

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf52100cvm66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Family Configurations

- Bypass the device for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

1.2.5 On-Chip Memories

1.2.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 16-Kbyte memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 16-Kbyte boundary within the 4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.2.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with up to four banks of 16-Kbyte×16-bit flash memory arrays to generate up to 128 Kbytes of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller that supports interleaved accesses from the 2-cycle flash memory arrays. A backdoor mapping of the flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.2.6 Power Management

The device incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage. The peripheral clocks may be controlled on an individual basis for power reduction.

1.2.7 UARTs

The device has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus clock, eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital I/O functions. The UARTs are capable of generating DMA requests as well as interrupts.

1.2.8 I²C Bus

The processor includes two I²C modules. The I²C bus is an industry-standard, two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange and minimizes the interconnection between devices. This bus is suitable for applications requiring occasional communications over a short distance between many devices.

Figure 2 shows the pinout configuration for the 100 LQFP.

Figure 2. 100 LQFP Pin Assignments

MCF52110 ColdFire Microcontroller, Rev. 1

Family Configurations

	1	2	3	4	5	6	7	8	9
A	V _{SS}	UTXD1	RSTI	IRQ5	IRQ3	ALLPST	TDO	TMS	V _{SS}
в	URTS1	URXD1	RSTO	IRQ6	IRQ2	TRST	TDI	V _{DD} PLL	EXTAL
С	UCTS0	TEST	UCTS1	IRQ7	IRQ4	IRQ1	TCLK	V _{SS} PLL	XTAL
D	URXD0	UTXD0	URTS0	V _{SS}	V _{DD}	V _{SS}	PWM7	GPT3	GPT2
Е	SCL	SDA	V _{DD}	PWM5	GPT1				
F	QSPI_CS3	QSPI_CS2	QSPI_DIN	V _{SS}	V _{DD}	V _{SS}	GPT0	V _{STBY}	AN4
G	QSPI_DOUT	QSPI_CLK	RCON	DTIN1	CLKMOD0	AN2	AN3	AN5	AN6
н	QSPI_CS0	QSPI_CS1	DTIN3	DTIN0	CLKMOD1	AN1	V _{SSA}	V _{DDA}	AN7
J	V _{SS}	JTAG_EN	DTIN2	PWM3	PWM1	AN0	V _{RL}	V _{RH}	V _{SSA}

Figure 3 shows the pinout configuration for the 81 MAPBGA.

Figure 3. 81 MAPBGA Pin Assignments

Table 3 shows the pin functions by primary and alternate purpose, and illustrates which packages contain each pin.

Drive Slew Rate / Pull-up / Pin on 64 Pin Secondary Tertiary Quaternary Primary Pin on Pin on 81 Strength / Pull-down² Control¹ LQFP/QFN Group Function Function Function Function 100 LQFP MAPBGA Control¹ ADC AN7 GPIO H9 _ ____ Low FAST ____ 51 33 AN6 GPIO FAST 52 G9 34 ____ ____ Low ____ AN5 GPIO Low FAST 53 G8 35 ____ ____ ____ 54 F9 AN4 GPIO Low FAST 36 _ ___ ____ AN3 GPIO FAST G7 Low 46 28 _ _ _ AN2 FAST GPIO 45 G6 27 Low _ _ _ AN1 GPIO Low FAST 44 H6 26 _ ____ ____ AN0 GPIO FAST 43 J6 25 Low _ _ ____ SYNCA³ N/A N/A ____ _ _ _ _ _ ____ SYNCB³ N/A N/A _ _ ____ ____ _ _ _ VDDA N/A N/A 50 H8 32 _ ____ ___ _ H7, J9 VSSA N/A N/A 47 29 ____ ____ _ ____ VRH N/A N/A 49 J8 31 _ ____ _ ____ VRL J7 N/A N/A 48 30 _ _ ____ ____ EXTAL N/A N/A Clock 73 B9 47 ____ ____ ____ ____ Generation XTAL N/A N/A 72 C9 46 ____ _ ____ ____ VDDPLL N/A 74 N/A B8 48 _ _ _ _ VSSPLL N/A N/A 71 C8 45 ____ _ ____ _ ALLPST High Debug Data FAST 86 A6 55 _ ____ _ ____ DDATA[3:0] High FAST 84,83,78,77 _ ____ GPIO ____ _ _ GPIO FAST 70,69,66,65 PST[3:0] High _ _ _ _ _ l²C SCL0 PSRR[0] pull-up⁴ E1 UTXD2 GPIO PDSR[0] 10 8 _ pull-up⁴ SDA0 URXD2 PDSR[0] PSRR[0] E2 9 GPIO 11 _

Table 3. Pin Functions by Primary and Alternate Purpose

MCF52110 ColdFire Microcontroller, Rev. 1

Family Configurations

Freescale Semiconductor

MCF52110 ColdFire Microcontroller, Rev. 1

				•	•	•	•	,		
Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
QSPI	QSPI_DIN/ EZPD	SDA1	URXD1	GPIO	PDSR[2]	PSRR[2]	_	16	F3	12
	QSPI_DOUT/ EZPQ	SCL1	UTXD1	GPIO	PDSR[1]	PSRR[1]	_	17	G1	13
	QSPI_CLK/ EZPCK	SCL0	URTS1	GPIO	PDSR[3]	PSRR[3]	pull-up ⁷	18	G2	14
	QSPI_CS3	SYNCA	SYNCB	GPIO	PDSR[7]	PSRR[7]		12	F1	—
	QSPI_CS2	SYNCB	—	GPIO	PDSR[6]	PSRR[6]		13	F2	—
	QSPI_CS1	—	—	GPIO	PDSR[5]	PSRR[5]	—	19	H2	—
	QSPI_CS0	SDA0	UCTS1	GPIO	PDSR[4]	PSRR[4]	pull-up ⁷	20	H1	15
Reset ⁸	RSTI	_		—	N/A	N/A	pull-up ⁸	96	A3	59
	RSTO	—	—	—	high	FAST	—	97	B3	60
Test	TEST	—	—	—	N/A	N/A	pull-down	5	C2	3
Timers, 16-bit	GPT3	_	PWM7	GPIO	PDSR[23]	PSRR[23]	pull-up ⁹	62	D8	43
	GPT2	—	PWM5	GPIO	PDSR[22]	PSRR[22]	pull-up ⁹	61	D9	42
	GPT1	—	PWM3	GPIO	PDSR[21]	PSRR[21]	pull-up ⁹	59	E9	41
	GPT0	_	PWM1	GPIO	PDSR[20]	PSRR[20]	pull-up ⁹	58	F7	40
Timers, 32-bit	DTIN3	DTOUT3	PWM6	GPIO	PDSR[19]	PSRR[19]	—	32	H3	19
	DTIN2	DTOUT2	PWM4	GPIO	PDSR[18]	PSRR[18]	—	31	J3	18
	DTIN1	DTOUT1	PWM2	GPIO	PDSR[17]	PSRR[17]	—	37	G4	23
	DTIN0	DTOUT0	PWM0	GPIO	PDSR[16]	PSRR[16]	—	36	H4	22
UART 0	UCTS0	—	_	GPIO	PDSR[11]	PSRR[11]	—	6	C1	4
	URTS0	—	—	GPIO	PDSR[10]	PSRR[10]	—	9	D3	7
	URXD0	RTC_EXTAL	—	GPIO	PDSR[9]	PSRR[9]	—	7	D1	5
	UTXD0	RTC_XTAL	—	GPIO	PDSR[8]	PSRR[8]	—	8	D2	6
	URXD0 UTXD0	RTC_EXTAL RTC_XTAL		GPIO GPIO	PDSR[9] PDSR[8]	PSRR[9] PSRR[8]		7 8	D1 D2	

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

18

Signal Name	Abbreviation	Function	I/O
Development Serial Input	DSI	Development Serial Input - Internally synchronized input that provides data input for the serial communication port to the debug module, after the DSCLK has been seen as high (logic 1).	I
Development Serial Output	DSO	Development Serial Output - Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	0
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	0
Processor Status Clock	PSTCLK	Processor Status Clock - Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and PST and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]. The CLKOUT signal can be used by the development system to know when to sample ALLPST.	0

|--|

1.15 EzPort Signal Descriptions

Table 17 contains a list of EzPort external signals.

Table 17.	EzPort	Signal	Descriptions
-----------	--------	--------	--------------

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers.	Ι
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers.	Ι
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK.	Ι
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK.	0

This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	+1.8 to 3.5	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	–40 to 85 ⁶	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Table 19. Absolute Maximum Ratings^{1, 2}

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).
- ³ Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- 4 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ⁵ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).
- ⁶ Depending on the packaging; see the orderable part number summary.

2.2 Current Consumption

Mode	Flash memory			SRAM				Unito	
	8 MHz	16 MHz	64 MHz	80 MHz	8 MHz	16 MHz	64 MHz	80 MHz	Units
Stop mode 3 (Stop 11) ³		0.057			0.002				mA
Stop mode 2 (Stop 10) ³		2.5				2.3			
Stop mode 1 (Stop 01) ^{3,4}	3.03	3.3	4.9	5.6	2.9	3.1	4.8	5.4	
Stop mode 0 (Stop 00) ³	3.03	3.3	4.9	5.6	2.9	3.1	4.8	5.4	-
Wait / Doze	12.3	22.7	40.3	45	5.3	7.9	24	30	-
Run	TBD	TBD	TBD	TBD	6.7	10.8	35	43	

Table 20. Current Consumption in Low-Power Mode^{1,2}

¹ All values are measured with a 3.30V power supply.

² Refer to the Power Management chapter in the MCF52110 Reference Manual for more information on low-power modes.

³ See the description of the Low-Power Control Register (LPCR) in the MCF52110 Reference Manual for more information on stop modes 0–3.

⁴ Results are identical to STOP 00 for typical values because they only differ by CLKOUT power consumption. CLKOUT is already disabled in this instance prior to entering low power mode.

Table 21. Typical Active Current Consumption Specifications

Characteristic	Symbol	Typical ¹ Active (SRAM)	Typical ¹ Active (Flash)	Peak ² (Flash)	Unit
PLL @ 8 MHz	I _{DD}	8	11	21	mA
PLL @ 16 MHz		12	19	38	
PLL @ 64 MHz		38	45	102	
PLL @ 80 MHz		45	54	118	
$\label{eq:RAM} \begin{array}{l} \text{RAM standby supply current} \\ \bullet \text{Normal operation: } V_{\text{DD}} > V_{\text{STBY}} - 0.3 \text{ V} \\ \bullet \text{Transient condition: } V_{\text{STBY}} - 0.3 \text{ V} > V_{\text{DD}} > V_{\text{SS}} + 0.5 \text{ V} \\ \bullet \text{Standby operation: } V_{\text{DD}} < V_{\text{SS}} + 0.5 \text{ V} \end{array}$	I _{STBY}			0 65 16	μΑ μΑ μΑ
Analog supply current • Normal operation • Standby • Powered down	I _{DDA}			14 0.8 0	mA
PLL supply current	IDDPLL	_	_	6 ^(see note 3)	mA

¹ Tested at room temperature with CPU polling a status register. All clocks were off except the UART and CFM (when running from flash memory).

² Peak current measured with all modules active, CPU polling a status register, and default drive strength with matching load.

³ Tested with the PLL MFD set to 7 (max value). Setting the MFD to a lower value results in lower current consumption.

2.3 Thermal Characteristics

Table 22 lists thermal resistance values.

Table 22. Thermal Characteristics

	Characteristic	:	Symbol	Value	Unit
100 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ _{JA}	53 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	39 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ_{JMA}	42 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	33 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	25 ⁴	°C/W
	Junction to case	—	θ_{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
81 MAPBGA	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	61 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	35 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ_{JMA}	50 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	31 ^{2,3}	°C/W
	Junction to board	—	θ_{JB}	20 ⁴	°C/W
	Junction to case	—	θ _{JC}	12 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	62 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	43 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ_{JMA}	50 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	36 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	26 ⁴	°C/W
	Junction to case	—	θ_{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 QFN	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	68 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	24 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ _{JMA}	55 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	19 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	8 ⁴	°C/W
	Junction to case (bottom)	—	θ _{JC}	0.6 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	3 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C

Characteristic	Symbol	Min	Мах	Unit
Output high voltage (high drive) I _{OH} = -5 mA	V _{OH}	V _{DD} – 0.5	—	V
Output low voltage (high drive) I _{OL} = 5 mA	V _{OL}	—	0.5	V
Output high voltage (low drive) I _{OH} = -2 mA	V _{OH}	V _{DD} - 0.5	—	V
Output low voltage (low drive) I _{OL} = 2 mA	V _{OL}	—	0.5	V
Weak internal pull Up device current, tested at V _{IL} Max. ³	I _{APU}	-10	-130	μA
Input Capacitance ⁴ All input-only pins All input/output (three-state) pins 	C _{in}		7 7	pF

Table 27. DC Electrical Specifications (continued)¹

¹ Refer to Table 28 for additional PLL specifications.

² Only for pins: IRQ1, IRQ2. IRQ3, IRQ4, IRQ5, IRQ6. IRQ7, RSTIN_B, RCON_B, PCS0, SCK, I2C_SDA, I2C_SCL, TCLK, TRST_B, TEST

³ Refer to Table 3 for pins having internal pull-up devices.

⁴ This parameter is characterized before qualification rather than 100% tested.

2.8 Clock Source Electrical Specifications

Table 28. Oscillator and PLL Electrical Specifications

(V _{DD} and V _{DDPLI}	= 2.7 to 3.6 V, V _{SS} =	= V _{SSPLL} = 0 V)
---	-----------------------------------	-----------------------------

Characteristic	Symbol	Min	Мах	Unit
Clock Source Frequency Range of EXTAL Frequency Range • Crystal • External ¹	f _{crystal} f _{ext}	1 0	25.0 ² 66.67 or 80	MHz
PLL reference frequency range	f _{ref_pll}	2	10.0	MHz
System frequency ³ • External clock mode • On-chip PLL frequency	f _{sys}	0 f _{ref} / 32	66.67 or 80 ⁴ 66.67 or 80 ⁴	MHz
Loss of reference frequency ^{5, 7}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ⁶	f _{SCM}	1	5	MHz
Crystal start-up time ^{7, 8}	t _{cst}	_	0.1	ms
EXTAL input high voltage External reference 	V _{IHEXT}	2.0	3.0 ²	V
EXTAL input low voltage External reference 	V _{ILEXT}	V _{SS}	0.8	V
PLL lock time ^{4,9}	t _{lpll}	—	500	μs
Duty cycle of reference ⁴	t _{dc}	40	60	% f _{ref}

Table 28. Oscillator and PLL Electrical Specifications (continued)

 $(V_{DD} \text{ and } V_{DDPLL} = 2.7 \text{ to } 3.6 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V})$

Characteristic	Symbol	Min	Мах	Unit
Frequency un-LOCK range	f _{UL}	-1.5	1.5	% f _{ref}
Frequency LOCK range	f _{LCK}	-0.75	0.75	% f _{ref}
 CLKOUT period jitter ^{4, 5, 10, 11}, measured at f_{SYS} Max Peak-to-peak (clock edge to clock edge) Long term (averaged over 2 ms interval) 	C _{jitter}		10 .01	% f _{sys}
On-chip oscillator frequency	f _{oco}	7.84	8.16	MHz

¹ In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.

- ² This value has been updated.
- ³ All internal registers retain data at 0 Hz.
- ⁴ Depending on packaging; see the orderable part number summary.
- ⁵ Loss of Reference Frequency is the reference frequency detected internally, which transitions the PLL into self clocked mode.
- ⁶ Self clocked mode frequency is the frequency at which the PLL operates when the reference frequency falls below f_{LOR} with default MFD/RFD settings.
- ⁷ This parameter is characterized before qualification rather than 100% tested.
- ⁸ Proper PC board layout procedures must be followed to achieve specifications.
- ⁹ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ¹⁰ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{jitter} percentage for a given interval.
- ¹¹ Based on slow system clock of 40 MHz measured at f_{svs} max.

2.9 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR Control, timer, UART, and Interrupt interfaces. When in GPIO mode, the timing specification for these pins is given in Table 29 and Figure 5.

The GPIO timing is met under the following load test conditions:

- 50 pF / 50 Ω for high drive
- $25 \text{ pF} / 25 \Omega$ for low drive

Table 29. GPIO Timing

NUM	Characteristic	Symbol	Min	Мах	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}		10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	—	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	—	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	—	ns

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	$4 \times t_{CYC}$	—	ns
J3	TCLK clock pulse width	t _{JCW}	26	—	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	—	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	—	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input data hold time after TCLK rise	t _{TAPBHT}	10	—	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	_	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	_	ns

Table 36. JTAG and Boundary Scan Timing

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

Figure 10. Test Clock Input Timing

MCF52110 ColdFire Microcontroller, Rev. 1

Mechanical Outline Drawings

3.1 64-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION N	DT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO): 98ASS23234₩	REV: D
10 X 10 X 1.4 PKG,		CASE NUMBER	R: 840F-02	06 APR 2005
0.5 PITCH, CASE OU	JTLINE	STANDARD: JE	DEC MS-026 BCD	

VIEW AA

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO): 98ASS23234W	REV: D
10 X 10 X 1. 4 PKG, 0.5 PITCH, CASE OUTLINE		CASE NUMBER	8:840F-02	06 APR 2005
		STANDARD: JE	DEC MS-026 BCD	•

MCF52110 ColdFire Microcontroller, Rev. 1

Mechanical Outline Drawings

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- 4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- 6. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- / EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- AND 0.25 mm FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanica	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO	: 98ASS23234₩	REV: D
10 X 10 X 1.4 PKG, 0.5 PITCH, CASE OUTLINE		CASE NUMBER	2: 840F-02	06 APR 2005
		STANDARD: JE	DEC MS-026 BCD	

3.2 64 QFN Package

MCF52110 ColdFire Microcontroller, Rev. 1

Mechanical Outline Drawings

	MECHANICAL OUTLINES	DOCUMENT NO	: 98ASA10690D				
	DICTIC	DNARY	PAGE:	1740			
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTORIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	0			
NOTES:							
1. ALL DIMENSIONS ARE IN MI	LLIMETERS.						
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.							
3. THE COMPLETE JEDEC DES	IGNATOR FOR THIS	S PACKAGE IS: HI	F-PQFN.				
4. COPLANARITY APPLIES TO	LEADS, CORNER L	EADS AND DIE A	TTACH PAD.				
5. MIN METAL GAP SHOULD B	E 0.2MM.						
TITLE: THERMALLY ENHANCE	- Ουαρ	CASE NUMBER: 1	740-01				
FLAT NON-LEADED PAC	KAGE (QFN)	STANDARD: JFDF	C MO-220 VMM	 /D-3			
64 TERMINAL, 0.5 PITCH	(9 X 9 X 1)	PACKAGE CODE:	6200 SHEE	T: 3 OF 4			

Mechanical Outline Drawings

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- /3, maximum solder ball diameter measured parallel to datum a.

5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUT	LINE PRINT VERSI	ON NOT TO SCALE
TITLE: PBGA, LOW PROFIL	E, DOCU	MENT NO: 98ASA10670D	REV: O
81 I/O, 10 X 10 PKG,		NUMBER: 1662-01	04 FEB 2005
1 MM PITCH (MAF) STANI	OARD: NON-JEDEC	

Mechanical Outline Drawings

VIEW B	3
--------	---

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASS23308W	REV: G
$\begin{array}{c} 100 \text{ LEAD LQFP} \\ 14 \text{ X} 14 \text{ 0.5 PITCH} 1.4 \text{ THICK} \end{array}$	CASE NUMBER	8: 983–03	07 APR 2005	
14 X 14, 0.0 111011, 1.4 11101		STANDARD: NO	DN-JEDEC	

Revision History