPHA=1 SS must be held low continuously. If CPHA=0 SS must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register.
- 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions.

10.4.3.6 Slave Mode Transmit Sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first.

The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin.

When data transfer is complete:

- The SPIF bit is set by hardware
- An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

1. An access to the SPICSR register while the SPIF bit is set.

2. A write or a read to the SPIDR register.

Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

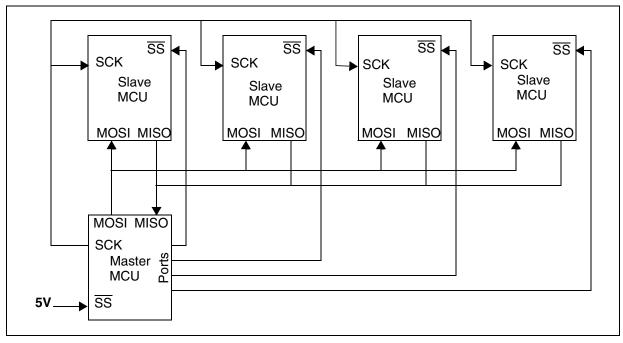
The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 10.4.5.2).

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.5.4 Single Master Systems

57/

A typical single master system may be configured, using an MCU as the master and four MCUs as slaves (see Figure 52).


The master device selects the individual slave devices by using four pins of a parallel port to control the four SS pins of the slave devices.

The \overline{SS} pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices.

Note: To prevent a bus conflict on the MISO line the master allows only one active slave device during a transmission.

For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register.

Other transmission security methods can use ports for handshake lines or data bytes with command fields.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4 Functional Description

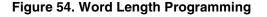
The block diagram of the Serial Control Interface, is shown in Figure 1. It contains six dedicated registers:

- Two control registers (SCICR1 & SCICR2)
- A status register (SCISR)
- A baud rate register (SCIBRR)
- An extended prescaler receiver register (SCIER-PR)
- An extended prescaler transmitter register (SCI-ETPR)

Refer to the register descriptions in Section 0.1.7 for the definitions of each bit.

10.5.4.1 Serial Data Format

Word length may be selected as being either 8 or 9 bits by programming the M bit in the SCICR1 register (see Figure 1.).


The TDO pin is in low state during the start bit.

The TDO pin is in high state during the stop bit.

An Idle character is interpreted as an entire frame of "1"s followed by the start bit of the next frame which contains data.

A Break character is interpreted on receiving "0"s for some multiple of the frame period. At the end of the last break frame the transmitter inserts an extra "1" bit to acknowledge the start bit.

Transmission and reception are driven by their own baud rate generator.

9-bit V	9-bit Word length (M bit is set) Data Frame									9	Next Data Frame		
 Start									Bit	Ctor	Next Start		
Bit	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Stop Bit	Bit		
	Idle Frame										Start Bit		
 1		В	reak Fi	rame							Extra Start '1' Bit		
 8-bit Word length (M bit is reset) Data Frame Parity Bit									Ne				
Sta Bit	Bit	0 Bit	Bit2	Bit3	Bit	4 Bit	5 Bit	6 Bi	t7 Sto Bit		art t		
	Idle Frame									Sta Bi			
	Break Frame									Ext	ra Start Bit		
											<u> </u>		

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.5 Low Power Modes

47/

Mode	Description
	No effect on SCI.
WAIT	SCI interrupts cause the device to exit from Wait mode.
	SCI registers are frozen.
HALT	In Halt mode, the SCI stops transmitting/re- ceiving until Halt mode is exited.

10.5.6 Interrupts

The SCI interrupt events are connected to the same interrupt vector.

These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
Transmit Data Register Empty	TDRE	TIE	Yes	No
Transmission Com- plete	тс	TCIE	Yes	No
Received Data Ready to be Read	RDRF	RIE	Yes	No
Overrun Error Detect- ed	OR	TUL	Yes	No
Idle Line Detected	IDLE	ILIE	Yes	No
Parity Error	PE	PIE	Yes	No

SERIAL COMMUNICATIONS INTERFACE (Cont'd) CONTROL REGISTER 1 (SCICR1)

Read/Write

Reset Value: x000 0000 (x0h)

7							0
R8	Т8	SCID	М	WAKE	PCE	PS	PIE

Bit 7 = **R8** Receive data bit 8.

This bit is used to store the 9th bit of the received word when M = 1.

Bit 6 = **T8** Transmit data bit 8.

This bit is used to store the 9th bit of the transmitted word when M = 1.

Bit 5 = **SCID** *Disabled for low power consumption* When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software.

0: SCI enabled

1: SCI prescaler and outputs disabled

Bit $4 = \mathbf{M}$ Word length. This bit determines the word length. It is set or cleared by software.

0: 1 Start bit, 8 Data bits, 1 Stop bit

1: 1 Start bit, 9 Data bits, 1 Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception).

Bit 3 = WAKE Wake-Up method.

This bit determines the SCI Wake-Up method, it is set or cleared by software. 0: Idle Line 1: Address Mark

Bit 2 = **PCE** Parity control enable.

This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission).

0: Parity control disabled

1: Parity control enabled

Bit 1 = **PS** Parity selection.

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte.

0: Even parity

1: Odd parity

Bit 0 = **PIE** Parity interrupt enable.

This bit enables the interrupt capability of the hardware parity control when a parity error is detected (PE bit set). It is set and cleared by software.

0: Parity error interrupt disabled

1: Parity error interrupt enabled.

57

10-BIT A/D CONVERTER (Cont'd)

57

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0070h	ADCCSR Reset Value	EOC 0	SPEED 0	ADON 0	0	CH3 0	CH2 0	CH1 0	CH0 0
0071h	ADCDRH Reset Value	D9 0	D8 0	D7 0	D6 0	D5 0	D4 0	D3 0	D2 0
0072h	ADCDRL Reset Value	0	0	0	0	0	0	D1 0	D0 0

Table 23. ADC Register Map and Reset Values

INSTRUCTION SET OVERVIEW (Cont'd)

11.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

Load and Transfer	LD	CLR						
Stack operation	PUSH	POP	RSP					
Increment/Decrement	INC	DEC						
Compare and Tests	СР	TNZ	BCP					
Logical operations	AND	OR	XOR	CPL	NEG			
Bit Operation	BSET	BRES						
Conditional Bit Test and Branch	BTJT	BTJF						
Arithmetic operations	ADC	ADD	SUB	SBC	MUL			
Shift and Rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional Jump or Call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional Branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition Code Flag modification	SIM	RIM	SCF	RCF				

Using a pre-byte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC opcode

57

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.

PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode.

It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

INSTRUCTION SET OVERVIEW (Cont'd)

Mnemo	Description	Function/Example	Dst	Src	11	н	10	Ν	z	С
ADC	Add with Carry	A=A+M+C	А	М		Н		Ν	Z	С
ADD	Addition	A = A + M	А	М		н		Ν	Z	С
AND	Logical And	A = A . M	А	М				Ν	Z	
BCP	Bit compare A, Memory	tst (A . M)	А	М				Ν	Ζ	
BRES	Bit Reset	bres Byte, #3	М							
BSET	Bit Set	bset Byte, #3	М							
BTJF	Jump if bit is false (0)	btjf Byte, #3, Jmp1	М							С
BTJT	Jump if bit is true (1)	btjt Byte, #3, Jmp1	М							С
CALL	Call subroutine									
CALLR	Call subroutine relative									
CLR	Clear		reg, M					0	1	
СР	Arithmetic Compare	tst(Reg - M)	reg	М				Ν	Ζ	С
CPL	One Complement	A = FFH-A	reg, M					Ν	Ζ	1
DEC	Decrement	dec Y	reg, M					Ν	Ζ	
HALT	Halt				1		0			
IRET	Interrupt routine return	Pop CC, A, X, PC			11	Н	10	Ν	Ζ	С
INC	Increment	inc X	reg, M					Ν	Z	
JP	Absolute Jump	jp [TBL.w]								
JRA	Jump relative always									
JRT	Jump relative									
JRF	Never jump	jrf *								
JRIH	Jump if ext. INT pin = 1	(ext. INT pin high)								
JRIL	Jump if ext. INT pin = 0	(ext. INT pin low)								
JRH	Jump if H = 1	H = 1?								
JRNH	Jump if H = 0	H = 0?								
JRM	Jump if I1:0 = 11	l1:0 = 11?								
JRNM	Jump if I1:0 <> 11	l1:0 <> 11?								
JRMI	Jump if N = 1 (minus)	N = 1?								
JRPL	Jump if N = 0 (plus)	N = 0?								
JREQ	Jump if Z = 1 (equal)	Z = 1?								
JRNE	Jump if Z = 0 (not equal)	Z = 0?								
JRC	Jump if C = 1	C = 1?								
JRNC	Jump if $C = 0$	C = 0?								
JRULT	Jump if C = 1	Unsigned <								
JRUGE	Jump if $C = 0$	Jmp if unsigned >=								
JRUGT	Jump if $(C + Z = 0)$	Unsigned >								

SUPPLY CURRENT CHARACTERISTICS (Cont'd)

12.5.3 On-Chip Peripherals

 $T_A = 25^{\circ}C f_{CPU} = 4MHz.$

Symbol	Parameter	Conditions	Тур	Unit
I _{DD(TIM)}	16-bit Timer supply current ¹⁾	V _{DD} =5.0V	50	
I _{DD(SPI)}	SPI supply current ²⁾	V _{DD} =5.0V	400	
I _{DD(SCI)}	SCI supply current ³⁾	V _{DD} =5.0V	400	μA
I _{DD(ADC)}	ADC supply current when converting ⁴⁾	V _{DD} =5.0V	400	

Notes:

<u>(</u>ح)

 Data based on a differential I_{DD} measurement between reset configuration (timer counter running at f_{CPU}/4) and timer counter stopped (only TIMD bit set). Data valid for one timer.

 Data based on a differential I_{DD} measurement between reset configuration (SPI disabled) and a permanent SPI master communication at maximum speed (data sent equal to 55h). This measurement includes the pad toggling consumption.

3. Data based on a differential I_{DD} measurement between SCI low power state (SCID=1) and a permanent SCI data transmit sequence.

4. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.

EMC CHARACTERISTICS (Cont'd)

12.8.2 Electro Magnetic Interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Cymhol	Parameter	Conditions	Device/ Package	Monitored	Max vs. [fosc/fcpu]	Unit			
Symbol	Parameter	Conditions	Device/ Package	Frequency Band	8/4MHz	16/8MHz	Unit			
				0.1MHz to 30MHz	12	18				
			8/16K Flash/	30MHz to 130MHz	19	25	dBμV			
			TQFP44	130MHz to 1GHz	15	22				
				SAE EMI Level	3	3.5	-			
		V _{DD} =5V,		20K Elech/TOED44	20K Elech/TOED44		0.1MHz to 30MHz	20	21	
· ·	Peak level	T _A =+25°C						32K Flash/TQFP44	30MHz to 130MHz	26
S _{EMI}	reak level	conforming to	JZK FIASH/TQFF44	130MHz to 1GHz	22	28				
		SAE J 1752/3				1	SAE EMI Level	3.5	4.0	-
				0.1MHz to 30MHz	25	27				
			Flash/TQFP32	30MHz to 130MHz	30	36	dBμV			
			FIASH/TQFF32	130MHz to 1GHz	18	23				
				SAE EMI Level	3.0	3.5	-			

Notes:

<u>(</u>ح)

1. Data based on characterization results, not tested in production.

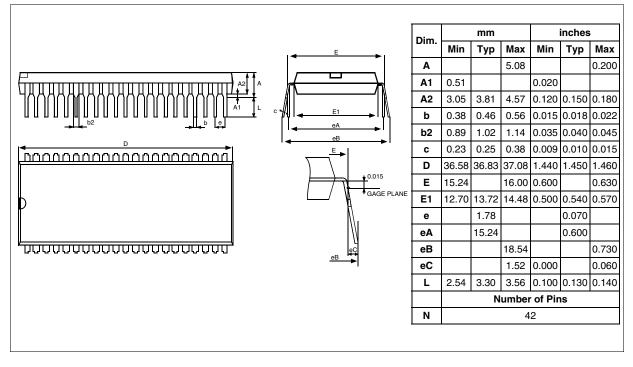
2. Refer to Application Note AN1709 for data on other package types.

12.13 10-BIT ADC CHARACTERISTICS

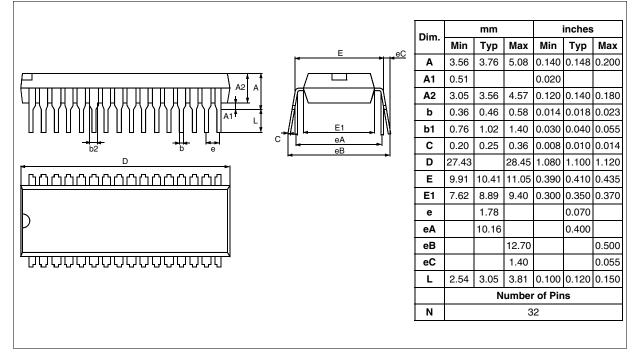
Subject to general operating conditions for V_{DD}, f_{CPU}, and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{ADC}	ADC clock frequency		0.4		2	MHz
V _{AREF}	Analog reference voltage	$0.7*V_{DD} \leq V_{AREF} \leq V_{DD}$	3.8		V _{DD}	V
V _{AIN}	Conversion voltage range 1)		V _{SSA}		V _{AREF}	v
1	Positive input leakage current for analog	-40°C≤T _A ≤+85°C			±250	nA
l _{lkg}	input ²⁾	+85°C≤T _A ≤+125°C			±1	μA
R _{AIN}	External input impedance				see	kΩ
C _{AIN}	External capacitor on analog input				Figure 83 and	pF
f _{AIN}	Variation freq. of analog input signal				Figure 84 ²⁾³⁾⁴⁾	Hz
C _{ADC}	Internal sample and hold capacitor			12		pF
t _{ADC}	Conversion time (Sample+Hold) f _{CPU} =8MHz, SPEED=0 f _{ADC} =2MHz			7.5		μs
t _{ADC}	 No of sample capacitor loading cycles No. of Hold conversion cycles 			4 11		1/f _{ADC}

Notes:


1. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than $10k\Omega$). Data based on characterization results, not tested in production.

2.For Flash devices: injecting negative current on any of the analog input pins significantly reduces the accuracy of any conversion being performed on any analog input. Analog pins of ST72F324 devices can be protected against negative injection by adding a Schottky diode (pin to ground). Injecting negative current on digital input pins degrades ADC accuracy especially if performed on a pin close to the analog input pins. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 12.9 does not affect the ADC accuracy.


PACKAGE MECHANICAL DATA (Cont'd)

57/

Figure 90. 42-Pin Plastic Dual In-Line Package, Shrink 600-mil Width

Figure 91. 32-Pin Plastic Dual In-Line Package, Shrink 400-mil Width

14 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION

14.1 FLASH OPTION BYTES

			STATI	С ОРТ	ION B	YTE 0				STAT	IC OP	TION B	YTE 1			
	7							0	7							0
	WI	DG	rved	v	D	rved	rved	ш	5	TC	OSC.	TYPE	OS	SCRAN	GE	DFF
	НАLТ	SW	Rese	1	0	Resei	Reser	FMP	PKG	RS.	1	0	2	1	0	PLLQ
Default	1	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1

The option bytes allows the hardware configuration of the microcontroller to be selected. They have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the FLASH is fixed to FFh. To program directly the FLASH devices using ICP, FLASH devices are shipped to customers with the internal RC clock source.

OPTION BYTE 0

OPT7= **WDG HALT** Watchdog reset on HALT This option bit determines if a RESET is generated when entering HALT mode while the Watchdog is active.

0: No Reset generation when entering Halt mode 1: Reset generation when entering Halt mode

OPT6= **WDG SW** Hardware or software watchdog This option bit selects the watchdog type.

0: Hardware (watchdog always enabled)

1: Software (watchdog to be enabled by software)

OPT5 = Reserved, must be kept at default value.

OPT4:3= VD[1:0] Voltage detection

These option bits enable the voltage detection block (LVD, and AVD) with a selected threshold for the LVD and AVD.

Selected Low Voltage Detector	VD1	VD0
LVD and AVD Off	1	1
Lowest Voltage Threshold (V _{DD} ~3V)	1	0
Medium Voltage Threshold (V _{DD} ~3.5V)	0	1
Highest Voltage Threshold (V _{DD} ~4V)	0	0

Caution: If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. For details on the AVD and LVD threshold levels refer to Section 12.4.1 on page 119

OPT2:1 = Reserved, must be kept at default value.

OPT0= **FMP_R** Flash memory read-out protection Read-out protection, when selected, provides a protection against Program Memory content extraction and against write access to Flash memory.

Erasing the option bytes when the FMP_R option is selected causes the whole user memory to be erased first, and the device can be reprogrammed. Refer to Section 7.3.1 on page 37 and the ST7 Flash Programming Reference Manual for more details.

0: Read-out protection enabled

1: Read-out protection disabled

DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

14.2 FLASH DEVICE ORDERING INFORMATION

With the objective of continuous improvement, ST is developing new ST72F324B devices and is transferring the production to higher capacity fabs. Refer to the following tables for guidance on ordering.

Standard and Industrial Versions

- For new designs the ST72F324B devices from to the separate ST72324B datasheet.
- For for running production orders select the devices from Table 26

Table 30. ST7 Application Notes

IDENTIFICATION	DESCRIPTION
AN 978	ST7 VISUAL DEVELOP SOFTWARE KEY DEBUGGING FEATURES
AN 983	KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE
AN 985	EXECUTING CODE IN ST7 RAM
AN 986	USING THE INDIRECT ADDRESSING MODE WITH ST7
AN 987	ST7 SERIAL TEST CONTROLLER PROGRAMMING
AN 988	STARTING WITH ST7 ASSEMBLY TOOL CHAIN
AN 989	GETTING STARTED WITH THE ST7 HIWARE C TOOLCHAIN
AN1039	ST7 MATH UTILITY ROUTINES
AN1064	WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7
AN1106	TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
AN1446	USING THE ST72521 EMULATOR TO DEBUG A ST72324 TARGET APPLICATION
AN1478	PORTING AN ST7 PANTA PROJECT TO CODEWARRIOR IDE
AN1575	ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS
AN1576	IN-APPLICATION PROGRAMMING (IAP) DRIVERS FOR ST7 HDFLASH OR XFLASH MCUS
AN1635	ST7 CUSTOMER ROM CODE RELEASE INFORMATION
AN1754	DATA LOGGING PROGRAM FOR TESTING ST7 APPLICATIONS VIA ICC
AN1796	FIELD UPDATES FOR FLASH BASED ST7 APPLICATIONS USING A PC COMM PORT
SYSTEM OPTIMIZ	ATION
AN1711	SOFTWARE TECHNIQUES FOR COMPENSATING ST7 ADC ERRORS

17 REVISION HISTORY

Table 31. Revision History

57

Date	Revision	Description of Changes
		Merged ST72F324 Flash with ST72324B ROM datasheet.
		Vt POR max modified in Section 12.4 on page 119
		Added Figure 78 on page 137
05-May-2004	2.0	Modified V _{AREF} min in "10-BIT ADC CHARACTERISTICS" on page 142
		Modified I INJ for PB0 in Section 12.9
		Added "Clearing active interrupts outside interrupt routine" on page 159
		Modified "32K ROM DEVICES ONLY" on page 164
		Removed Clock Security System (CSS) throughout document
		Added notes on ST72F324B 8K/16K Flash devices in Table 1 and Table 27
		Corrected MCO description in Table 1 and Section 10.2
		Modified VtPOR in Section 12.4 on page 119
		Static current consumption modified in Section 12.9 on page 133
		Updated footnote and Figure 77 and Figure 78 on page 137
30-Mar-2005	3	Modified Soldering information in Section 13.3
00 11121 2000	Ū	Updated Section 14 on page 150
		Added Table 27
		Modified Figure 7 and note 4 in "FLASH PROGRAM MEMORY" on page 17
		Added limitation on ICC entry mode with 39 pulses to "KNOWN LIMITATIONS" on page 159
		Added Section 16 on page 162 for ST72F324B 8K/16K Flash devices
		Modified "Internal Sales Types on box label" in Table 29
08-Nov-2005	4	Removed information on ST72F324B and ROM devices (now in separate datasheet)
		Changed status to "Not for new design"
04-Apr-2008	5	Added "External interrupt missed" in "KNOWN LIMITATIONS" on page 159
		Removed information on automotive versions (now in separate datasheet)