

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN-EP (9x9)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf52100cep66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Famil	y Configurations
	1.1	Block Diagram
	1.2	Features
	1.3	Reset Signals
	1.4	PLL and Clock Signals
	1.5	Mode Selection
	1.6	External Interrupt Signals
	1.7	Queued Serial Peripheral Interface (QSPI)21
	1.8	I ² C I/O Signals
	1.9	UART Module Signals
	1.10	DMA Timer Signals
	1.11	ADC Signals
	1.12	General Purpose Timer Signals
	1.13	Pulse Width Modulator Signals
	1.14	Debug Support Signals23
	1.15	EzPort Signal Descriptions
	1.16	Power and Ground Pins
2	Elect	rical Characteristics
	2.1	Maximum Ratings
	2.2	Current Consumption
	2.3	Thermal Characteristics

	2.4	Flash Memory Characteristics
	2.5	EzPort Electrical Specifications
	2.6	ESD Protection
	2.7	DC Electrical Specifications
	2.8	Clock Source Electrical Specifications
	2.9	General Purpose I/O Timing 33
	2.10	Reset Timing
	2.11	I ² C Input/Output Timing Specifications
	2.12	Analog-to-Digital Converter (ADC) Parameters 36
	2.13	Equivalent Circuit for ADC Inputs
	2.14	DMA Timers Timing Specifications
	2.15	QSPI Electrical Specifications
	2.16	JTAG and Boundary Scan Timing
	2.17	Debug AC Timing Specifications
3	Mech	nanical Outline Drawings 42
	3.1	64-pin LQFP Package 43
	3.2	64 QFN Package 46
	3.3	81 MAPBGA Package 50
	3.4	100-pin LQFP Package 52
4	Revis	sion History 54

NP

1.1 Block Diagram

Figure 1 shows a top-level block diagram of the device. Package options for this family are described later in this document.

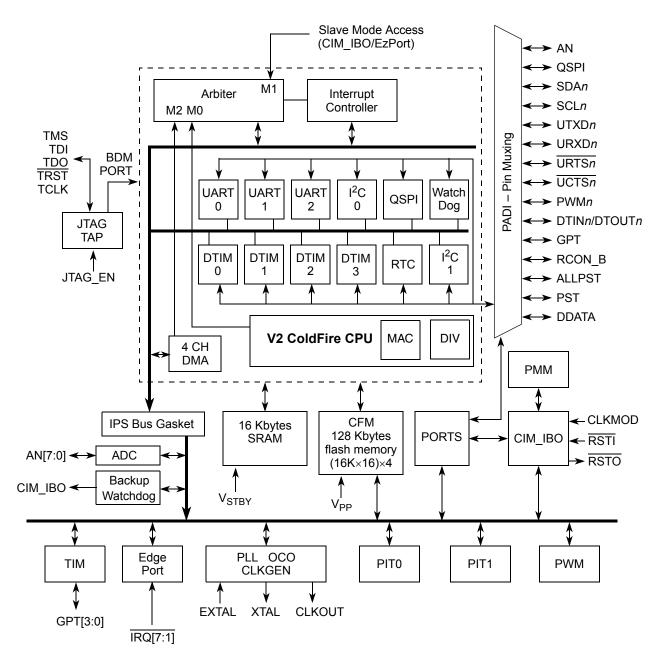


Figure 1. MCF52110 Block Diagram

1.2 Features

1.2.1 Feature Overview

The MCF52110 family includes the following features:

- Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.2.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the core includes the multiply-accumulate (MAC) unit for improved signal processing capabilities. The MAC implements a three-stage arithmetic pipeline, optimized for 16x16 bit operations, with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types. The MAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware cost.

1.2.3 Integrated Debug Module

The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided on 100-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit emulators.

The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register, a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the dedicated debug serial communication channel or from the processor's supervisor mode programming model. The breakpoint registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception. This device implements revision B+ of the ColdFire Debug Architecture.

The processor's interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.

To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining processor activity at the CPU's clock rate. The device includes a new debug signal, ALLPST. This signal is the logical AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).

The full debug/trace interface is available only on the 100-pin packages. However, every product features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.

1.2.4 JTAG

The processor supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit boundary-scan register, and a 32-bit ID register). The boundary scan register links the device's pins into one shift register. Test logic, implemented using static logic design, is independent of the device system logic.

The device implementation can:

- · Perform boundary-scan operations to test circuit board electrical continuity
- · Sample system pins during operation and transparently shift out the result in the boundary scan register

Family Configurations

- Bypass the device for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

1.2.5 On-Chip Memories

1.2.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 16-Kbyte memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 16-Kbyte boundary within the 4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.2.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with up to four banks of 16-Kbyte×16-bit flash memory arrays to generate up to 128 Kbytes of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller that supports interleaved accesses from the 2-cycle flash memory arrays. A backdoor mapping of the flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.2.6 Power Management

The device incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage. The peripheral clocks may be controlled on an individual basis for power reduction.

1.2.7 UARTs

The device has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus clock, eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital I/O functions. The UARTs are capable of generating DMA requests as well as interrupts.

1.2.8 I²C Bus

The processor includes two I²C modules. The I²C bus is an industry-standard, two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange and minimizes the interconnection between devices. This bus is suitable for applications requiring occasional communications over a short distance between many devices.

1.2.9 QSPI

The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability. It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.

1.2.10 Fast ADC

The fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding separate 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.

The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly until manually stopped.

The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.

During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.

Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.

1.2.11 DMA Timers (DTIM0–DTIM3)

There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the device. Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to operate from the system clock or from an external clock source using one of the DTIN*n* signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual timer counter register (TCR*n*). Each of these timers can be configured for input capture or reference (output) compare mode. Timer events may optionally cause interrupt requests or DMA transfers.

1.2.12 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.2.13 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

Figure 2 shows the pinout configuration for the 100 LQFP.

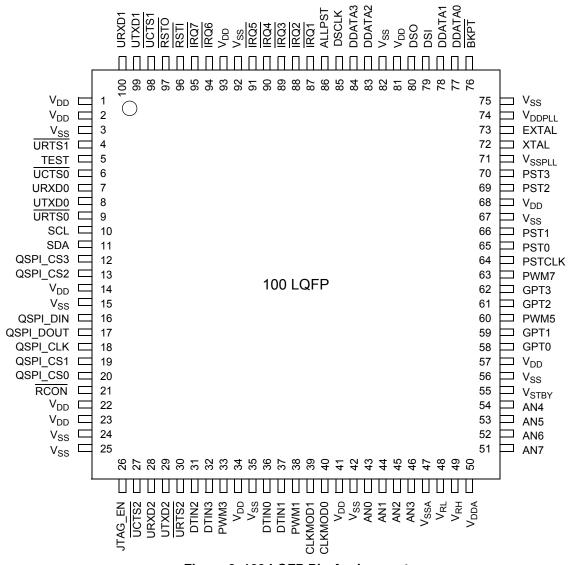


Figure 2. 100 LQFP Pin Assignments

Family Configurations

1.9 UART Module Signals

Table 11 describes the UART module signals.

Table	11.	UART	Module	Signals
-------	-----	------	--------	---------

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts the clock.	I
Clear-to-Send	UCTSn	Indication to the UART modules that they can begin data transmission.	I
Request-to-Send	URTSn	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.10 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN	Event input to the DMA timer modules.	Ι
DMA Timer Output	DTOUT	Programmable output from the DMA timer modules.	0

1.11 ADC Signals

Table 13 describes the signals of the Analog-to-Digital Converter.

Table 13. ADC Signals

Signal Name	Abbreviation	Function	I/O
Analog Inputs	AN[7:0]	Inputs to the analog-to-digital converter.	I
Analog Reference	V _{RH}	Reference voltage high and low inputs.	I
	V _{RL}		I
Analog Supply	V _{DDA}	Isolate the ADC circuitry from power supply noise.	
	V _{SSA}		
ADC Sync Inputs	SYNCA / SYNCB	These signals can initiate an analog-to-digital conversion process.	I

1.12 General Purpose Timer Signals

Table 14 describes the general purpose timer signals.

Table 14. GPT Signals

Signal Name	Abbreviation	Function	I/O
General Purpose Timer Input/Output	GPT[3:0]	Inputs to or outputs from the general purpose timer module.	I/O

1.13 Pulse Width Modulator Signals

Table 15 describes the PWM signals.

Table 15. PWM Signals

Signal Name	Abbreviation	Function	I/O
PWM Output Channels	PWM[7:0]	Pulse width modulated output for PWM channels.	0

1.14 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and the BDM logic.

Signal Name	Abbreviation	Function	I/O
JTAG Enable	JTAG_EN	Select between debug module and JTAG signals at reset.	Ι
Test Reset	TRST	This active-low signal is used to initialize the JTAG logic asynchronously.	I
Test Clock	TCLK	Used to synchronize the JTAG logic.	Ι
Test Mode Select	TMS	Used to sequence the JTAG state machine. TMS is sampled on the rising edge of TCLK.	I
Test Data Input	TDI	Serial input for test instructions and data. TDI is sampled on the rising edge of TCLK.	I
Test Data Output	TDO	Serial output for test instructions and data. TDO is tri-stateable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCLK.	0
Development Serial Clock	DSCLK	Development Serial Clock - Internally synchronized input. (The logic level on DSCLK is validated if it has the same value on two consecutive rising bus clock edges.) Clocks the serial communication port to the debug module during packet transfers. Maximum frequency is PSTCLK/5. At the synchronized rising edge of DSCLK, the data input on DSI is sampled and DSO changes state.	I
Breakpoint	ВКРТ	Breakpoint - Input used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state after the current instruction completes. Halt status is reflected on processor status/debug data signals (PST[3:0] and PSTDDATA[7:0]) as the value 0xF. If CSR[BKD] is set (disabling normal BKPT functionality), asserting BKPT generates a debug interrupt exception in the processor.	I

Table 16. Debug Support Signals

Signal Name	Abbreviation	Function	I/O
Development Serial Input	DSI	Development Serial Input - Internally synchronized input that provides data input for the serial communication port to the debug module, after the DSCLK has been seen as high (logic 1).	I
Development Serial Output	DSO	Development Serial Output - Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	0
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	0
Processor Status Clock	PSTCLK	Processor Status Clock - Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and PST and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]. The CLKOUT signal can be used by the development system to know when to sample ALLPST.	0

1.15 EzPort Signal Descriptions

Table 17 contains a list of EzPort external signals.

Table 17.	. EzPort	Signal	Descriptions
-----------	----------	--------	--------------

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers.	I
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers.	ļ
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK.	I
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK.	0

2.2 Current Consumption

Mode		Flash r	nemory		SRAM			Units	
Mode	8 MHz	16 MHz	64 MHz	80 MHz	8 MHz	16 MHz	64 MHz	80 MHz	Units
Stop mode 3 (Stop 11) ³		0.0)57	1		0.0	002	1	mA
Stop mode 2 (Stop 10) ³	2.5 2.3								
Stop mode 1 (Stop 01) ^{3,4}	3.03	3.3	4.9	5.6	2.9	3.1	4.8	5.4	
Stop mode 0 (Stop 00) ³	3.03	3.3	4.9	5.6	2.9	3.1	4.8	5.4	
Wait / Doze	12.3	22.7	40.3	45	5.3	7.9	24	30	
Run	TBD	TBD	TBD	TBD	6.7	10.8	35	43	

Table 20. Current Consumption in Low-Power Mode^{1,2}

¹ All values are measured with a 3.30V power supply.

² Refer to the Power Management chapter in the MCF52110 Reference Manual for more information on low-power modes.

³ See the description of the Low-Power Control Register (LPCR) in the MCF52110 Reference Manual for more information on stop modes 0–3.

⁴ Results are identical to STOP 00 for typical values because they only differ by CLKOUT power consumption. CLKOUT is already disabled in this instance prior to entering low power mode.

Table 21. Typical Active Current Consumption Specifications

Characteristic	Symbol	Typical ¹ Active (SRAM)	Typical ¹ Active (Flash)	Peak ² (Flash)	Unit
PLL @ 8 MHz	I _{DD}	8	11	21	mA
PLL @ 16 MHz		12	19	38	
PLL @ 64 MHz		38	45	102	
PLL @ 80 MHz		45	54	118	
$\label{eq:RAM} \begin{array}{l} \text{RAM standby supply current} \\ \bullet \text{Normal operation: } V_{\text{DD}} > V_{\text{STBY}} - 0.3 \text{ V} \\ \bullet \text{Transient condition: } V_{\text{STBY}} - 0.3 \text{ V} > V_{\text{DD}} > V_{\text{SS}} + 0.5 \text{ V} \\ \bullet \text{Standby operation: } V_{\text{DD}} < V_{\text{SS}} + 0.5 \text{ V} \end{array}$	I _{STBY}	-	- - -	0 65 16	μΑ μΑ μΑ
Analog supply current • Normal operation • Standby • Powered down	I _{DDA}			14 0.8 0	mA
PLL supply current	I _{DDPLL}	—		6 ^(see note 3)	mA

¹ Tested at room temperature with CPU polling a status register. All clocks were off except the UART and CFM (when running from flash memory).

² Peak current measured with all modules active, CPU polling a status register, and default drive strength with matching load.

³ Tested with the PLL MFD set to 7 (max value). Setting the MFD to a lower value results in lower current consumption.

2.3 Thermal Characteristics

Table 22 lists thermal resistance values.

Table 22. Thermal Characteristics

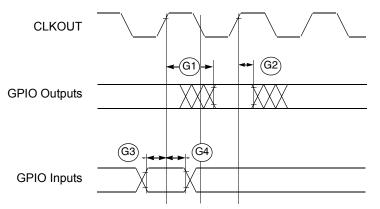
	Characteristic	;	Symbol	Value	Unit
100 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ _{JA}	53 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	39 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	42 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	33 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	25 ⁴	°C/W
	Junction to case	—	θ _{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
81 MAPBGA	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	61 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	35 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	50 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	31 ^{2,3}	°C/W
	Junction to board	—	θ_{JB}	20 ⁴	°C/W
	Junction to case	—	θ _{JC}	12 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	62 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	43 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ_{JMA}	50 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	36 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	26 ⁴	°C/W
	Junction to case	—	θ _{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 QFN	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	68 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	24 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ_{JMA}	55 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	19 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	8 ⁴	°C/W
	Junction to case (bottom)	—	θ _{JC}	0.6 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	3 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C

Table 24. SGFM Flash Module Life Characteristics

(V _{DD}	= 3.0 to 3.6 V)	
------------------	-----------------	--

Symbol	Value	Unit
P/E	10,000 ²	Cycles
Retention	10	Years
_	P/E	P/E 10,000 ²

¹ A program/erase cycle is defined as switching the bits from $1 \rightarrow 0 \rightarrow 1$.


² Reprogramming of a flash memory array block prior to erase is not required.

2.5 EzPort Electrical Specifications

Table 25. EzPort Electrical Specifications

Name	Characteristic	Min	Max	Unit
EP1	EPCK frequency of operation (all commands except READ)	_	f _{sys} / 2	MHz
EP1a	EPCK frequency of operation (READ command)	_	f _{sys} / 8	MHz
EP2	EPCS_b negation to next EPCS_b assertion	$2 \times T_{cyc}$	_	ns
EP3	EPCS_B input valid to EPCK high (setup)	5	_	ns
EP4	EPCK high to EPCS_B input invalid (hold)	5	_	ns
EP5	EPD input valid to EPCK high (setup)	2	_	ns
EP6	EPCK high to EPD input invalid (hold)	5	_	ns
EP7	EPCK low to EPQ output valid (out setup)	_	12	ns
EP8	EPCK low to EPQ output invalid (out hold)	0	_	ns
EP9	EPCS_B negation to EPQ tri-state		12	ns

Figure 5. GPIO Timing

2.10 Reset Timing

Table 30. Reset and Configuration Override Timing

$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_A = T_L \text{ to } T_H)^{-1}$	$(V_{DD} = 3.0 \text{ to } 3.6)$	$V, V_{SS} = 0$) V, T _A = '	T _L to T _H) ¹
--	----------------------------------	-----------------	-------------------------	---

NUM	Characteristic	Symbol	Min	Мах	Unit
R1	RSTI input valid to CLKOUT High	t _{RVCH}	9	—	ns
R2	CLKOUT High to RSTI Input invalid	t _{CHRI}	1.5	—	ns
R3	RSTI input valid time ²	t _{RIVT}	5	—	t _{CYC}
R4	CLKOUT High to RSTO Valid	t _{CHROV}	—	10	ns

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Thus, RSTI must be held a minimum of 100 ns.

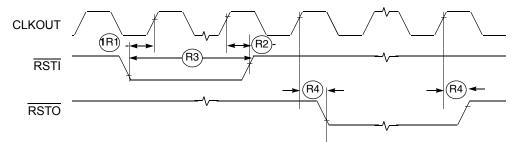


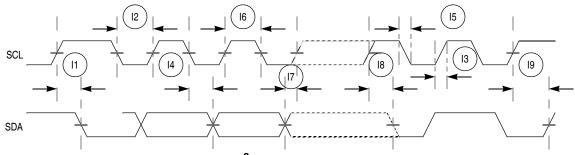
Figure 6. RSTI and Configuration Override Timing

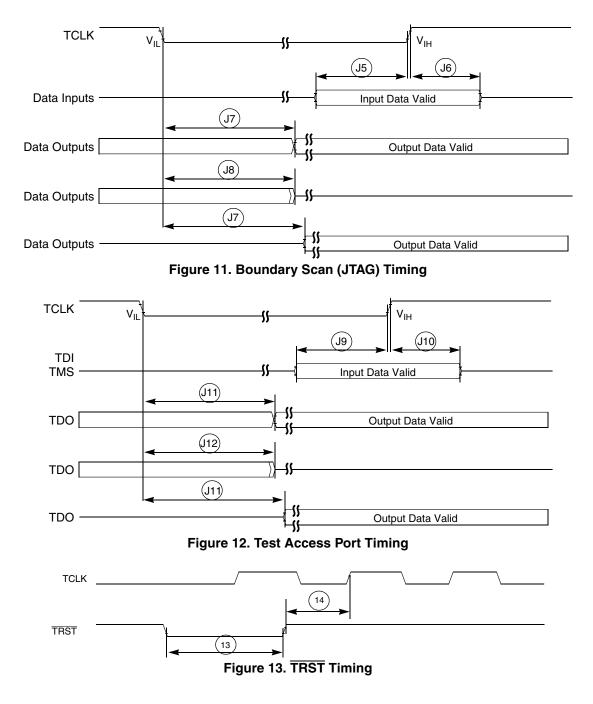
2.11 I²C Input/Output Timing Specifications

Table 31 lists specifications for the I^2C input timing parameters shown in Figure 7.

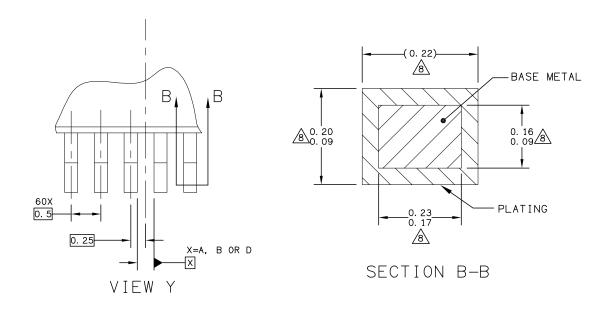
NP

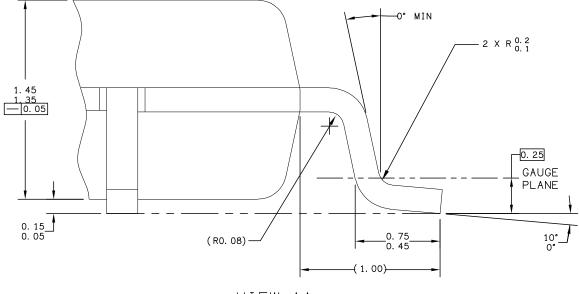
Figure 7 shows timing for the values in Table 31 and Table 32.

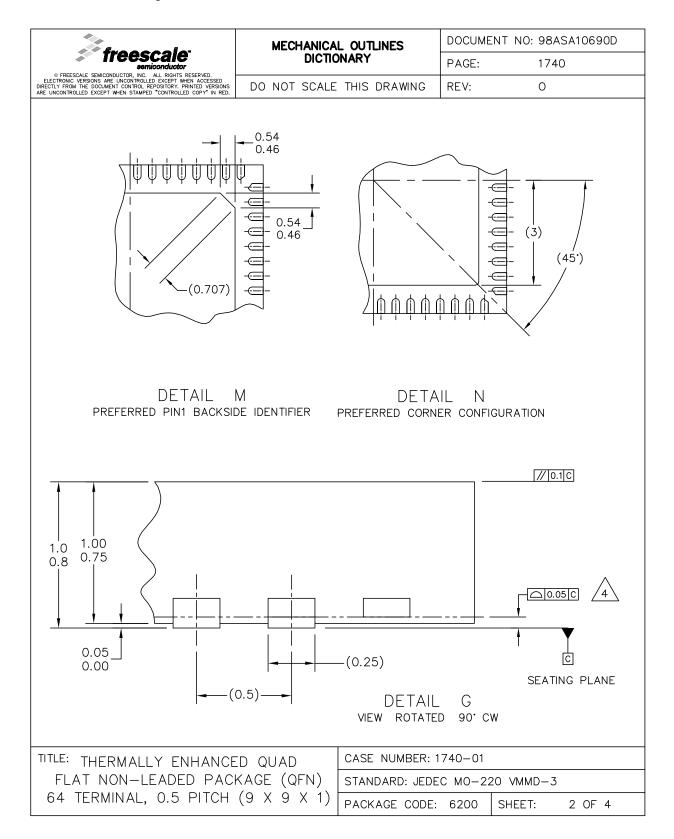



Figure 7. I²C Input/Output Timings

2.12 Analog-to-Digital Converter (ADC) Parameters


Table 33 lists specifications for the analog-to-digital converter.


Name	Characteristic	Min	Typical	Max	Unit
V _{REFL}	Low reference voltage	V _{SSA}	—	V _{SSA}	V
V _{REFH}	High reference voltage	V _{DDA}	—	V _{DDA}	V
V _{DDA}	ADC analog supply voltage	3.0	3.3	3.6	V
V _{ADIN}	Input voltages	V _{REFL}	—	V _{REFH}	V
RES	Resolution	12	—	12	Bits
INL	Integral non-linearity (full input signal range) ²		±2.5	±3	LSB ³
INL	Integral non-linearity (10% to 90% input signal range) ⁴	—	±2.5	±3	LSB
DNL	Differential non-linearity	—	-1 < DNL < +1	<+1	LSB
	Monotonicity	GUARANTEED			
f _{ADIC}	ADC internal clock	0.1	—	5.0	MHz
R _{AD}	Conversion range	V _{REFL}	—	V _{REFH}	V
t _{ADPU}	ADC power-up time ⁵		6	13	t _{AIC} cycles ⁶
t _{REC}	Recovery from auto standby	—	0	1	t _{AIC} cycles
t _{ADC}	Conversion time	—	6	_	t _{AIC} cycles
t _{ADS}	Sample time		1	_	t _{AIC} cycles
C _{ADI}	Input capacitance	—	See Figure 8	_	pF
X _{IN}	Input impedance	—	See Figure 8	_	W
I _{ADI}	Input injection current ⁷ , per pin		—	3	mA
I _{VREFH}	V _{REFH} current	—	0	_	mA
V _{OFFSET}	Offset voltage internal reference	—	±8	±15	mV
E _{GAIN}	Gain error (transfer path)	.99	1	1.01	—
V _{OFFSET}	Offset voltage external reference		±3	9	mV
SNR	Signal-to-noise ratio	_	62 to 66		dB



VIEW AA

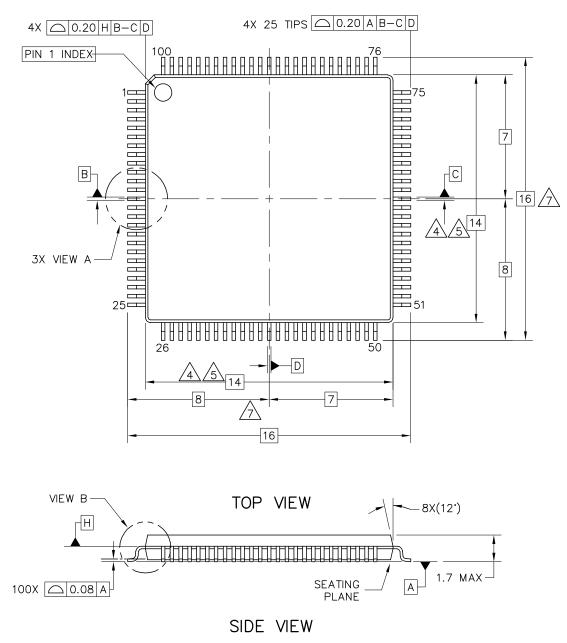
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanical outline		PRINT VERSION NOT TO SCALE	
TITLE: 64LD LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, CASE OUTLINE		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER	2:840F-02	06 APR 2005
		STANDARD: JE	DEC MS-026 BCD	

Mechanical Outline Drawings

Mechanical Outline Drawings

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $\sqrt{3}$, maximum solder ball diameter measured parallel to datum a.



5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE: PBGA, LOW PROFIL	E, DOCUMENT NO	D: 98ASA10670D	REV: O	
81 I/O, 10 X 10 PK		R: 1662–01	04 FEB 2005	
1 MM PITCH (MAP) STANDARD: N	STANDARD: NON-JEDEC		

3.4 100-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO): 98ASS23308W	REV: G
100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4	- THICK	CASE NUMBER	8: 983–03	07 APR 2005
	TH TOT	STANDARD: NO	DN-JEDEC	

Revision History