

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	32-SDIP (0.400", 10.16mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324k6b6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

8.4	ACT	IVE-HALT AND HALT MODES	42
	8.4.1	ACTIVE-HALT MODE	42
	8.4.2	HALT MODE	43
9 I/O P			
9.1	INTF		45
9.2	FUN	CTIONAL DESCRIPTION	45
	9.2.1	Input Modes	45
	9.2.2	Output Modes	
		Alternate Functions	
9.3		PORT IMPLEMENTATION	
9.4	LOW	POWER MODES	48
9.5	INTE	RRUPTS	48
		I/O Port Implementation	
		PERIPHERALS	
10.1	I WAT	CHDOG TIMER (WDG)	51
	10.1.1	Introduction	51
		Main Features	
		Functional Description	
		How to Program the Watchdog Timeout	
		Low Power Modes	
		Using Halt Mode with the WDG (WDGHALT option)	
		Register Description	
10.2		N CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) .	
	10.2.1	Programmable CPU Clock Prescaler	56
	10.2.2	Clock-out Capability	56
		Real Time Clock Timer (RTC)	
		Beeper	
		Low Power Modes	57
	10.2.6	Low Power Modes	57 57
10 3	10.2.6 10.2.7	Low Power Modes	57 57 57
10.3	10.2.6 10.2.7 3 16-B	Low Power Modes	57 57 57 59
10.3	10.2.6 10.2.7 3 16-B 10.3.1	Low Power Modes	57 57 57 59 59
10.3	10.2.6 10.2.7 3 16-B 10.3.1 10.3.2	Low Power Modes	57 57 57 59 59 59
10.3	10.2.6 10.2.7 3 16-B 10.3.1 10.3.2 10.3.3	Low Power Modes	57 57 59 59 59 59
10.3	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4	Low Power Modes	57 57 59 59 59 59 59 71
10.3	10.2.6 10.2.7 3 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	Low Power Modes	57 57 59 59 59 59 59 71 71
	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7	Low Power Modes	57 57 59 59 59 59 71 71 71 71
	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 1 SER	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI)	57 57 59 59 59 59 71 71 71 72 79
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.3.7 10.4.1	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI)	57 57 59 59 59 59 59 71 71 71 72 79 79
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 1 SER 10.4.1 10.4.2	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI)	57 57 59 59 59 59 71 71 71 72 79 79
	10.2.6 10.2.7 16-B 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 \$ SER 10.4.1 10.4.2 10.4.3	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI) Introduction Main Features General Description	57 57 59 59 59 59 71 71 71 72 79 79 79
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.4.1 10.4.2 10.4.3 10.4.4	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI) Introduction Main Features General Description Clock Phase and Clock Polarity	57 57 59 59 59 59 59 71 71 71 72 79 79 79 83
	10.2.6 10.2.7 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 4 SER 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5	Low Power Modes Interrupts Register Description IT TIMER Introduction Main Features Functional Description Low Power Modes Interrupts Summary of Timer modes Register Description IAL PERIPHERAL INTERFACE (SPI) Introduction Main Features General Description	57 57 59 59 59 59 71 71 71 72 79 79 79 83 84

PIN DESCRIPTION (Cont'd)

For external pin connection guidelines, refer to See "ELECTRICAL CHARACTERISTICS" on page 116.

Legend / Abbreviations for Table 1:

Туре:	I = input, O = output, S = supply
Input level:	A = Dedicated analog input
In/Output level:	C = CMOS $0.3V_{DD}/0.7V_{DD}$ C _T = CMOS $0.3V_{DD}/0.7V_{DD}$ with input trigger
Output level:	HS = 20mA high sink (on N-buffer only)
Port and control	configuration:

Port and control configuration:

- Input: float = floating, wpu = weak pull-up, int = interrupt ¹⁾, ana = analog ports
- Output: $OD = open drain^{2}$, PP = push-pull

Refer to "I/O PORTS" on page 45 for more details on the software configuration of the I/O ports.

The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state.

Table 1. Device Pin Description

	Pin	n n°				Le	evel	Port				Main	Main			
P44	o42	P32	3 2	Pin Name	Type	ut	put		Inp	out		Out	tput	function (after	Alternate	Function
TQFP44	SDIP42	TQFP32	SDIP32			Input	Output	float	ndm	int	ana	OD	ЪР	reset)		
6	1	30	1	PB4 (HS)	I/O	C_T	HS	Χ	е	i3		Х	Х	Port B4		
7	2	31	2	PD0/AIN0	I/O	C_T		Х	Х		Х	Х	Х	Port D0	ADC Analog	Input 0
8	З	32	3	PD1/AIN1	I/O	C_T		Х	Х		Х	Х	Х	Port D1	ADC Analog	Input 1
9	4			PD2/AIN2	I/O	C_{T}		Х	Х		Х	Х	Х	Port D2	ADC Analog	Input 2
10	5			PD3/AIN3	I/O	C_T		Х	Х		Х	Х	Х	Port D3	ADC Analog	Input 3
11	6			PD4/AIN4	I/O	C_T		Χ	Х		Х	Х	Х	Port D4	ADC Analog	Input 4
12	7			PD5/AIN5	I/O	C_T		Χ	Х		Х	Х	Х	Port D5	ADC Analog	Input 5
13	8	1	4	V _{AREF}	S									Analog F	Analog Reference Voltage for ADC	
14	9	2	5	V _{SSA}	S									Analog G	Analog Ground Voltage	
15	10	3	6	PF0/MCO/AIN8	I/O	CT		х	e	i1	х	х	х	Port F0	Main clock out (f _{CPU})	ADC Analog Input 8
16	11	4	7	PF1 (HS)/BEEP	I/O	C_T	HS	Х	е	i1		Х	Х	Port F1	Beep signal o	output
17	12			PF2 (HS)	I/O	C_T	HS	Χ		ei1		Х	Х	Port F2		
18	13	5	8	PF4/OCMP1_A/ AIN10	I/O	CT		x	х		х	х	x	Port F4	Timer A Out- put Com- pare 1	ADC Analog Input 10
19	14	6	9	PF6 (HS)/ICAP1_A	I/O	C_T	HS	Χ	Х			Х	Х	Port F6	Timer A Input	Capture 1
20	15	7	10	PF7 (HS)/ EXTCLK_A	I/O	CT	HS	x	х			х	х	Port F7	Port F7 Timer A External Clock Source	
21				V _{DD_0}	S									Digital M	Digital Main Supply Voltage	
22				V _{SS_0}	S									Digital G	Digital Ground Voltage	
23	16	8	11	PC0/OCMP2_B/ AIN12	I/O	CT		x	х		х	х	x	Port C0	Timer B Out- put Com- pare 2	ADC Analog Input 12

	Pin	n°				Le	evel			Р	ort			Main		
244	42	32	32	Pin Name	Type	ut	out		Inp	out		Out	tput	function (after	Alternate	Function
TQFP44	SDIP42	TQFP32	SDIP32		F	Input	Output	float	ndm	int	ana	ОО	РР	reset)		
24	17	9	12	PC1/OCMP1_B/ AIN13	I/O	CT		x	x		х	х	x	Port C1	Timer B Out- put Com- pare 1	ADC Analog Input 13
25	18	10	13	PC2 (HS)/ICAP2_B	I/O	C_T	HS	Х	Х			Х	Х	Port C2	Timer B Inpu	t Capture 2
26	19	11	14	PC3 (HS)/ICAP1_B	I/O	C_T	HS	Х	Х			Х	Х	Port C3	Timer B Inpu	t Capture 1
27	20	12	15	PC4/MISO/ICCDA- TA	I/O	CT		x	х			х	х	Port C4	SPI Master In / Slave Out Data	ICC Data In- put
28	21	13	16	PC5/MOSI/AIN14	I/O	CT		х	х		х	х	х	Port C5	SPI Master Out / Slave In Data	ADC Analog Input 14
29	22	14	17	PC6/SCK/ICCCLK	I/O	C _T		X	Х			х	х	Port C6	SPI Serial Clock	ICC Clock Output
30	23	15	18	PC7/SS/AIN15	I/O	CT		x	х		х	х	x	Port C7	SPI Slave Select (ac- tive low)	ADC Analog Input 15
31	24	16	19	PA3 (HS)	I/O	C_{T}	HS	Х		ei0		Х	Х	Port A3	Port A3	
32	25			V _{DD_1}	S									Digital Ma	ain Supply Vol	tage
33	26			V _{SS_1}	S									Digital G	round Voltage	
34	27	17	20	PA4 (HS)	I/O	C_{T}	HS	Х	Х			Х	Х	Port A4		
35	28			PA5 (HS)	I/O	C_{T}	HS	Χ	Х			Х	Х	Port A5		
36	29	18	21	PA6 (HS)	I/O	C_{T}	HS	Χ				Т		Port A6 ¹)	
37	30	19	22	PA7 (HS)	I/O	C_{T}	HS	Х				Т		Port A7 ¹)	
38	31	20	23	V _{PP} /ICCSEL	I									gramming programr	tied low. In the g mode, this p ning voltage ir 2.10.2 for moi	in acts as the nput V _{PP} . See
39	32	21	24	RESET	I/O	C_{T}								Top prior	ity non maska	ble interrupt.
40	33	22	25	V _{SS_2}	S									Digital G	round Voltage	
41	34	23	26	OSC2	0									Resonato	or oscillator inv	verter output
42	35	24	27	OSC1	I										External clock input or Resonator os- cillator inverter input	
43	36	25	28	V _{DD_2}	S									Digital Ma	Digital Main Supply Voltage	
44	37	26	29	PE0/TDO	I/O	C_T		Х	Х			Х	Х	Port E0	SCI Transmit	t Data Out
1	38	27	30	PE1/RDI	I/O	C_{T}		Х	Х			Х	Х	Port E1	SCI Receive	Data In
2	39	28	31	PB0	I/O	CT		X	e	i2		х	x	Port B0	Caution: Negative current	
3	40			PB1	I/O	C_T		Х	е	i2		Х	Х	Port B1		
4	41			PB2	I/O	C_T		Χ	е	i2		Х	Х	Port B2		
5	42	29	32	PB3	I/O	C_T		Х		ei2		Х	Х	Port B3		

Notes:

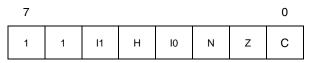
1. In the interrupt input column, "eiX" defines the associated external interrupt vector. If the weak pull-up

Legend: x=undefined, R/W=read/write

Notes:

- 1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.
- 2. The bits associated with unavailable pins must always keep their reset value.
- 3. The Timer A Input Capture 2 pin is not available (not bonded).
 - In Flash devices: The TAIC2HR and TAIC2LR registers are not present. Bit 5 of the TACSR register (ICF2) is forced by hardware to 0. Consequently, the corresponding interrupt cannot be used.
- 4. The Timer A Output Compare 2 pin is not available (not bonded).
 - The TAOC2HR and TAOC2LR Registers are write only, reading them will return undefined values. Bit 4 of the TACSR register (OCF2) is forced by hardware to 0. Consequently, the corresponding interrupt cannot be used.

Caution: The TAIC2HR and TAIC2LR registers and the ICF2 and OCF2 flags are not present in Flash devices but are present in the emulator. For compatibility with the emulator, it is recommended to perform a dummy access (read or write) to the TAIC2LR and TAOC2LR registers to clear the interrupt flags.


47/

CENTRAL PROCESSING UNIT (Cont'd)

Condition Code Register (CC)

Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Arithmetic Management Bits

Bit 4 = **H** Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It's a copy of the result 7^{th} bit.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative

(i.e. the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = **Z** Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

0: The result of the last operation is different from zero.

1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

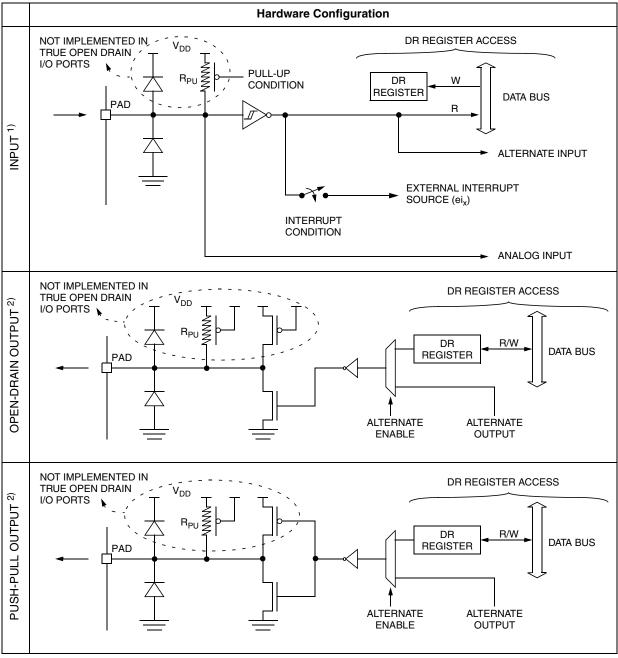
1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

Interrupt Management Bits

Bit 5,3 = 11, 10 Interrupt

The combination of the I1 and I0 bits gives the current interrupt software priority.


Interrupt Software Priority	1	10
Level 0 (main)	1	0
Level 1	0	1
Level 2	0	0
Level 3 (= interrupt disable)	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more details.

I/O PORTS (Cont'd)

Notes:

- 1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status.
- 2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content.

WATCHDOG TIMER (Cont'd)

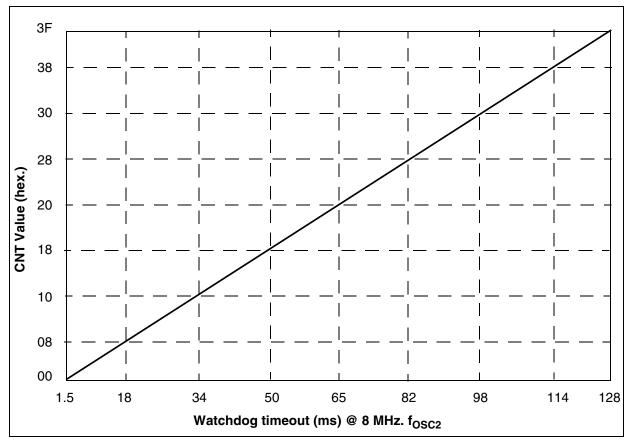

10.1.4 How to Program the Watchdog Timeout

Figure 32 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If

Figure 32. Approximate Timeout Duration

more precision is needed, use the formulae in Figure 33.

Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

Character Transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 1.).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame as first transmission.
- Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.

5/

- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

Break Characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 2.).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame.

Idle Characters

Setting the TE bit drives the SCI to send an idle frame before the first data frame.

Clearing and then setting the TE bit during a transmission sends an idle frame after the current word.

Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set, that is, before writing the next byte in the SCIDR.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

Framing Error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise.
- A break is received.

When the framing error is detected:

- the FE bit is set by hardware
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

10.5.4.4 Conventional Baud Rate Generation

The baud rate for the receiver and transmitter (Rx and Tx) are set independently and calculated as follows:

$$Tx = \frac{f_{CPU}}{(16*PR)*TR} \qquad Rx = \frac{f_{CPU}}{(16*PR)*RR}$$

with:

PR = 1, 3, 4 or 13 (see SCP[1:0] bits) TR = 1, 2, 4, 8, 16, 32, 64,128 (see SCT[2:0] bits) RR = 1, 2, 4, 8, 16, 32, 64,128 (see SCR[2:0] bits)

All these bits are in the SCIBRR register.

Example: If f_{CPU} is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and receive baud rates are 38400 baud.

Note: The baud rate registers MUST NOT be changed while the transmitter or the receiver is enabled.

10.5.4.5 Extended Baud Rate Generation

The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value prescaler, whereas the conventional Baud Rate Generator retains industry standard software compatibility.

The extended baud rate generator block diagram is described in the Figure 3.

The output clock rate sent to the transmitter or to the receiver is the output from the 16 divider divided by a factor ranging from 1 to 255 set in the SCI-ERPR or the SCIETPR register. **Note:** the extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value other than zero. The baud rates are calculated as follows:

$$Tx = \frac{f_{CPU}}{16 \cdot ETPR^{*}(PR^{*}TR)} Rx = \frac{f_{CPU}}{16 \cdot ERPR^{*}(PR^{*}RR)}$$

with:

ETPR = 1,..,255 (see SCIETPR register)

ERPR = 1,.. 255 (see SCIERPR register)

10.5.4.6 Receiver Muting and Wake-up Feature

In multiprocessor configurations it is often desirable that only the intended message recipient should actively receive the full message contents, thus reducing redundant SCI service overhead for all non addressed receivers.

The non addressed devices may be placed in sleep mode by means of the muting function.

Setting the RWU bit by software puts the SCI in sleep mode:

All the reception status bits can not be set.

All the receive interrupts are inhibited.

A muted receiver may be awakened by one of the following two ways:

- by Idle Line detection if the WAKE bit is reset,

- by Address Mark detection if the WAKE bit is set.

Receiver wakes-up by Idle Line detection when the Receive line has recognized an Idle Frame. Then the RWU bit is reset by hardware but the IDLE bit is not set.

Receiver wakes-up by Address Mark detection when it received a "1" as the most significant bit of a word, thus indicating that the message is an address. The reception of this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the receiver to receive this word normally and to use it as an address word.

CAUTION: In Mute mode, do not write to the SCICR2 register. If the SCI is in Mute mode during the read operation (RWU = 1) and a address mark wake up event occurs (RWU is reset) before the write operation, the RWU bit is set again by this write operation. Consequently the address byte is lost and the SCI is not woken up from Mute mode.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.7 Parity Control

Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in Table 1.

Table 20.	Frame Formats
-----------	----------------------

M bit	PCE bit	SCI frame						
0	0	SB 8 bit data STB						
0	1	SB 7-bit data PB STB						
1	0	SB 9-bit data STB						
1	1	SB 8-bit data PB STB						

Legend: SB = Start Bit, STB = Stop Bit,

PB = Parity Bit

5/

Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and not the parity bit

Even parity: the parity bit is calculated to obtain an even number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit = 0).

Odd parity: the parity bit is calculated to obtain an odd number of "1s" inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the interface checks if the received data byte has an

even number of "1s" if even parity is selected (PS = 0) or an odd number of "1s" if odd parity is selected (PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register.

10.5.4.8 SCI Clock Tolerance

During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th samples is considered as the bit value. For a valid bit detection, all the three samples should have the same value otherwise the noise flag (NF) is set. For example: If the 8th, 9th and 10th samples are 0, 1 and 1 respectively, then the bit value is "1", but the Noise Flag bit is set because the three samples values are not the same.

Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples have the desired bit value. This means the clock frequency should not vary more than 6/16 (37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed 3.75%.

Note: The internal sampling clock of the microcontroller samples the pin value on every falling edge. Therefore, the internal sampling clock and the time the application expects the sampling to take place may be out of sync. For example: If the baud rate is 15.625 Kbaud (bit length is 64µs), then the 8th, 9th and 10th samples are at 28µs, 32µs and 36µs respectively (the first sample starting ideally at 0µs). But if the falling edge of the internal clock occurs just before the pin value changes, the samples would then be out of sync by ~4us. This means the entire bit length must be at least 40µs (36µs for the 10th sample + 4µs for synchronization with the internal sampling clock).

SERIAL COMMUNICATIONS INTERFACE (Cont'd) DATA REGISTER (SCIDR)

Read/Write

Reset Value: Undefined

Contains the Received or Transmitted data character, depending on whether it is read from or written to.

7							0
DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0

The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR).

The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 1.).

The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 1.).

BAUD RATE REGISTER (SCIBRR)

Read/Write

Reset Value: 0000 0000 (00h)

 7
 0

 SCP1
 SCP0
 SCT2
 SCT1
 SCT0
 SCR2
 SCR1
 SCR0

Bits 7:6 = SCP[1:0] First SCI Prescaler

These 2 prescaling bits allow several standard clock division ranges:

PR Prescaling factor	SCP1	SCP0
1	0	0
3	0	1
4	1	0
13	1	1

Bits 5:3 = **SCT[2:0]** *SCI Transmitter rate divisor* These 3 bits, in conjunction with the SCP1 & SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode.

TR dividing factor	SCT2	SCT1	SCT0
1	0	0	0
2	0	0	1
4	0	1	0
8	0	1	1
16	1	0	0
32	1	0	1
64	1	1	0
128	1	1	1

Bits 2:0 = **SCR[2:0]** *SCI Receiver rate divisor.* These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode.

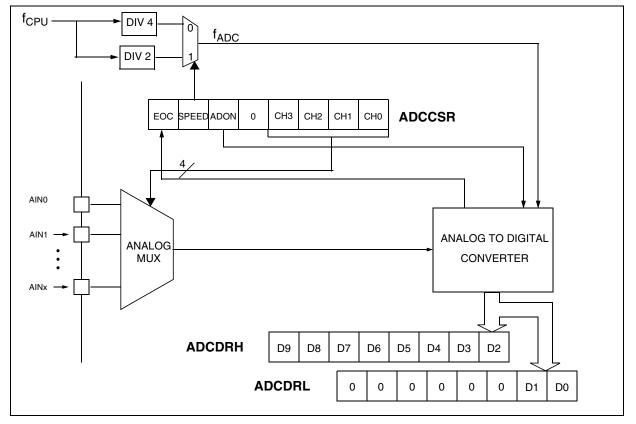
RR Dividing factor	SCR2	SCR1	SCR0
1	0	0	0
2	0	0	1
4	0	1	0
8	0	1	1
16	1	0	0
32	1	0	1
64	1	1	0
128	1	1	1

10.6 10-BIT A/D CONVERTER (ADC)

10.6.1 Introduction

The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 16 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 16 different sources.

The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register.


10.6.2 Main Features

- 10-bit conversion
- Up to 16 channels with multiplexed input
- Linear successive approximation
- Data register (DR) which contains the results

47/

- Conversion complete status flag
- On/off bit (to reduce consumption)

The block diagram is shown in Figure 57.

Figure 57. ADC Block Diagram

INSTRUCTION SET OVERVIEW (Cont'd)

11.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

Load and Transfer	LD	CLR						
Stack operation	PUSH	POP	RSP					
Increment/Decrement	INC	DEC						
Compare and Tests	СР	TNZ	BCP					
Logical operations	AND	OR	XOR	CPL	NEG			
Bit Operation	BSET	BRES						
Conditional Bit Test and Branch	BTJT	BTJF						
Arithmetic operations	ADC	ADD	SUB	SBC	MUL			
Shift and Rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional Jump or Call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional Branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition Code Flag modification	SIM	RIM	SCF	RCF				

Using a pre-byte

The instructions are described with one to four opcodes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC opcode

57

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.

PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode.

It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

INSTRUCTION SET OVERVIEW (Cont'd)

57

Mnemo	Description	Function/Example	Dst	Src	11	н	10	Ν	Ζ	С
JRULE	Jump if $(C + Z = 1)$	Unsigned <=								
LD	Load	dst <= src	reg, M	M, reg				Ν	Ζ	
MUL	Multiply	X,A = X * A	A, X, Y	X, Y, A		0				0
NEG	Negate (2's compl)	neg \$10	reg, M					Ν	Z	С
NOP	No Operation									
OR	OR operation	A=A+M	А	М				Ν	Z	
POP	Don from the Stool	pop reg	reg	М						
POP	Pop from the Stack	pop CC	CC	М	11	н	10	Ν	Ζ	С
PUSH	Push onto the Stack	push Y	М	reg, CC						
RCF	Reset carry flag	C = 0								0
RET	Subroutine Return									
RIM	Enable Interrupts	11:0 = 10 (level 0)			1		0			
RLC	Rotate left true C	C <= A <= C	reg, M					Ν	Ζ	С
RRC	Rotate right true C	C => A => C	reg, M					Ν	Ζ	С
RSP	Reset Stack Pointer	S = Max allowed								
SBC	Substract with Carry	A = A - M - C	А	М				Ν	Ζ	С
SCF	Set carry flag	C = 1								1
SIM	Disable Interrupts	l1:0 = 11 (level 3)			1		1			
SLA	Shift left Arithmetic	C <= A <= 0	reg, M					Ν	Ζ	С
SLL	Shift left Logic	C <= A <= 0	reg, M					Ν	Ζ	С
SRL	Shift right Logic	0 => A => C	reg, M					0	Z	С
SRA	Shift right Arithmetic	A7 => A => C	reg, M					Ν	Ζ	С
SUB	Substraction	A = A - M	А	М				Ν	Z	С
SWAP	SWAP nibbles	A7-A4 <=> A3-A0	reg, M					Ν	Ζ	
TNZ	Test for Neg & Zero	tnz lbl1						Ν	Z	
TRAP	S/W trap	S/W interrupt			1		1			
WFI	Wait for Interrupt				1		0			
XOR	Exclusive OR	A = A XOR M	А	М			l	Ν	Ζ	

OPERATING CONDITIONS (Cont'd)

12.4 LVD/AVD CHARACTERISTICS

12.4.1 Operating Conditions with Low Voltage Detector (LVD)

Subject to general operating conditions for T_A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Baratasia ang diang di	VD level = High in option byte	4.0 ¹⁾	4.2	4.5	
V _{IT+(LVD)}	V _{IT+(LVD)} Reset release threshold	VD level = Med. in option byte ²⁾		3.75	4.0 ¹⁾	
(V _{DD} rise)		VD level = Low in option byte ²⁾	2.95 ¹⁾	3.15	3.35 ¹⁾	v
V _{IT-(LVD)} Reset generation threshold (V _{DD} fall)		VD level = High in option byte	3.8	4.0	4.25 ¹⁾	v
	0	VD level = Med. in option byte ²⁾	3.35 ¹⁾	3.55	3.75 ¹⁾	
		VD level = Low in option byte ²⁾	2.8 ¹⁾	3.0	3.15 ¹⁾	
V _{hys(LVD)}	LVD voltage threshold hysteresis 1)	V _{IT+(LVD)} -V _{IT-(LVD)}	150	200	250	mV
Vt _{POR}	V _{DD} rise time ¹⁾		6μs/V		100ms/V	
t _{g(VDD)}	Filtered glitch delay on $V_{DD}^{(1)}$	Not detected by the LVD			40	ns

Notes:

1. Data based on characterization results, not tested in production.

2. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range.

12.4.2 Auxiliary Voltage Detector (AVD) Thresholds

Subject to general operating conditions for T_A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	$1 \rightarrow 0$ AVDE flog toggle threshold	VD level = High in option byte	4.4 ¹⁾	4.6	4.9	
V _{IT+(AVD)}	$V_{IT+(AVD)}$ 1 \Rightarrow 0 AVDF flag toggle threshold (V_{DD} rise)	VD level = Med. in option byte	3.95 ¹⁾	4.15	4.4 ¹⁾	
		VD level = Low in option byte	3.4 ¹⁾	3.6	3.8 ¹⁾	v
	$V_{\text{IT-(AVD)}} = 0 \Rightarrow 1 \text{ AVDF flag toggle threshold}$ (V_{DD} fall)	VD level = High in option byte	4.2	4.4	4.65 ¹⁾	v
V _{IT-(AVD)}		VD level = Med. in option byte	3.75 ¹⁾	4.0	4.2 ¹⁾	
. ,		VD level = Low in option byte	3.2 ¹⁾	3.4	3.6 ¹⁾	
V _{hys(AVD)}	AVD voltage threshold hysteresis	V _{IT+(AVD)} -V _{IT-(AVD)}		200		mV
ΔV_{IT}	Voltage drop between AVD flag set and LVD reset activated	V _{IT-(AVD)} -V _{IT-(LVD)}		450		mV

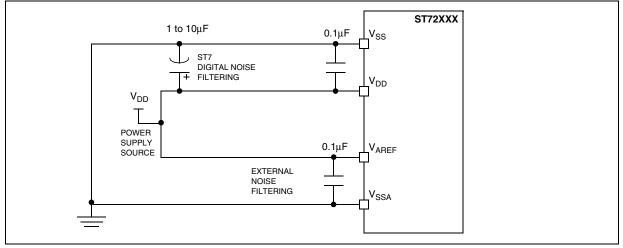
1. Data based on characterization results not tested in production.

ADC CHARACTERISTICS (Cont'd)

12.13.1 Analog Power Supply and Reference Pins

Depending on the MCU pin count, the package may feature separate V_{AREF} and V_{SSA} analog power supply pins. These pins supply power to the A/D converter cell and function as the high and low reference voltages for the conversion. In some packages, V_{AREF} and V_{SSA} pins are not available (refer to Section 2 on page 8). In this case the analog supply and reference pads are internally bonded to the V_{DD} and V_{SS} pins.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see Section 12.13.2 General PCB Design Guidelines).


12.13.2 General PCB Design Guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

 Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.

- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1μ F and optionally, if needed 10pF capacitors as close as possible to the ST7 power supply pins and a 1 to 10μ F capacitor close to the power source (see Figure 86).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{AREF} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs on the same I/O port as the A/D input being converted.

47/

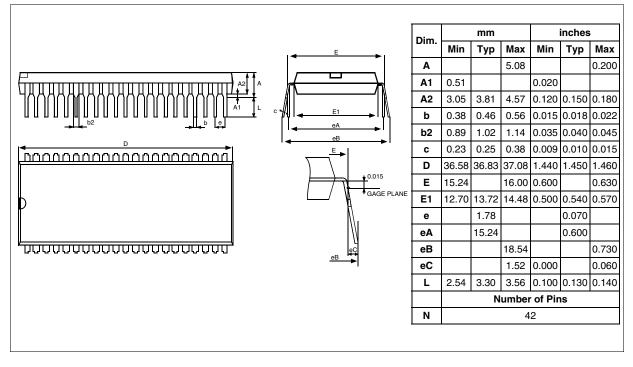
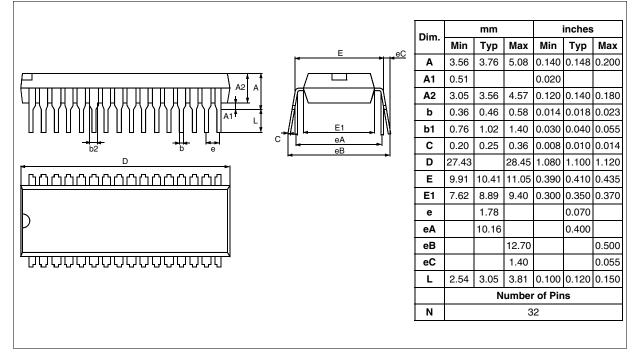


Figure 86. Power Supply Filtering


PACKAGE MECHANICAL DATA (Cont'd)

57/

Figure 90. 42-Pin Plastic Dual In-Line Package, Shrink 600-mil Width

Figure 91. 32-Pin Plastic Dual In-Line Package, Shrink 400-mil Width

13.3 SOLDERING INFORMATION

47/

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK® specifications are available at www.st.com.

17 REVISION HISTORY

Table 31. Revision History

57

Date	Revision	Description of Changes
		Merged ST72F324 Flash with ST72324B ROM datasheet.
		Vt POR max modified in Section 12.4 on page 119
		Added Figure 78 on page 137
05-May-2004	2.0	Modified V _{AREF} min in "10-BIT ADC CHARACTERISTICS" on page 142
		Modified I INJ for PB0 in Section 12.9
		Added "Clearing active interrupts outside interrupt routine" on page 159
		Modified "32K ROM DEVICES ONLY" on page 164
		Removed Clock Security System (CSS) throughout document
		Added notes on ST72F324B 8K/16K Flash devices in Table 1 and Table 27
	3	Corrected MCO description in Table 1 and Section 10.2
		Modified VtPOR in Section 12.4 on page 119
		Static current consumption modified in Section 12.9 on page 133
		Updated footnote and Figure 77 and Figure 78 on page 137
30-Mar-2005		Modified Soldering information in Section 13.3
00 11121 2000		Updated Section 14 on page 150
		Added Table 27
		Modified Figure 7 and note 4 in "FLASH PROGRAM MEMORY" on page 17
		Added limitation on ICC entry mode with 39 pulses to "KNOWN LIMITATIONS" on page 159
		Added Section 16 on page 162 for ST72F324B 8K/16K Flash devices
		Modified "Internal Sales Types on box label" in Table 29
08-Nov-2005	4	Removed information on ST72F324B and ROM devices (now in separate datasheet)
		Changed status to "Not for new design"
04-Apr-2008	5	Added "External interrupt missed" in "KNOWN LIMITATIONS" on page 159
		Removed information on automotive versions (now in separate datasheet)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

